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To facilitate optimal dosing regimen design, we previously developed a mathematical model using time-kill
study data to predict the responses of Pseudomonas aeruginosa to various pharmacokinetic profiles of mero-
penem and levofloxacin. In this study, we extended the model to predict the activities of gentamicin and
amikacin exposures against P. aeruginosa and Acinetobacter baumannii, respectively. The input data were from
a time-kill study with 107 CFU/ml of bacteria at baseline. P. aeruginosa ATCC 27853 was exposed to gentamicin
(0 to 16� MIC; MIC � 2 mg/liter), and A. baumannii ATCC BAA 747 was exposed to amikacin (0 to 32� MIC;
MIC � 4 mg/liter) for 24 h. Using the estimates of the best-fit model parameters, bacterial responses to various
fluctuating aminoglycoside exposures (half-life, 2.5 h) over 72 h were predicted via computer simulation. The
computer simulations were subsequently validated using an in vitro hollow-fiber infection model with similar
aminoglycoside exposures. A significant initial reduction in the bacterial burden was predicted for all genta-
micin exposures examined. However, regrowth over time due to resistance emergence was predicted for
regimens with a maximum concentration of the drug (Cmax)/MIC (dosing frequency) of 4 (every 8 h [q8h]), 12
(q24h), and 36 (q24h). Sustained suppression of bacterial populations was forecast with a Cmax/MIC of 30
(q12h). Similarly, regrowth and suppression of A. baumannii were predicted and experimentally verified with
a three-dimensional response surface. The mathematical model was reasonable in predicting extended bacte-
rial responses to various aminoglycoside exposures qualitatively, based on limited input data. Our approach
appears promising as a decision support tool for dosing regimen selection for antimicrobial agents.

The widespread emergence of resistance to antimicrobial
agents is a grave health care problem. New and effective agents
must be developed rapidly to keep up with our battle against
infections caused by resistant pathogens (11). Previous drug
development efforts have primarily focused on identifying new
metabolic targets and new antimicrobial agents to interfere
with essential pathways. Relatively little attention has been
paid to the impact of the dosing regimen on the emergence of
resistance. There are considerable in vitro and in vivo experi-
mental data suggesting that suboptimal dosing regimens con-
tribute significantly to the development of resistance (4, 6, 13,
14, 16). If the most effective antimicrobial agent dosing regi-
men can be identified and used clinically, it is hoped that the
emergence of antimicrobial resistance can be suppressed (or at
least delayed). The utility of available antimicrobial agents and
those under development may also be prolonged as a result.

When evaluating various dosing regimens of antimicrobial
agents, the total daily dose, the dosing frequency, the dose

given at each dosing interval, the length of (intravenous) ad-
ministration, and the duration of therapy may have a signifi-
cant influence on the killing activity and propensity to suppress
resistance emergence, depending on the pharmacodynamic
properties of the agents and clinically achievable concentra-
tions (associated with acceptable toxicity). The numerous com-
binations of these variables involved in designing dosing regi-
mens are prohibitive for comprehensive evaluation of all the
different scenarios. For example, to evaluate six daily doses
(e.g., 0.5, 1, 2, 4, 6, and 8 g), four dosing frequencies (e.g., every
6 hours [q6h], q8h, q12h, and q24h), five intravenous dosing
administrations (e.g., intermittent infusion of 0.5, 1, 2, and 4 h
and continuous infusion over 24 h), and three durations of
treatment (e.g., 5, 10, and 14 days) would result in 360 (6 � 4 �
5 � 3) regimens to be investigated. In view of the labor-
intensiveness of each investigation, a few dosing regimens are
often empirically chosen to be studied, and the potential of
new agents may not be thoroughly realized. The results could
be dramatic. The development of daptomycin was unsuccessful
in the 1970s due to an empirical dosing selection (8-h dosing
interval). However, with an improved understanding of phar-
macokinetics/pharmacodynamics as the foundation for a dos-
ing strategy, the same agent was redeveloped and approved by
the FDA for clinical use in 2003 by switching to a once-daily
and weight-based dosing regimen. Therefore, a robust method

* Corresponding author. Mailing address: University of Houston
College of Pharmacy, 1441 Moursund Street, Houston, TX 77030.
Phone: (713) 795-8316. Fax: (713) 795-8383. E-mail: vtam@uh.edu.

† Supplemental material for this article may be found at http://aac
.asm.org/.

� Published ahead of print on 25 August 2008.

3987



to guide the selection of the most effective dosing regimen(s)
would be valuable.

We previously developed a mathematical model to capture
the dynamic relationship between a heterogeneous microbial
population and drug concentrations (12, 15). The model was
further refined to efficiently predict the microbial response to
multiple antimicrobial agent dosing regimens (16). This mod-
eling approach could be used as a decision support tool for
dosing regimen design, and it may be used at different stages of
drug development. One such application could be at the inter-
face between late discovery and early clinical development
(i.e., lead compound optimization). The model could provide a
prediction of the new agent’s potential clinical utility based on
simple time-kill studies and allometrically scaled pharmacoki-
netic data. Another possibility is the comparison of several
related drug candidates with conflicting in vitro potencies and
pharmacokinetics (e.g., a more potent agent with a shorter
elimination half-life versus a less potent agent with a longer
elimination half-life). However, before such mathematical
modeling can be used routinely to guide highly targeted inves-
tigation of dosing regimens in preclinical studies and clinical
trials, its utility should be investigated in more than one drug-
pathogen combination. Therefore, the objective of this study
was to examine the flexibility of our mathematical-modeling
approach using additional drug-pathogen combinations. Two
wild-type gram-negative bacteria deemed to be “particularly
problematic” and in need of new drug treatment were chosen
for our investigations (11).

(This study was presented in part at the 16th European
Conference of Clinical Microbiology and Infectious Diseases
[ECCMID], Munich, Germany, 31 March to 3 April 2007, and
the 17th ECCMID, Barcelona, Spain, 19 to 22 April 2008.)

MATERIALS AND METHODS

Antimicrobial agent. Gentamicin powder was purchased from Sigma (St.
Louis, MO), and amikacin powder was purchased from LKT Laboratories, Inc.
(St. Paul, MN). A stock solution of each antimicrobial agent in sterile water was
prepared, aliquoted, and stored at �70°C. Prior to each susceptibility test, an
aliquot of the drug was thawed and diluted to the desired concentrations with
cation-adjusted Mueller-Hinton broth (Ca-MHB) (BBL, Sparks, MD).

Microorganisms. Pseudomonas aeruginosa ATCC 27853 and Acinetobacter
baumannii ATCC BAA 747 (American Type Culture Collection, Rockville, MD)
were used in the study. The bacteria were stored at �70°C in Protect (Key
Scientific Products, Round Rock, TX) storage vials. Fresh isolates were subcul-
tured twice on 5% blood agar plates (Hardy Diagnostics, Santa Maria, CA) for
24 h at 35°C prior to each experiment.

Susceptibility studies. MICs/minimum bactericidal concentrations (MBCs)
were determined in Ca-MHB using a modified broth macrodilution method as
described by the CLSI (1). The final concentration of bacteria in each broth
macrodilution tube was approximately 5 � 105 CFU/ml of Ca-MHB. Serial
twofold dilutions of the aminoglycosides were used. The MIC was defined as the
lowest concentration of drug that resulted in no visible growth after 24 h of
incubation at 35°C in ambient air. Samples (50 �l) from clear tubes and the
cloudy tube with the highest drug concentration were plated on Mueller-Hinton
agar (MHA) plates (Hardy Diagnostics, Santa Maria, CA). The MBC was de-
fined as the lowest concentration of drug that resulted in a �99.9% kill of the
initial inoculum. The drug carryover effect was assessed by visual inspection of
the distribution of colonies on medium plates. The studies were conducted in
duplicate and repeated at least once on a separate day.

Time-kill studies and mathematical modeling. Time-kill study data of P.
aeruginosa over 24 h have been reported previously (12); a clinically relevant
concentration range of gentamicin (from 0 to 32 mg/liter) was used. Similarly, the
experiment was repeated with A. baumannii using a clinically relevant concen-
tration range of amikacin (from 0 to 128 mg/liter). The mathematical structure
of the growth dynamics model is shown in Fig. 1. Briefly, the rate of change of

bacteria over time was expressed as the difference between the intrinsic bacterial
growth rate and the (sigmoidal) kill rate provided by the antimicrobial agent. A
decline in the kill rate over time and regrowth were attributed to adaptation,
which was explicitly modeled as an increase in the concentration necessary to
achieve a 50% maximal kill rate (C50k), using a saturable function of antimicro-
bial agent selective pressure (both the aminoglycoside concentration [C] and
time). The time-kill study data were used as inputs to derive the best-fit model
parameter estimates, as previously described (12, 15). The modeling estimation
process involved two steps. For each bacterium, the intrinsic bacterial growth
rate (Kg) and maximal bacterial population size (to account for contact inhibi-
tion) were first determined from placebo (control) experiments, using the
ADAPT II program (2). Using these parameter estimates, the parameter values
in the kill function were subsequently determined using data from all active
treatment experiments simultaneously. The baseline inoculum (107 CFU/ml) was
deemed to be dense enough to constitute a heterogeneous bacterial population.

Computer model prediction of microbial response. Using the best-fit model
parameter values derived, the microbial responses to various clinically relevant
aminoglycoside exposures (fluctuating concentrations over time) over 72 h were
predicted. In order to examine the robustness of our mathematical-modeling
approach, two different methods were used to predict the likelihood of resistance
emergence. For gentamicin, three parallel differential equations were used, each
characterizing the rate of change of the drug concentration, microbial suscepti-
bility, and microbial burden of the surviving population over time, as described
previously (16). All simulations were performed with the ADAPT II program (2).
On the other hand, the qualitative microbial responses (with respect to resistance
suppression or development) to various amikacin exposures were predicted using
a three-dimensional response surface, as described previously (9).

Experimental validation. Regardless of the prediction method used, the com-
puter simulations were compared to experimental data from an in vitro hollow-
fiber infection model with similar antimicrobial agent exposures. The experimen-
tal setup has been described elsewhere (16). A human-like elimination half-life
(approximately 2.5 h) for both gentamicin and amikacin was simulated in the
infection models. Serial samples were obtained from the infection models over
time to ascertain the simulated pharmacokinetic exposures. The aminoglycoside
concentrations in these samples were assayed using validated methods, as de-
tailed below. A one-compartment linear model was fitted to the observed time-
concentration profiles using the ADAPT II program (2).

In addition, serial samples were obtained at baseline, 4, and 8 h and daily
(predose) in duplicate from each hollow-fiber system for quantitative culture to
define the effects of various drug exposures on the bacterial population. Prior to
culturing the bacteria quantitatively, the bacterial samples were centrifuged at

FIG. 1. Bacterial growth dynamics model and various model pa-
rameters (adapted with permission from reference 15).
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10,000 � g for 15 min and reconstituted with sterile normal saline in order to
minimize the drug carryover effect. Total bacterial populations were quantified
by spiral plating (Spiral Biotech, Bethesda, MD) 10� serial dilutions of the
samples (50 �l) onto drug-free MHA plates. Subpopulations with reduced sus-
ceptibility (resistant) were quantified by culturing them on cation-adjusted MHA
plates supplemented with the exposed agent (gentamicin or amikacin) at a
concentration of 3� MIC. Since susceptibility testing is performed in twofold
dilutions and one tube (2� concentration) difference is commonly accepted as
reasonable interday variation, quantitative cultures on drug-supplemented me-
dium plates (at 3� MIC) would allow reliable detection of bacterial subpopu-
lations with reduced susceptibility. The medium plates were incubated at 35°C
for up to 24 (total population) and 72 (subpopulations with reduced susceptibil-
ity) h, and the bacterial density of each sample was enumerated visually. The
theoretical lower limit of detection was 400 CFU/ml. Determination of the
susceptibilities of the resistant isolates (recovered from the drug-supplemented
medium plates at the end of the experiments) to the exposed agent was repeated
to confirm the emergence of resistance.

Pharmacokinetic profiles investigated. All dosing regimens investigated were
guided by computer model predictions. In view of the pharmacodynamic prop-
erty of gentamicin, preliminary simulations revealed that suppression of resis-
tance would be unlikely using any clinically achievable exposures. Therefore, as
a proof of concept, several supraphysiologic dosing regimens were investigated,
in addition to two clinically relevant dosing regimens (using conventional no-
menclature, a Cmax/MIC of 4 q8h and a Cmax/MIC of 12 q24h). On the other
hand, four clinically achievable dosing regimens of amikacin were examined,
corresponding to a Cmax /MIC of 5 q12h, a Cmax/MIC of 6 q8h, a Cmax/MIC of
13 q12h, and a Cmax /MIC of 20 q24h.

Bioassays. Gentamicin concentrations were determined by a microbioassay
utilizing Klebsiella pneumoniae ATCC 13883 as the reference organism. The
bacteria were incorporated into 30 ml of molten cation-adjusted MHA (at 50°C)
to achieve a final concentration of approximately 1 � 105 CFU/ml. The agar was
allowed to solidify in 150-mm medium plates. A size 3 cork bore was used to
create nine wells in the agar per plate. Standards and samples were tested in
duplicate with 40 �l of the appropriate solution in each well. The gentamicin
standard solutions ranged from 1 to 32 mg/liter in Ca-MHB. The medium plates

were incubated at 35°C for 24 h, and the zones of inhibition were measured. The
assay was linear (correlation coefficient, �0.99), using the zone diameter versus
the log of the standard drug concentration. The intraday and interday coefficients
of variation for all standards were �4% and �6%, respectively. Similarly, ami-
kacin concentrations were determined by a microbioassay utilizing Escherichia
coli ATCC 25922 as the reference organism. The assay was linear (correlation
coefficient, �0.98), using the zone diameter versus the log of the amikacin
standard concentrations from 4 to 256 mg/liter. The intraday and interday coef-
ficients of variation for all standards were �7% and �12%, respectively.

RESULTS

Susceptibility studies. The MIC/MBC of gentamicin for the
P. aeruginosa isolate were found to be 2 and 2 mg/liter, respec-
tively. On the other hand, the MIC/MBC of amikacin for the A.
baumannii isolate were found to be 4 and 8 mg/liter, respec-
tively.

Time-kill studies. Data from the time-kill studies and model
fits to the data are shown in Fig. 2 and 3, respectively. The
estimates of the best-fit model parameters are shown in Table
1. Taken as a whole, the observations in bacterial burdens over
time (under constant antimicrobial agent concentrations) were
reasonably described by the model.

Computer simulation and experimental validation. The ob-
served pharmacokinetic simulations in the infection models
were satisfactory (data not shown). Overall, the computer pre-
dictions correlated well qualitatively with experimental data
for both antimicrobial agents. The comparison between com-
puter-simulated and experimental bacterial responses to gen-
tamicin are shown in Fig. 4. A significant initial reduction in
the microbial burden was predicted for all gentamicin dosing
regimens examined. However, regrowth over time was pre-

FIG. 2. Time-kill studies of gentamicin against P. aeruginosa ATCC
27853 (A) and of amikacin against A. baumannii ATCC BAA 747 (B).
The data are shown as means � standard deviations. Complete bac-
terial eradication was observed with amikacin concentrations of �16
mg/liter after 2 h of drug exposure.

FIG. 3. Model fits to the experimental data in time kill studies.
Shown are gentamicin against P. aeruginosa ATCC 27853 (A) and
amikacin against A. baumannii ATCC BAA 747 (B).
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dicted for suboptimal regimens (Cmax/MIC of 4 q8h, Cmax/MIC
of 12 q24h, and Cmax/MIC of 36 q24h) with repeated dosing
due to selective amplification of a resistant subpopula-
tion(s). On the other hand, sustained suppression of resis-
tance emergence was achieved with an optimal dosing reg-
imen (Cmax/MIC of 30 q12h).

For amikacin, a three-dimensional surface analysis was used
to predict the likelihood of resistance suppression associated
with various dosing regimens, as shown in Fig. 5. Based on the
analysis, two suboptimal regimens (Cmax/MIC of 5 q12h and
Cmax/MIC of 6 q8h; predicted not to prevent resistance devel-
opment over time) and two optimal dosing regimens (Cmax/
MIC of 20 q24h and Cmax/MIC of 13 q12h; predicted to sup-
press resistance development) were selected for prospective
validation. As shown in Fig. 6 and the supplemental material
labeled “Appendix 3,” both the negative and positive predic-
tive abilities of the mathematical model were verified experi-
mentally.

Resistance confirmation. Resistant isolates were recovered
from drug-supplemented plates at the end of the experiments
(suboptimal dosing regimens). Both gentamicin and amikacin
resistance were confirmed with repeated susceptibility testing
immediately after the experiments. However, gentamicin resis-
tance was not stable; the elevated gentamicn MIC observed
could not be demonstrated after serial passage on drug-free
plates and storage at �70°C. Our experience appeared to be
consistent with previous in vivo findings (3). On the other
hand, amikacin resistance (16- to 32-fold increase) was phe-
notypically stable in four randomly selected isolates from
amikacin-supplemented plates. Cross-resistance to gentami-
cin (16- to 32-fold increase), tobramycin (32-fold increase),
and apramycin (8- to 16-fold increase) was observed, but not
to meropenem, cefepime, and levofloxacin. These data sug-
gested that nonspecific outer membrane changes and/or
overexpression of an efflux pump (but not AdeABC) was
likely to be the mechanism of amikacin resistance (5).

DISCUSSION

The need for new antimicrobial agents is greater than ever
because of the emergence of multidrug resistance. Multidrug
resistance in gram-negative bacteria has been associated with
unfavorable clinical outcomes (7, 8); P. aeruginosa and A. bau-
mannii are two of the bacteria often implicated and are thus
especially worrisome. However, new antimicrobial agent de-
velopment is on the decline (10) due (partially at least) to the
lower cost-benefit ratio of antimicrobial discovery/develop-
ment programs. Dosing regimen selection has been shown to
have a significant impact on the emergence of resistance; sub-

optimal dosing may facilitate the emergence of resistance by
imposing a selective pressure on the bacteria (4, 6, 13, 14, 16).
Despite that, information from conventional studies has not
been used optimally to guide the choice of dosing regimens.
The limitations of using surrogate indices (e.g., area under the
concentration-time curve/MIC and %T�MIC) in pharmaco-
dynamic modeling have been reviewed previously (16) and
further exemplified by data in this study (Fig. 4 and 6). While
Cmax/MIC is commonly believed to be the most important for
aminoglycosides, a dosing regimen achieving a lower Cmax/
MIC ratio but provided for a larger AUC/MIC (due to twice
daily dosing) prevented the selection of resistance.

Rational dosing regimen design involves multiple variables.
Since comprehensive evaluation of all combinations is prohib-
itive in view of the labor-intensiveness of each investigation,
the initial choice of the dosing regimens to be tested preclini-
cally is often empirical (mostly trial and error). Given that
studies with these infection models are costly and time-con-
suming to perform, poorly guided exploration studies to exam-
ine the potentials of various dosing regimens (e.g., dose esca-
lation or dose fractionation studies) may not be very efficient
and cost-effective. Of interest, conventional pharmacodynamic
indices predicting outcomes may also be subjected to the range
of drug concentrations examined (see the supplemental mate-
rial labeled “Appendix 2”).

In contrast, our proposed modeling approach does not re-
quire the use of surrogate pharmacodynamic indices to make
useful predictions of microbial response to antimicrobial ex-
posures (the Cmax/MIC was empirically chosen to represent
different dosing regimens in Fig. 4 and 6 due to convention;
other indices could also be used). As such, it offers a method to
improve dosing regimen selection, which could suppress the
development of resistance during therapy. With this method,
standard time-kill study data over 24 h are used as model
inputs. The utility of a large number of dosing regimens can be
effectively screened in a comprehensive fashion, but only
promising ones would be investigated in preclinical studies and
clinical trials. In addition, because the dosing regimens inves-
tigated are designed to prevent resistance emergence, the clin-
ical-utility life span of new agents would also likely be pro-
longed.

In all cases, bacterial regrowth after an initial decline in the
bacterial burden was attributed to selective amplification of a
resistant subpopulation(s). We were able to confirm the pres-
ence of phenotypic resistance by repeated susceptibility testing.
However, we did not ascertain the specific mechanism of ami-
noglycoside resistance in this study, as it was not the primary
focus of the study. Since the acquisition of additional genetic
material for A. baumannii was highly unlikely in our in vitro

TABLE 1. Susceptibilities of isolates and final estimates of best-fit model parameters in time kill studiesa

Strain MIC/MBCb Kg (h�1) Nmax
(108 CFU/ml) Kk (h�1) C50k

(mg/liter) H � 	 (liter/mg � h)

P. aeruginosa 27853 2/2 0.48 9.80 4.68 0.72 3.73 42.54 0.0135
A. baumannii BAA 747 4/8 0.55 6.62 27.81 1.56 3.06 50.09 0.0265

a Kg, growth rate constant for the bacterial population; Nmax, maximum population size; Kk, maximal kill rate constant for the bacterial population; C50k,
concentration to achieve 50% of the maximal kill rate for the bacterial population; H, sigmoidicity constant for the bacterial population; �, maximal adaptation; 	, rate
of adaptation factor.

b P. aeruginosa susceptibility to gentamicin; A. baumannii susceptibility to amikacin (in mg/l).
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FIG. 4. Comparison of computer-simulated and experimental bacterial (P. aeruginosa) responses to various gentamicin exposures. The
dosing frequencies are in parentheses. The data are shown as means � standard deviations. The horizontal dotted line [in Cmax/MIC 
 30
(q12h)] depicts the reliable lower limit of detection.
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infection model, initial screening attempts did not suggest a
common mechanism of resistance. Nonetheless, we believe
that the experimental data shown are adequate to demonstrate
the utility of our modeling approach.

As with previous studies, the proposed modeling approach
was expected to be a general evaluative tool. The utility of the
model was illustrated in this study by experimental data for P.
aeruginosa and A. baumannii. However, the proposed model-
based approach is not confined to a specific antimicrobial
agent-pathogen combination. An attractive feature of our
model is that it does not rely on detailed knowledge of the
mechanism of resistance. The different pharmacologic and mi-
crobiologic characteristics of various drug-pathogen combina-
tions can be represented by different model parameter values
(e.g., the growth rate constant of the pathogen and the disper-
sion of the maximal kill rate constant of the antimicrobial
agent under investigation) derived from actual (short-term)
experiments. While various antimicrobial agents may have dif-
ferent mechanisms of action or killing profiles (e.g., bacteri-
cidal or bacteriostatic), and various pathogens may have dif-
ferent biological characteristics, the same mathematical model
structure can still be used (e.g., different extents of suscepti-
bility reduction due to different mechanisms of resistance can
be reflected in the value of �, and the rate of resistance selec-
tion can be reflected in the value of 	). As the MIC increases,

FIG. 5. Likelihood of emergence of bacterial (A. baumannii) resis-
tance to various dosing regimens of amikacin as predicted by a re-
sponse surface analysis. Two intersecting planes are shown: a translu-
cent mesh surface (representing different dosing regimens) and an
opaque surface (where D/Kg 
 1). The three-dimensional mesh surface
is made up of a collection of data points; each datum point is charac-
terized by a value on the x, y, and z axes corresponding to the dose (x),
dosing interval (y), and D/Kg (z). The average kill rate of various dosing
regimens against the most resistant bacterial subpopulation was quan-
tified by D, an index of dosing intensity (D � Kk [the maximal kill rate],
and D is dependent on the Cmax and dosing frequency [an intrinsic
property of a dosing regimen]). For a dosing regimen to suppress
resistance amplification, it is imperative that the average kill rate (D)
be more than the intrinsic growth rate (Kg) of the bacterial population.
Both D and Kg are expressed in h�1, so D/Kg is a dimensionless ratio.
To identify promising dosing regimens (combinations of dose and
dosing interval) to prevent resistance development, the corresponding
values of D/Kg should be �1 (the region where the translucent mesh
surface is above the opaque plane), as indicated by the arrow (e.g.,
2,000 mg [Cmax/MIC 
 20] given every 24 h or 1,500 mg [Cmax/MIC 

15] every 12 h). Note: Cmax/MIC 
 dose/(volume of distribution �
MIC) 
 dose/(70 � 0.35 � 4).

FIG. 6. Validation of microbial responses to various amikacin dos-
ing regimens. The dosing frequencies are in parentheses. The data are
shown as means � standard deviations. The horizontal dotted lines
depict the reliable lower limits of detection.
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the C50k for the surviving population also increases in a non-
linear fashion until “maximal adaptation” has been achieved.
In the past, the same (a two-subpopulation) mathematical-
model structure has been used to examine the effects of quin-
olone exposures on P. aeruginosa (14), Mycobacterium tubercu-
losis (4), and Staphylococcus aureus (16). These studies suggest
that an appropriate mathematical-model structure capturing
essential features can be developed, which would be flexible
enough to characterize the dynamic interaction of more than
one antimicrobial agent-pathogen combination. Consequently,
the proposed model would likely be extrapolated to other
antimicrobial agents (e.g., antibacterials, antifungals, and an-
tivirals) with different mechanisms of action, as well as to other
pathogens (e.g., human immunodeficiency virus, tuberculosis,
anthrax, and avian influenza) with different biological charac-
teristics.

In conclusion, using limited data from time-kill studies over
24 h, our mathematical model was reasonable in qualitatively
predicting extended microbial responses to various concentra-
tion-time profiles of both gentamicin and amikacin over 3 days.
This approach appears promising as a decision support tool
to guide highly targeted investigation of dosing regimens in
preclinical investigations and clinical studies. The in vivo rel-
evance and sensitivity of the mathematical-model predictions
are currently under investigation.
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