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Summary
The conventional model selection criterion AIC has been applied to choose candidate models in
mixed-effects models by the consideration of marginal likelihood. Vaida and Blanchard (2005)
demonstrated that such a marginal AIC and its small sample correction are inappropriate when the
research focus is on clusters. Correspondingly, these authors suggested to use conditional AIC. The
conditional AIC is derived under the assumptions of the variance-covariance matrix or scaled
variance-covariance matrix of random effects being known. We develop a general conditional AIC
but without these strong assumptions. This allows Vaida and Blanchard’s conditional AIC to be
applied in a wide range. Simulation studies show that the proposed method is promising.
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1. INTRODUCTION
Linear mixed-effects (LME) models (Laird and Ware, 1982), as a powerful tool for the analysis
of longitudinal data, have been paid more and more attentions because they can incorporate
within-cluster and between-cluster variations into consideration. Statistical estimation and
inference for LME models have widely been studied and applied in literature (Vonesh and
Chinchilli, 1996; Pinheiro and Bates, 2000; Verbeke and Molenberghs, 2000). A fundamental
question in LME models, model selection, seems to be disregarded, however. Traditional
selection criteria such as AIC (Akaike, 1973) and BIC (Schwarz, 1978) for cross-sectional data
have been parallelly applied for the selection of LME models without justification (Pinheiro
and Bates, 2000; Ngo and Brand, 2002). This deficiency was recently noticed by Vaida and
Blanchard (2005). These authors explicitly elucidated that, when the researchers’ focus is on
clusters instead of population, the traditional AIC and its small sample correction AICC are
not appropriate, and suggested the conditional Akaike information and the corresponding
model selection criterion: conditional AIC. However, in deriving the conditional AIC, they
required that the variance-covariance matrix of random effects should be known when the
variance of the measurement error term is known, or the scaled variance-covariance matrix of
random effects should be known when the variance of the measurement error term is unknown.
These requirements may limit the use of the conditional AIC. The objective of this note is to
remove Vaida and Blanchard’s assumptions and to propose a more general conditional AIC.
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This will allow Vaida and Blanchard’s conditional AIC to be applied in a wide range. This
note considers the case of known error variance. For the case of unknown error variance, a
discussion can be found in Liang et al. (2006) which is available from the authors upon request.

2. GENERAL CONDITIONAL AIC FOR LME MODELS
Assume the data yi from m clusters to be modelled by the following LME model:

(1)

where yi is an ni × 1 vector of observations for cluster i, β is a p × 1 vector of fixed effects,
bi is a q × 1 vector of random effects for cluster i, Xi and Zi are the ni × p and ni × q design
matrices for the fixed and random effects of full column rank, respectively, and εi is the
disturbance. We assume that bi and εi are independently and normally distributed with mean
of zero and variance-covariance matrices of G and σ2Ini, respectively, where Ini is an ni × ni

identity matrix. Let be the total number of observations, and let θ be the vector of
parameters in the model, including β, σ2 and the parameters in G. Model (1) can be written as

(2)

where  is an N × 1 vector of observations,  is an N × p matrix
of rank p, Z = diag(Z1, …, Zm) is an N × r block-diagonal matrix of rank r = mq,

, and G = diag(G, …, G) is a r × r block-diagonal matrix.
Denote the joint density function of y and b under model (2) by g(y, b | θ). Thus, given b, the
conditional likelihood is g(y | θ, b) and the marginal likelihood is g(y | θ) = ∫ g(y, b | θ)db. Let
the true conditional distribution of y is f(y | u), where u is the true random effects vector with
distribution p(u), and f(y, u) be the joint density of y and u. Then Vaida and Blanchard
(2005) defined the conditional Akaike information as follows.

Definition 1
The conditional Akaike information is defined to be

(3)

where y* is the prediction dataset which is independent of y conditional on u and from the
same distribution f(· | u) as y, θ ̂(y) and b^(y) are the estimators of θ and b, respectively.

The following theorem derives an unbiased estimator of cAI when the variance σ2 is known.
The proof is given in the Appendix. Let θ ̂(y) and b^(y) be the maximum likelihood and the
empirical Bayes estimators of θ and b, respectively.

Theorem 1
Assume that the data y have true density f(y | u) = g(y | θ0, u) for some θ0 and some random
effect u with distribution p(u). Let the data be modelled by (2) with densities denoted by g(y |
θ, b) and p(b). If σ2 is known, then an unbiased estimator of the cAI in (3) is given by

(4)

where , and yi and ŷi are the i-th components of y and the fitted
vector ŷ = Xβ ̂+ Zb ̂, respectively.
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From (4), it is seen that unlike for linear fixed-effects models, the penalty term generally
depends on the observed data y for LME models. The calculation on the penalty function
Φ0(y) involves the first partial derivatives ∂ŷ/∂yi (i = 1, …, N) which can be directly calculated
or numerically approximated by {ŷi (y + hei) − ŷi(y)}/h, where h is a small number and ei is
the N × 1 vector with the i-th component of one and other components of zero.

Remark 1—Vaida and Blanchard (2005) developed a neat result (Theorem 1, p355) for the
case of the known G when σ2 is known. However, they claimed that no unbiased estimator for
cAI such as (9) of their paper (see (5) below) exists for the unknown G. Our Theorem 1 provides
an unbiased estimator of cAI for the unknown G when σ2 is known.

Corollary 1—(Vaida and Blanchard 2005) Under the assumptions of Theorem 1, further
assume that G is known. Then an unbiased estimator of the cAI is

(5)

where ρ = tr(H1), H1 is the “hat” matrix mapping the observed data vector y into the fitted
vector ŷ, that is, ŷ = H1y.

Proof: See the Appendix.

An intuitive explanation on ρ, the penalty term when both σ2 and G are known, can be provided
as follows: From the definition of H1 (see the proof of Corollary 1), it can be shown that

where λ1, …, λr0 are the non-zero eigenvalues of the matrix  with D0 =
σ−2G and PX = X(XTX)−1XT. Note that in the scenario of Corollary 1, only β is unknown. So
the first term on the right-hand side of the above formula is the total number of parameters in
LME model. Thus, unlike for the usual linear fixed-effects model, the penalty term is not only
the number of unknown parameters for LME model. The second term in the expression of ρ
is the extra penalty due to random effects. Also, observe that this term is smaller than the
number of random effects, r, showing that the extra penalty is not the number of random effects
terms, although these random effects may be independent (note that the covariate matrix Z in
model (2) can be non-block diagonal). Further, when G is unknown, Vaida and Blanchard
(2005) suggested to use the observed ρ̂ = tr{H1(Ĝ)}, where Ĝ is the maximum likelihood
estimator of G. Observe that when G is unknown, we have ŷ = H1(Ĝ)y. So from Theorem 2.1,
the exact penalty term when G is unknown will be

where 1 is the N × 1 vector of ones, and

with hij(Ĝ) being the (i, j)-th element of the matrix H1(Ĝ) (here we write H as a function of
Ĝ but it may depend on y not only through Ĝ). The second term 1TH(Ĝ)y is the additional
penalty due to the variability of estimating unknown G.
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Remark 2—In Theorem 1 and Corollary 1, the assumption of f(y | u) = g(y | θ0, u) means that
the true model is included in the candidate model family. This is a traditional assumption in
deriving model selection criterion (see, for example, Akaike, 1973; Hurvich and Tsai, 1989;
Burnham and Anderson, 1998; and Hurvich et al., 1998). The further assumption of G being
known in Corollary 1 implies that the covariate matrices for random effects under the true and
candidate models are in fact exactly the same. The removal of this further assumption shows
that the covariate matrices for random effects under the true and candidate models can be
different. Further, in the proof of Theorem 1, the expression of μ (= Xβ0 + Zu, where β0 is the
true parameter for fixed effects) is not useful. This means that the traditional assumption that
the candidate models include the true one can even be removed. As an example, if the data y
come from a LME model mentioned in Vaida and Blanchard (2005): y = Pα + Qv + e with v
~ N(0, S), , and P and Q containing covariates different from X and Z, then
Theorem 1 and Corollary 1 still hold.

3. SIMULATION STUDY
In this section, we describe simulation results to study the behavior of the proposed method
under small and moderate sample sizes. To make a comparison, we generate data from the
framework that Vaida and Blanchard (2005) used, that is, the data are generated from the model

where β0 = −2.78, β1 = −0.186, tj = 5j, (b0i, b1i)T follows a normal distribution with mean of

zero and variance-covariance matrix of , εij are iid with N(0, σ2). In
our simulation experiments, similarly to Vaida and Blanchard (2005), we consider σ = 0.0705,
0.141, and 0.282 and the following three scenarios (i) j = 0, 1, …, 5, giving ni = 6; (ii) j = 0, 1,
…, 25, giving ni = 26; and (iii) j = 0, 1, …, 50, giving ni = 51. For each of the nine configurations,
500 independent sets of data are generated. We mainly compare the estimates of the bias
correction (BC, which is defined as cAI = Ef(y, u){−2 log g(y | θ ̂, b ̂)} + 2BC) based on our
proposed method, Φ0(y), and Vaida and Blanchard’s (2005) method, ρ̂ with the true BC values.

Table 1 summarizes the results of this small simulation study. The results obtained are in accord
with the theory. The estimated values based on the proposed method and Vaida and Blanchard’s
(2005) method are both close to the BC values, and generally, the larger the sample size, the
closer. However, it is worthy of emphasizing that the estimated values based on the former are
consistently closer to the true BC values than those based on the latter, showing that our method
is promising.

4. CONCLUDING REMARKS
This note removed the assumption on the variance-covariance matrix of random effects being
known in the conditional AIC of Vaida and Blanchard (2005) and developed a more general
conditional AIC. This would substantially enlarge the use of the conditional AIC in LME model
selection.

It is worthy of noting that the derivation of (A2) in the Appendix does not require the
assumption that the candidate models include the true one. This means that when the error
variance  under the true model is known, to derive a reasonable model selection criterion,
this traditional assumption is not necessary. Further analysis shows that this conclusion is still
true if  is the same as the error variance under the candidate model. Also, the assumption of
the true model being included in the candidate model family is needed only in the derivation
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of the estimator of  when it is unknown (c.f., Liang et al., 2006). Noting that  is a nuisance
parameter, this explains in part why the commonly used AIC and AICC in fixed-effects models
often perform well even the candidate model family does not include the true model, although
these selection criteria were derived under the above traditional assumption.

Different from the derivation in the model selection literature, we made use of the integration
by part technique, which was used to obtain risk-unbiased estimators before (Stein, 1981; Lu
and Berger, 1989), to derive the selection criterion for LME models. It can be seen that our
method can also be applied to obtain marginal AIC based on the marginal likelihood and overall
AIC based on the joint likelihood for LME models, and AICC for nonparametric regression
models (Hurvich et al., 1998) and single-index models (Naik and Tsai, 2001) etc. Further, the
principle of this note may be extended to generalized mixed-effects models, and applied to
select smoothing parameters in the semiparametric regression. These topics warrant our future
researches.
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APPENDIX

Proof of Theorem 1
Denote μ = Xβ0 + Zu, where β0 is the true parameter for fixed effects. Then it is readily seen
that

Also, we have

Thus, after some calculations, we obtain

(A1)

where μi is the i-th component of μ.

Note that under the true model, for given u, y follows a normal distribution with the mean μ
and variance-covariance matrix σ2IN. Assuming that ŷi is a continuous function with piecewise
continuous partial derivatives with respect to y, it can be shown from the integration by part
that

providing each expectation on the right-hand side exists (see also Stein, 1981; and Lu and
Berger, 1989). Therefore, (A1) becomes

(A2)

Thus, an unbiased estimator of the cAI is given by cAIC in (4) and this completes the proof of
Theorem 1.

Proof of Corollary 1
From Hodges and Sargent (2001) or Vaida and Blanchard (2005), when σ2 and G are known,
the fitted vector is

where H1 = (X Z)(MT M)−1(X Z)T with
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and Δ being some r × r matrix such that σ−2G = (ΔTΔ)−1. Thus,
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Table 1
Simulation study. Comparison of BC and its two estimates, ρ̂ and Φ0(y) based on 500 runs.

ni σ BC ρ ̂ Φ0(y)

6 0.0705 19.549 19.994 19.38
26 0.0705 19.875 19.999 19.837
51 0.0705 19.926 19.999 19.891
6 0.141 17.638 19.731 18.253
26 0.141 19.339 19.976 19.355
51 0.141 19.547 19.986 19.597
6 0.282 15.818 16.944 15.436
26 0.282 17.832 19.265 17.927
51 0.282 18.723 19.763 18.648
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