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Abstract
In the context of computational anatomy, one aims at understanding and modelling the anatomy of
the brain and its variations across a population. This geometrical variability is often measured from
precisely defined anatomical landmarks such as sulcal lines or meshes of brain structures. This
requires (1) to compare geometrical objects without introducing too many non realistic priors and
(2) to retrieve the variability of the whole brain from the variability of the landmarks.

We propose, in this paper, to infer a statistical brain model from the consistent integration of
variability of sulcal lines. The similarity between two sets of lines is measured by a distance on
currents that does not assume any type of point correspondences and it is not sensitive to the sampling
of lines. This shape similarity measure is used in a diffeomorphic registrations which retrieves a
single deformation of the whole 3D space. This diffeomorphism integrates the variability of all lines
in a as spatially consistent manner as possible.

Based on repeated pairwise registrations on a large database, we learn how the mean anatomy varies
in a population by computing statistics on diffeomorphisms. Whereas usual methods lead to
descriptive measures of variability, such as variability maps or statistical tests, our model is
generative: we can simulate new observations according to the learned probability law on
deformations. In practice, this variability captured by the model is synthesized in the principal modes
of deformations. As a deformation is dense, we can also apply it to other anatomical structures defined
in the template space. This is illustrated the action of the principal modes of deformations to a mean
cortical surface.

Eventually, our current-based diffeomorphic registration (CDR) approach is carefully compared to
a pointwise line correspondences (PLC) method. Variability measures are computed with both
methods on the same dataset of sulcal lines. The results suggest that we retrieve more variability with
CDR than with PLC, especially in the direction of the lines. Other differences also appear which
highlight the different methodological assumptions each method is based on.
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1. Introduction
From the ever growing databases of medical images, there is considerable interest in extracting
the most relevant information to characterize normal anatomical variability within a group of
subjects as well as between different groups, to detect anatomical abnormalities, to classify
new images according to their pathologies, and for understanding disease progression.
However, modeling the individual anatomy and its normal variability across a population is
difficult as there are commonly no physical models for comparing different subjects, and
anatomical shapes are complex and require large number of degrees of freedom to model
adequately. Moreover, anatomical landmarks such as curves or surfaces embedded in ℝ3 as
well as deformations of the 3D space do not belong to usual vector spaces. Defining statistical
models is therefore difficult and specific tools have to be developed to accurately measure
anatomical variations. If anatomic variation were better understood, tools encoding these
variations could have a significant impact in neuroscience to minimize the influence of the
anatomical variability in functional group analysis, and in clinical medical image analysis to
better drive the personalization of generic models of the anatomy (called also template, atlas
or prototype in the literature).

Instead of analyzing the anatomical variability directly in the 3D intensity space, it is often
preferable to extract precisely defined anatomical land marks such as sulcal lines (Thompson
et al., 1996a; Mangin et al., 2004), cortical surface models (Fischl et al., 2001; Tosun and
Prince, 2005), or models of some sub-cortical structures (Hazlett et al., 2005; Vaillant et al.,
2007). The data to be analyzed are thus curves, surfaces or volumes represented by structured
or unstructured point sets. The first attempts to compare such shapes was based on defining
correspondences between points (Zhang, 1994; Chui and Rangarajan, 2003). However, the
sampling of two different geometric subjects can be so different that such a correspondence
assumption introduces a bias that often hides the “real” underlying geometrical variability. To
overcome this difficulty, some authors proposed to measure variations of some features
extracted a priori such as length, area, volume, complexity, principal modes of variation of the
cloud of sampled points, etc. See Paus et al. (2001) for instance. Although these approaches,
that derive scalar measures from structure models, are relatively easy to set up from a
computational point of view, they fail to capture fine geometrical variations between subjects
like for instance a twisting of the extremity of a sulcus, which cannot be readily described by
a set of a priori selected features. Also, data analysis often proceed by computing dense
displacement fields that encode variations in shape and volume among individuals, often based
on deformable registration of shapes. The deformation that maps one shape onto another has
been proved to be useful for measuring significant anatomical variability among different
subjects (Fillard et al., 2007a; Vaillant et al., 2007; Ashburner and al, 1998; Durrleman et al.,
2007). Due to the presence of noise and of sampling effects, it may be advantageous to allow
a trade off between the regularity of the deformation and the precision of the matching, instead
of exact matching. This raises the need to develop a consistent deformation framework and a
shape similarity measure that does not rely on point correspondences nor on features selected
a priori.

In this perspective, one interesting framework consists of modeling geometrical primitives as
currents (Vaillant and Glaunès, 2005; Vaillant et al., 2007; Durrleman et al., 2007). The idea
is to characterize shapes via vector fields, which are used to probe them. For instance, a surface
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is characterized by the flux of any vector field through it, a line by the path integral of any
vector field along it. Conversely, associating a flux to any vector field specifies an object which
is more general than a surface or a curve and which is called a current. This way of embedding
shapes in a Hilbert space allows one to define algebraic operations such as addition or
averaging, and to measure distance between geometrical primitives via an inner product that
does not assume a specific type of point correspondence. Discrete and continuous objects are
handled in the same setting, offering a way to measure the sampling quality and to guarantee
numerical stability. This framework has been used to compute and visualize mean lines and
surfaces, and to perform principal component analysis on datasets of such primitives,
suggesting the efficiency and generality of the approach (Durrleman et al., 2008).

However this similarity measure is too weak to capture the broad range of possible differences
between shapes: it is beneficial to couple it with a deformation framework. The large
deformation diffeomorphic metric mapping (LDDMM) framework (Trouvé, 1998; Grenander
and Miller, 1998; Dupuis et al., 1998; Miller et al., 2002, 2006) is ideal for this task as shown
in Vaillant and Glaunès (2005) and Glaunès and Joshi (2006) although it might be possible to
adapt other diffeomorphism registrations method proposed for images (e.g. Ashburner and
Friston (2003); Avants et al. (2006)). The deformation that matches a pair of shapes is sought
within a group of regular diffeomorphisms in order to optimize a trade-off between the
regularity of the deformation and matching accuracy, as measured by the dissimilarity measure
on currents (Vaillant and Glaunès, 2005; Durrleman et al., 2007). As a result, the registration
decomposes the differences between two shapes into (1) a deformation that captures a “global”
misalignment and (2) a residual term (representing the difference between the registered shape
and the target shape) that contains possible non-diffeomorphic variations as well as physical
and numerical noise. In the approach followed here, we perform our statistical analysis of shape
on the deformation term only. Our results on a dataset of sulcal lines show that this method
can be used to detect and characterize anatomical variability within a group of subjects.

Moreover, this diffeomorphic framework enables to register multiple objects in a spatially
consistent way. Indeed, a dataset of anatomical landmarks often consists of a set of several
shapes (e.g. a set of sulcal lines or set of meshes representing different sub-cortical structures
for instance (Mangin et al., 2004; Duchesnay et al., 2007; Gorczowski et al., 2007). If one set
of manifolds, such as a distributed set of sulcal landmark curves, is embedded in another
manifold which also varies, such as the cortical surface, one often aims to measure the
variability not only of the embedded landmarks but also of the whole underlying brain surface
or 3D brain volume. The framework based on currents enables precisely to define a distance
between multiple objects sets even if they are not labeled or if all subjects have not the same
number of objects. (In these cases the distance will just be less precise than for labeled objects).
The diffeomorphic framework in turn finds a single deformation of the underlying image
domain that integrates the variability of all objects in as consistent manner as possible. By
contrast, several methods such as in Fillard et al. (2007a) analyze the variability of each shape
individually; there is a need for an extrinsic extrapolation scheme to retrieve a variability in
the space between the objects. The approach proposed in Hellier and Barillot (2003); Cachier
et al. (2001) makes a model of deformation that has constraints on sulci, cortex, and whole
brain, all within a single optimization framework. Earlier work like Thompson and Toga
(1996) just used the matching of low order manifolds first, and used these as hard constraints
or boundary conditions on subsequent mappings one dimension higher. Altough there are many
other registration frameworks in the literature, we focus in this paper on the current-based
diffeomorphic registrations (CDR) to build brain variability models.

This paper aims to present and discuss such a framework, based on diffeomorphic registration
of currents, in the case of curves. We apply the method on a dataset of labeled sulcal lines to
infer the variability of the brain surface within a population. In Section 2, we explain the
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framework for registration of sulcal lines. How this differs from the pointwise line
correspondence (PLC) approach, proposed in Fillard et al. (2007a), is discussed in depth from
a methodological point of view. In Section 3, we perform a statistical analysis of the underlying
brain surface based on these registrations. This allows us to measure and visualize how the
brain surface varies in a population. A comparison with the results obtained in Fillard et al.
(2007a) on the same database illustrates some of the different methodological assumptions
each method is based on.

2. Registering Sets of 3D Curves
Registering a set of 3D curves L0 onto another set of 3D curves L1 can be formulated as the
task of looking for the most regular deformation ø that transports all curves of L0 and best
matches the curves of L1. We follow here the approach introduced in Glaunès (2005): the
unknown deformation is sought in a subgroup of diffeomorphisms and its regularity is
measured based its distance to the identity (i.e. no deformation), the similarity measure is
computed by embedding the curves into a space of currents. As it is common practice in
deformable image registration, we find the registrations by minimizing a cost function that
balances the regularity of the deformation against the matching fidelity.

2.1. Non-parametric Representation of Curves as Currents
The space of currents is a vector space that may be equipped with a norm that measures
geometrical similarity between curves. In this space, curves could be discrete or continuous
and may consist of several different parts. All these objects are handled in the same setting and
inherit many interesting mathematical properties: linear operations, distance, convergence, etc.
Moreover, this definition of distance between curves does not make any assumption about
point correspondences, even implicitly. This framework differs therefore from usual methods
such as that in Joshi and Miller (2000) where landmark matchings are performed or those in
Chui and Rangarajan (2003); Granger and Pennec (2002); Cachier et al. (2001) where curves
are considered as unstructured point sets and different kind of “fuzzy” correspondences are
assumed. We recall here how to build a space of currents and how to compute explicitly a
similarity measure on curves. For more details on the theory we refer the reader to Vaillant
and Glaunès (2005); Glaunès (2005); Durrleman et al. (2008) and references therein.

In the framework of currents, curves are seen via the way they integrate vector fields. Any
continuous curves or any finite set of polygonal lines (denoted here generally L) can be
characterized by the path integral of any vector field ω along it:

(1)

where τ (l) is the unit tangent vector (defined almost everywhere) of L at point l and W is a
test space of smooth vector fields (See Fig.1). More generally, a current L is defined as a
continuous linear mapping from the test space W to ℝ. As a set of mappings, the space of
current (denoted W*) is a vector space: (L1+L2)(ω) = L1(ω)+L2(ω) and (λL)(ω) = λ(L(ω)). For
curves, this means that the path integral along two curves is the sum of the path integral along
each curve: the addition corresponds therefore to the union of the two curves. Scaling a curve
means scaling the path integral along the curve.

Suppose now, that we can provide the test space W with a norm (∥.∥W) that measures the
regularity of the vector fields in W. We can define then a norm of a current L as the supremum

path integral of any regular vector field (i.e. ∥ω∥W ≤ 1) along  The

distance between two curves  is therefore obtained for
the vector field that best separate the two lines, in the sense that the difference between the
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path integrals along both curves is the largest possible. This distance between curves is
geometric: it does not depend on how curves are parametrized and does not assume any point-
correspondences between curves.

For computational purposes, we suppose, from now onward, that W is a reproducible kernel
Hilbert space (r.k.h.s.) with kernel KW (see Aronszajn (1950); Saitoh (1988) for details): vector
fields in W are convolutions between any square-integrable vector fields and the kernel. This
framework is general and includes for instance radial basis functions. In this setting, the vector
space of currents is a dense span of the set of all delta Dirac currents  which is defined by:

 for any ω ∈ W. A Dirac current may be seen as an oriented segment α entirely
concentrated at one point x. Although a curve has an infinite set tangents, polygonal lines may

be approximated in the space of currents by a finite sum  where ck is the center of the
kth segment and Tk the tangent of the line at ck.

In this setting, it has been shown (Vaillant and Glaunès, 2005; Glaunès, 2005) that the norm
on W* comes from an inner product 〈.,.〉W* =. On basis elements, this inner product is

 The inner product between two polygonal lines

 (where n is not necessarily equal to m) is therefore given by:

(2)

This enables to compute explicitly the distance between two curves:

(3)

. In our applications, we choose KW to be isotropic and Gaussian: for all points

We observe that the distance between two curves (Eq.3), induced by the Hilbertian inner
product Eq.2, measures geometrical differences both in pose and shape (See Fig.1). If the points
on one curve are at a distance much larger than λW from the points on the other curve, then
curves are considered as orthogonal (〈L, L′〉W* ~ 0) and their distance is large whatever their
respective shapes are. By contrast, if two parts of the curves are located within an area of size
λW, local alignment of the tangent vectors is taken into account by the inner product within the
sums in Eq.2, thus measuring shape variations. Furthermore within this area, variations at a
scale much smaller than λW are not taken into account thanks to the smoothing effect of the
kernel. Such variations are considered as noise. Finally, this distance captures first
misalignment and then shape dissimilarities until a noise level quantified by λW is reached.
Used as a data fidelity term, this distance integrates a denoising process, to some extent, into
the modeling, preventing systematically overfitted registrations.

2.2. Diffeomorphic Registration
We use here the large deformation framework founded in the paradigm of Grenander’s group
action approach for modeling objects (see Grenander (1994); Miller et al. (2006); Glaunès and
Joshi (2006); Marsland and Twining (2004)). This framework enables to find a globally
consistent deformation of the underlying space that best matches the sets of lines. This differs
from Fillard et al. (2007a) where each line is registered individually without assuming spatial
consistency of the displacement field between lines.

We build our deformations as diffeomorphisms  solutions at time t = 1 of the flow equation:
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(4)

with initial condition ϕ0 = idℝ3 (i.e., ϕ0(x) = x: no deformation). The time-varying vector field
v = (vt)t∈[0,1] is the speed field in the Lagrangian coordinates. We suppose, from now onwards,
that at every time t, vt belongs to a r.k.h.s. V with kernelKV. We denote ∥.∥V the norm on this
space that measure the spatial regularity of the vector field. To measure the regularity of the
final diffeomorphism, we integrate the regularity of this speed field along time (Grenander and

Miller, 1998; Miller et al., 2002): 

Our registration problem is to map a set of n labeled sulcal lines  to another labeled
set  We must find therefore a time varying vector fields (vt)t∈[0,1] that minimizes
the following cost function J:

(5)

where γ is a trade-off between the regularity of the deformation and the fidelity to data.

ϕ.L represents the geometrical transportation of the curve L by the deformation ϕ. This
formulation is compatible with our framework based on currents. The path integral of ω along
a deformed curve ϕ(L) equals the path integral along L of the pulled-back vector field: ϕ ★ ω
(x) = (dx ϕ)t ω(ϕ(x)). This is a change of variables formula within Eq.1, from which we deduce
a general action of diffeomorphism on any currents: ϕ.L(ω) = L(ϕ ★ ω). In particular, on basis

element, this gives: : an infinitesimal segment α at point x is transported into ϕ(x)
and deformed by the Jacobian matrix: dxϕ. Combined with Eq.2 and Eq.3, this makes
computable the fidelity to data term in Eq.5, once a deformation is given.

To minimize the cost function in Eq.5, we take advantage of a dimensionality reduction
property. Although the vector fields vt are dense, it has been shown (for instance in Miller et

al. (2002);Vaillant and Glaunès (2005)) that, in case of discrete curves,  the
minimum of Eq.5 is achieved for a vector field vt which interpolates the trajectories of the
points of L0:

(6)

where the momenta (αi(t)) is a set of N vectors (in 3D) for each time t and ci(t) = ϕt(ci) are the
trajectories of the points of L0. Based on Eq.4 evaluated at x = ci, these trajectories depend
only on the momenta αi(t). This means that the minimizing dense vector field vt is entirely
determined by a set of 3 * N parameters for each time t. Once the time interval [0, 1] is
discretized, the cost function Eq.5 depends on a finite set a parameters and may be therefore
minimized by a standard gradient descent scheme. All computational details of this gradient
descent can be found in Vaillant and Glaunès (2005);Glaunès (2005).

For KV we choose an isotropic and Gaussian kernel with standard deviation λV. This parameter
controls the regularity of the speed vector field vt at each time t and hence the regularity of the
final diffeomorphism. λV defines roughly the scale of the difffeomorphism’s spatial consistency
(called also rigidity). This is then the scale at which the underlying deformation tries to integrate
the geometrical information. If λV is much smaller than the distance between lines, the final
deformation can vary dramatically in space, each piece of lines are then matched almost
independently and the deformation is negligible outside the data. On the contrary, the greater
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λV, the more consistently the deformation tries to explain the variation of each lines, jointly
with less and less precise matching.

2.3. Registration Results
As part of a collaborative project involving the Asclepios-LONI associated team Brain-Atlas,
we used a dataset consisting of cortical sulcal landmarks (72 per brain) delineated in a large
number of subjects scanned with 3D MRI (age: 51.8 +/− 6.2 years). In order to compare our
measures of variability with the ones of Fillard et al. (2007a), we used the same set of 72 mean
lines that the authors of Fillard et al. (2007a) computed from the same dataset. For 34 subjects
in the database, we register this set of mean lines onto every individual subject’s set of sulcal
lines. The registrations were computed by J. Glaunès’ algorithm detailed in Glaunès (2005).
This algorithm depends on the 3 parameters: λV, λW and γ. To understand the impact of these
parameters and the specificity of this current-based diffeomorphic registrations (CDR) with
respect to a pointwise line correspondence (PLC) method (Fillard et al., 2007a), we ran the
registration algorithm for several different sets of parameters.

Figure 3-a,b and c show for different parameter values the registrations in the superior temporal
area of the cortex in the right hemisphere (view from inside), the brain faces to the left of this
figure, and region surrounding the Sylvian fissure, on the lateral surface of the right hemisphere,
is magnified. From 3-a to 3-b, λW is doubled: greater variations are considered as noise and
the matching is less precise (area 1). However, when λW is too small, lines with few sampled
points are not matched correctly (area 2). Small curves have small weight in the data fidelity
term and matching them is not worth the cost of the deformation: the algorithm is locally in a
minimum. Greater λW makes distance loss larger due to the curve’s motion to its target. The
local minimum issue is avoided. In both cases (a and b), the deformation kernel’s size is very
small: λV = 5mm whereas the diameter of the brain is about 120mm. The speed vector field is
highly irregular and each curve is matched almost independently. This is particularly obvious
in area 3, which is close to the supramarginal and angular gyri of the temporo-parietal cortex,
where the speed vector field varies dramatically between two close points that belong to two
different curves. There is almost no deformation between the curves. By contrast, in figure 3-
c, λV = 25mm and the deformation tends to explain the sulcal lines variability with a consistent
deformation of the underlying space. This makes the speed vector field more regular, as in area
3. Whereas λW is the same as in figure 3-a, small curves are now matched since they are
”pushed“ by the large curves in the surroundings. To match the larger curves, the space must
deform consistently in this area with the effect of moving small curves to their target. This
global constraint also leads to larger residual matching errors than in figure 3-a (area 1). Such
residual errors contain both geometrical noise on lines (quantified by λW) and some variability
that cannot be explained consistently with other curves in a neighborhood of size λV , which
is regarded as noise in the model. Besides λV and λW, γ refines the compromise between the
regularity of the deformation and the precision of the matching.

Figure 3−d shows, in the same anatomical region, how a pointwise line correspondence method
(PLC) set up in Fillard et al. (2007a) handles the same data. Lines are registered individually
and point correspondences are assumed between source and target lines. Extremal points are
supposed to be matched. In between points are matched via a closest neighbor procedure after
B-spline smoothing and resampling. As no correlations between curves are assumed and no
correspondence field computed outside the data, this matching can be seen as an approximation
of our registrations when λV tends to zero. Since the correspondences between points do not
take noise into account, it is also the limit as λW tends to zero but avoiding the local minimum
issue. The different way that PLC handles lines matching have important consequences. For
instance, the tangential variation of two curves is mainly captured at the extremities of the
curves, and minimized elsewhere. With the current approach, these variations are captured
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more geometrically all along the curves. Moreover, the PLC approach does not take noise into
account (in the sense that noisy point correspondence field computed from the manual traces
is regarded as true), and does not model any deformation of the space between the curves. As
we will see in the next section, PLC approach needs afterwards to handle two additional
processing, denoising and extrapolation of the variability measures, to compute brain shape
statistics. This method consists therefore of 3 distinct processing steps: matching, denoising,
extrapolation, each with its own assumptions and parameters. By contrast, the approach
proposed here based on currents’ diffeomorphic registrations (CDR) integrates denoising,
matching and extrapolation within a single consistent framework. Matching based on currents
avoids the need to define a principle for enforcing specific point correspondences. Denoising
is performed jointly with the matching while minimizing the cost function. Extrapolation is
performed on the basis of a deformation of the underlying biological material. The whole
framework is explicitly controlled by 3 parameters λV , λW and γ that effect a compromise
between the different processing steps. This method, however, discounts variability that is not
compatible with the modeling. Residual matching errors may hide non-diffeomorphic
variations between subjects although one would like to take them into account. Setting the 3
parameters is difficult since they are not independent and determine jointly the final residual
matching errors. After extensive experiments, we choose the typical coherence scale of
diffeomorphisms λV = 25mm, the typical noise scale on lines λW = 5mm and the tradeoff γ =
0.01 by visually inspecting the results. Changing these parameters would smoothly affect the
typical correlation size of the following variability maps. These values highlight the specificity
of our framework, that will explain, in turn, the different variability maps retrieved by our CDR
method and the PLC approach on the same dataset as in Fillard et al. (2007a).

3. Statistics on Deformations
3.1. Tangent-space Representation of Diffeomorphisms

To compute statistics on deformations, we take advantage of an additional property of the
minimizing diffeomorphisms. It has been shown (in Miller et al. (2006) for instance) that the
diffeomorphism retrieved by the minimization of Eq.5 is geodesic: among all time-varying
vector-fields that enables to go from Id to ϕ1, the minimizer of Eq5 has the smallest norm in
L2([0, 1], V ). As a consequence, the momenta (αi(t))i solve the Euler-Lagrange equations
(Miller et al., 2002, 2006): they are entirely determined by their initial values:αi(0). This is the
usual tangent-space representation as highlighted in Vaillant et al. (2004) or in Pennec et al.
(2006) for finite dimensional manifolds. This representation enables to generate randomly
deformations of L0: given any set of N vectors  we can solve the Euler-Lagrange equations
(partial differential equations) to give the momenta at every time: αi(t).We deduce then from
Eq.6 evaluated at every x = ci, the speed of the trajectories of the points ci of L0: vt(ci).
Integrating the flow equation Eq.4 enables then to compute the whole trajectories ϕt(ci). The
generated deformation does not act only on the line L0 but it is a diffeomorphism of the whole
3D space. Based on the interpolation property Eq.6, we can compute the speed (and then the
trajectory by Eq.4) of any point x of the space, thus computing the entire diffeomorphism. The
purpose of our forthcoming statistical estimations is to learn a law on the momenta  so that
diffeomorphisms simulated according to this law model the variability within the studied
population.

From the previous 34 registrations of the mean lines to each subject’s lines, we store 34 sets
of initial momenta:  for i = 1 … N and s = 1 … 34 where N is the total number of points

ci within the set of mean lines:  We define an inner product (resp. a norm) on this
space of momenta as the inner product (resp. norm) of its associated dense vector field
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 based on Eq.6. Since V is a r.k.h.s. with kernel KV, the inner product
between two sets of 3N momenta (from the registration of two different subjects)

 In the sequel, we denote this inner product
between two vectors in ℝ3N: 〈αp, αq〉V*. Our statistics on diffeomorphisms are then reduced
to statistics in ℝ3N provided by this inner product.

3.2. Mean of Deformations
Since the mean lines we used as a template were obtained in Fillard et al. (2007a), they are not
consistent with our registration framework. The deformations are not centered around the
identity (i.e. no deformation), so the vectors in ℝ3N do not have zero-mean. To measure the

induced bias, we compute the mean of the initial momenta at each sample:  The

norm of this bias is given by  Numerically we find in our

experiments:  This means that the bias is less than 0.4
times the standard deviation, far below the usual 3σ threshold to decide a statistical significance.
1

We now substract the mean field to each subject’s field so that the analyzed data are centered
for the following computations of second order statistics.

3.3. A Gaussian Model on Deformations
To compute the covariance structure of the set of deformations, we perform a Principal
Component Analysis (PCA) on the set of vectors αs ∈ ℝ3N for each subject s. For this purpose,
we build the 34 × 34 symmetric matrix whose coeffcients are 〈αp, αq〉V*. If V1 ∈ ℝ34 is the

first eigenvector of this matrix, the first mode of initial momenta is given by: 
(the normalization factor has been set to 1 so that  i.e. the eigenvalue corresponding
to V1). Given this first mode of initial momenta m, we follow the procedure explained in section
3.1, to generate the diffeomorphism determined by m. We call this deformation, the first mode
of deformation. It illustrates, to the first order, how the mean anatomy varies within the
population. Since the diffeomorphism is dense, we can apply it not only on the mean lines
points but also on a mean cortical surface to which the mean lines are close (Fig. 4-middle).
This deformation shows the variability between 0 and σ (Fig. 4-right). Repeating the procedure
for -α give the first mode of deformation between 0 and -σ (Fig. 4-left). Complete movie of
the first deformation mode is available at first author’s webpage2. This illustrates the generative
property of the modelling: the lines and surfaces build by this procedure do not belong to the
original database.

These results show that we learn here a complete statistical model of the whole brain surface
deformation constrained by the sulcal lines. This differs from other methods that measure only
the variability of the sulcal lines. This is possible due to integrative power of the proposed
approach: the dif feomorphisms integrate the information of all sulcal constraints to find the
most acceptable deformation of the brain volume. As for the modes of deformation, this enables
to generate new observations (new brain surfaces) according to the learned probability law on

1Performing a real statistical test would imply the estimation of the number of degrees of freedom (since the initial momenta are not
independent) as well as the curvature of the space (Bhattacharya and Patrangenaru, 2003; Oller and Corcuera, 1995; Pennec, 1999). This
is particularly diffcult due to the infinite dimension of the space.
2www-sop.inria.fr/asclepios/personnel/Stanley. Durrleman/
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deformations. This determine at least visually how these new observations compare with the
original data and therefore understand the variability that the model captured. For this reason,
such models are called generative models: we not only learn how to factorize an observation
into a deformation and residual noise, but also how to reconstruct it. Such models offer an
approach to classify new subjects according to characteristics such as gender, handedness,
pathologies, etc., and identify systematic differences in anatomy that correlate with these
features. Given a previously unseen individual anatomy, we can decompose it into a global
deformation driven by its sulcal lines position and a residual noise. Our statistical model tells
us how probable such a deformation may be within a given population. Other methods try to
retrieve similar correlations but with descriptive statistics such as statistical test for instance
(Narr et al., 2007; Hamilton et al., 2007; Luders et al., 2004). In the PLC approach (Fillard et
al., 2007a) no deformation is computed outside the lines. In this framework, the lines variability
is computed from the displacement field at each mean lines samples positions. Then an extrinsic
extrapolation scheme enables to retrieve a variability measure on the whole brain surface. In
this aspect, the link between the observations and the mean surface is broken by the succession
of distinct processing: the statistical model is learned on the lines only and the extrapolation
scheme does not directly infer a probability model on the brain surface. PLC approach deduces
from the observations variability maps on the brain surface (see next section) but the way to
reconstruct surfaces from these maps is missing. There are other methods that exrapolate sulcal
line deformations to a full cortical surface, based on covariant partial differential equations
that are invariant to the surface parametrization (Thompson et al., 2002), based on harmonic
mappings that minimize a surface-to-surface deformation energy (Shi et al., 2007; Wang et al.,
2005) Some of these methods even extend the surface deformation to the full volume, using
interpolation (Thompson and Toga, 1996). In each of these cases, the differential operator
governing the mapping may be regarded, after suitable normalization, as the exponent of a
Bayesian prior on the space of allowable deformations, so in a sense there is an assumed
probability law that captures the variability and spatial covariance of the mappings in between
the explicitly defined landmarks, even when a partial differential equation or variational
method is used to interpolate the mappings.

3.4. Comparison of Variability Maps
To compare our CDR-based variability measures with those computed with a PLC approach
on the same database we create variability maps similar to those in Fillard et al. (2007a): in
absence of generative models, PLC approach performs such descriptive statistics. At each point
x of the mean surface, we computed the covariance matrix of the 34 initial speed vectors
v0(x), computed with Eq.6 for each set of initial momenta. These 3 x 3 matrices (called also
tensors) show how locally one point is varying among the studied population, as proposed in
Thompson et al. (1996b, 1998). We notice that this variance contains less information than the
former principal component analysis. Here each point are considered independently whereas
the PCA takes into account the correlations of all points’ motion together. Moreover, due to
the diffeomorphic approach, the initial vector field is dense and no extrinsic extrapolation
scheme is required to compute the covariance matrices at each point of the mean surface. By
contrast, PLC approach computes these 3 × 3 matrices from the correspondence fields at the
mean lines samples. These tensors are then extrapolated to the whole brain surface using a log-
Euclidean framework (Pennec et al., 2006; Arsigny et al., 2006) without any guarantee that the
obtained variability measures are compatible with an underlying deformation of the brain
surface. This gives an aggregated measure at the population level that is not based on individual
deformation mappings. The two approaches are based on radically different assumptions and
the following variability maps show how these different models influence the results.
Differences stem from the different way lines are matched, noise is removed and variability is
extrapolated to the brain surface.
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3.4.1. Regularity of the Variability—The figure 5 shows the covariance matrices built
from the initial vector speed at the mean lines points (ci) in our Current-based Diffeomorphic
Registrations (CDR) (Fig.5-a) and from the correspondence field in the PLC approach (Fig.5-
b). We notice that the point matching method leads to irregular tensor fields at extremities of
the lines and between lines, whereas the global regularity constraint of the difffeomorphism in
CDR imposes the retrieved variability to be spatially smoother. CDR thus discounts any
variability contained in the residual matching errors, which is considered here as noise. In PLC,
the tensor field is denoised separately by removing “unreliable” large tensors at the end of lines
before the extrapolation step.

3.4.2. Variability in the Direction of the Lines—One drawback of PLC’s method as
underlined in Fillard et al. (2007a) is the fact that it systematically under-estimates the
variability in the direction of the lines. This variability is indeed essentially captured at the
extremities of the lines and minimized in between. As a pragmatic solution, in the PLC
approach, the large extremal tensors were removed before extrapolating the variability, and
the final measures minimize the variability in the direction of the lines. This aperture problem
is particularly visible on the top of the brain as shown in figure 6. By contrast, the models based
on currents (CDR) manage to represent a larger part of this variability. This effect is of
particular importance since this tangential variation is one of the major variation trends within
the population as shown in Fig.4. Anatomically, any lateral splaying of the central and pre-
central sulci (at the top of the brain) is usually a sign atrophy, consistent with widening of the
interhemispheric fissure. If this variation is discounted, for example by discarding tensors at
the extreme points of sulci, any future registration approach that uses the tensor fields to model
variation will underestimate the true anatomic variation in these areas. Otherwise, the
variability which is orthogonal to the direction of the lines is in good agreement for the most
part.

3.4.3. Distinction between correlated and anticorrelated motions—In our CDR
framework the tensors at every points of the mean surface are computed from the initial speed
vectors at these points that are interpolations of the initial speed vectors at the mean lines
samples (see Eq.6): the interpolation is performed before computing the variability measures.
By contrast, in the PLC method the covariance are computed on the mean samples and then
extrapolated to the brain surface. As shown figure 9 this difference theoretically enables CDR
to distinguish between areas where points are deviating from the mean anatomy in a correlated
or anti-correlated manner. This is a possible explanation of the different variability maps
retrieved in area 4 of figure 8.

4. Discussion and Conclusion
In this paper we present a methodological framework to build global brain shape statistics by
measuring and consistently integrating the variability of anatomical constraints such as sulcal
lines. This framework is based on two methodological tools: lines are modeled as currents, and
multiple object sets are matched by a single diffeomorphic deformation. By modeling lines as
currents, we are able to measure geometrical dissimilarity between curves without assuming
point correspondences between objects. Discrete and continuous lines are handled in the same
setting, thus guaranteeing numerical stability and nice convergence properties. This distance
is also robust to noise, preventing small perturbations of lines from hiding true underlying
geometrical differences. On the other hand, the diffeomorphic framework consistently
integrates the geometrical variations of a set of currents into a single deffformation. We avoid
modeling the variability of each objects independently. On the contrary, we try to explain the
variability of the sulcal constraints by a global deformation of the underlying image domain.
By inferring a Gaussian model on such deformations, we can define a generative statistical
model that roots the variability measures into a rigorous model for individuals. Principal trends
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of variations within the database can be highlighted by looking at the deformation of a mean
brain surface. Such statistical models offer an approach for classifying new observations
according to their pathologies, gender,etc. The synthesis of the geometrical variations into
principal modes of variations may also make it easier to identify spatially correlated anatomical
patterns and may lead to new scientific findings.

This framework however raises several questions. Our statistical modeling focuses on the
deformation term whereas there is obviously no ground truth regarding anatomical homology
between brains. Even so, a diffeomorphism can capture a large part of the geometrical
variability between shapes and sets of shapes. It is clear that some of the ”true“ underlying
variability is not captured by the diffeomorphism and remains unmodeled in the residual
matching errors. These residuals contain numerical and physical noise, possible non-
diffeomorphic variations (changes in topology or folding patterns for instance) as well as
variations that are not compatible with the variations of other objects in the surroundings. Our
statistical model focuses here on the deformation term only and our results indicate that it can
model a great part of the variability. However, a more complete statistical framework would
take into account the matching residuals as well. A given observation would be therefore
decomposed into a deformation and residuals and the statistical model would say how probable
such a decomposition might be. Building such a statistical framework is beyond the scope of
the present paper, but it must be the topic of further investigation.

Some comment is also necessary regarding whether the norm on currents is appropriate for the
data, as this model does not take explicitly curvature into account and every points on lines
play the same role. When anatomical curves are matched using a smooth registration field,
Leow et al. (2005) have previously explored the case where the curves are modeled as level
sets of an implicit functions, and no explicit point correspondence is enforced, allowing the
mapping to relax along sulcal lines. They investigated the matching of anatomic structures by
directly constructing their implicit level set representations and the proposed matching cost
functionals were shown to be closely related to the Hausdorff metric. With this type of mapping,
brain structural variability was reduced by 10% in most regions and up to 40% in other regions;
greatest reduction was observed in the temporal and frontal lobes, while a lesser reduction was
observed in areas with greatest anatomic variability. Arguably, this results in mappings that
have less distortion while still matching homologous gyral anatomy in detail from one subject
to another. Contrary to some other norms that explicitly take into account surface curvature
(Fischl et al., 2004), or differential invariants within a curve (such as torsion) derived from the
Frenet frames of the curves being matched (Guéziec and Ayache, 1994), our norm in this paper,
and the one in the paper by Leow et al. (2005) do not consider that there are particular points
of anatomical interest along the curves that can be identified as reliable landmarks. With some
minor exceptions (such as the genu of the central sulcus (Vaillant and Davatzikos, 1999;
Goualher et al., 2000), curvature, at least at the finer scale of indentations within sulci, is not
a reliable guide to functional or structural homology in the human cortex, and using points of
maximum curvature to guide correspondence may be problematic. Our approach is somewhat
more agnostic in regard to point matching. At least for the human cortex, details visible on
MRI along the length of a sulcus would not be reliable features for anatomical matching,
although this does not preclude their identification in future, e.g. using other modalities such
as DTI.

The third issue concerns the choice of sulcal lines as constraints to retrieve the global variability
of the brain. The question of the anatomical significance of the sulcal lines is often raised in
the literature (Toga and Thompson, 2007; Thompson and Toga, 2003). The sulci that we use
here as topological constraints for cortical matching are essentially those which have been
chosen to have functional significance, occur consistently in large numbers of normal
individuals, and are not so variable in their incidence and relation to other sulci that it would

Durrleman et al. Page 12

Med Image Anal. Author manuscript; available in PMC 2009 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



preclude their reliable identification in large numbers of subjects. Moreover, the sulcal lines
are labeled and supposed to be in a single part. However, the framework based on currents is
not limited to such databases: lines could be discontinuous and consists of several parts, which
may indeed be more accommodating of interrupted sulci, which are known to occur (Mangin
et al., 2004; Duchesnay et al., 2007). Even if the lines are not labeled, a matching based on
currents is still possible: we then consider all the lines as a single current. Preliminary
experiments on the bottom lines of the sulci automatically extracted from a few subjects Rivière
et al. (2002) raises however several problems. The geometry of the lines can be so complex
that it is not possible to define a global orientation of the sulci. The variability is too high to
retrieve sensible correspondences in the absence of any priors on sulcal labels. The quality of
the lines extraction (and possibly the quality of the labeling itself) does not enable to find
reasonable matchings between subjects. The geometry of the sulci depends actually on the
process of extraction (whatever it is manual or automatic). In order to better constrain the
registrations, one needs to account for more information than only the most probable lines.
One would like for instance to use probability maps of the presence of the sulci in order to
account for variability of the extraction itself. Sulcal ribbons could also contain more reliable
geometrical information. A similar framework (but that does note require orientation of lines)
has been used in Auzias et al. (2008) with the sulci of Rivière et al. (2002). In the future,
alternative cortical landmarks, including perhaps the endpoints of fiber paths inferred from
DTI, may also supplant or partially replace the reliance on sulci as a guide to anatomical
homology in the human cortex (Cathier and Mangin, 2006).

The comparison with a pointwise line correspondence (PLC) method is also difficult to
interpret. The comparison remains here largely qualitative and at a methodological level. Even
so, it is clear that each result is biased by the assumptions on which the variability measures
are based. Each approach reveals new features from the database such as the principal modes
of deformation, or unexpected patterns of anatomical correlation at distant points (Fillard et
al., 2007b). A fair comparison between both methods would rely on objective statistical
performance metrics, such as their respective predictive power for instance. In future, we will
design studies that aim to predict extrinsic information about the subjects (e.g. sex, handedness,
disease subtype, prognosis), from the information encoded in the cortical deformations. In a
sense, the best model of anatomical variability is one that allows most reliable inferences and
predictions regarding population. However, such a deep comparison is beyond the scope of
this paper. Our purpose was here to present a general framework to compute statistics of brain
shapes, to highlight its strength and limitations and finally to show its feasibility and relevance
for addressing a range of statistical problems in the field of computational anatomy.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Measure of dissimilarity between lines modeled as currents: given two lines L and L′ (in red
and blue) we compute the difference between the path integral of a vector field ω (here drawn
in black) along both lines. The maximum difference obtained when ω varies among all possible
regular vector fields (i.e. ∥ω∥W ≤ 1) is a measure of the geometrical dissimilarity between the
two lines. In this way, we define a distance between shapes without assuming point
correspondences. The more we allow the test vector fields ω to have high spatial frequencies,
the more finely we measure geometrical differences. In this application, manual delineation of
the sulci is typically accurate to within a 1–2 mm Hausdorff distance to a gold standard
developed from multiple raters, so the matching of features at a slightly coarser scale than this
is empirically reasonable.
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Figure 2.
Registration of the mean lines set (in blue) towards one subject’s lines set (in red). A unique
deformation transports all the mean blue lines to the registered green lines. The spatial
consistency constraint as well as the smoothing effect of the norm of currents prevents
overfitted registrations from occurring. The residuals (i.e., the difference between the registered
green lines and target’s red lines) contains physical and numerical noise as well as possible
non-diffeomorphic variations. They are considered here as noise: the statistics on brain shape
will rely only on the diffeomorphism. A movie of this deformation can be seen at first author
webpage: www-sop.inria.fr/asclepios/personnel/Stanley.Durrleman.
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Figure 3.
Registration of the same subject for three different sets of parameters (a,b,c) and with a
pointwise line correspondences approach (d). In these figures, the superior temporal area of
the cortex is magnified (arrow 1 points the extremity of the Sylvian Fissure). The parameters
influence the precision of the matching (like in area 1), the regularity of the deformation field
(area 3) and the way the deformation integrates geometrical information (area 2).

Durrleman et al. Page 19

Med Image Anal. Author manuscript; available in PMC 2009 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
First mode of deformation obtained by a PCA on the initial vector speed fields. Original mean
brain surface (Center) and its deformation at −σ (Left) and +σ (Right). Colors measure the
displacement of each point along the deformation process (in mm).
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Figure 5.
At each sampling point, ellipsoids represent the square root of the empirical covariance matrix
of the initial speed vectors (left hand side) or displacement field (right hand side). With PLC
method, extremal points are supposed to be matched: this induces a high variability at the
extremities of lines (area 1, right). This is avoided by the current approach (area 1, left). With
PLC, each line is registered individually: the variance can vary dramatically where lines cross
(area 2, right). This situation can occur where a sulcus has a branch, in ”Y“-shape configuration,
and the junction may not be considered by the PLC approach. The global regularity constraint
of CDR leads to smoother results (area 2, left).
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Figure 6.
In the variability maps, a variability in the direction of the lines is retrieved in area 3 (extremities
of central sulci) by CDR and not by PLC. The covariance matrices in this region show that the
variability is mainly longitudinal. Since, in PLC method, large tensors at the endpoints of the
sulcal lines are removed before the extrapolation, the variability in the direction of the lines is
missed and the total variability is unreasonably small.
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Figure 7.
The registration method influences the way tangential variability is taken into account. With
point correspondences the tangential variability is mainly captured at the endpoints of the lines
and minimized in between. The approach based on current (CDR) retrieves a tangential
component of variability all along the lines.
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Figure 8.
Area 4 is surrounded by 4 major sulci: the Sylvian fssure (a), postcentral sulcus (b), intraparietal
sulcus (c) and superior temporal sulcus (d). In the left hemisphere the first two vary, with
respect to the sample mean, mostly in a decorrelated manner with respect to the last two sulci
whereas their respective motions are much more correlated on the right hemisphere. The CDR
approach tries to combine the motion of all lines and therefore leads to a small variability in
area 4 (the perisylvian cortex) in the left hemisphere and to a large one in the right hemisphere.
In these perisylvian areas, the variability is likely to differ by hemisphere as the right
hemisphere perisylvian sulci are torqued forward and at a higher angle of elevation than their
counterparts in the left hemisphere (Thompson et al., 1998). With PLC method this asymmetry
in the magnitude of anatomical variability is not retrieved directly.

Durrleman et al. Page 24

Med Image Anal. Author manuscript; available in PMC 2009 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
Extrapolation schemes in the simple case of anti-correlated vectors. Right: In PLC framework
the tensors are computed at the sample points and then extrapolated in the middle point: the
tensor in the middle is similar to the two others. Left: In CDR approach one first extrapolates
the vector field and then computes at each point the covariance matrix. Since the vectors are
anti-correlated, the field is close to zero at the center and the variability measured at this point
is negligible.
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