Dominance of bla_{CTX-M} within an Australian Extended-Spectrum β -Lactamase Gene Pool^{∇}

Zhiyong Zong,^{1,3} Sally R. Partridge,¹ Lee Thomas,² and Jonathan R. Iredell^{1*}

Centre for Infectious Diseases and Microbiology, University of Sydney,¹ and Institute for Clinical Pathology and Medical Research, Westmead Hospital,² Sydney, New South Wales, Australia, and Department of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China³

Received 25 January 2008/Returned for modification 13 April 2008/Accepted 13 August 2008

 bla_{CTX-M} genes, particularly $bla_{CTX-M-15}$, are the dominant extended-spectrum β -lactamase (ESBL) genes among clinical isolates of *Escherichia coli* and *Klebsiella pneumoniae* in Sydney, Australia, where we also found one example of $bla_{CTX-M-62}$, encoding a novel enzyme conferring ceftazidime resistance. ESBL genes were present in diverse community isolates and in a variety of associated conjugative plasmids.

The dominant mechanism of resistance to expanded-spectrum cephalosporins and monobactams among members of the family *Enterobacteriaceae* is the production of Ambler class A extended-spectrum β -lactamases (ESBLs), with more than 200 variants described (23). SHV-type ESBLs have been sporadically reported in *Klebsiella pneumoniae* isolates from Australia (24, 27), and a single isolate from Queensland, Australia was reported to carry a *bla*_{CTX-M-3}-like gene in a study of ESBLs in invasive *K. pneumoniae* from 1996 to 1997 (24). SHV- and TEM-type ESBLs were dominant all over the world in members of the family *Enterobacteriaceae* during the 1990s (3, 5) but now appear less important than the widely distributed CTX-M enzymes (1, 5).

Reduced susceptibility (MIC $\geq 2 \mu g/ml$) (Phoenix NMIC/ ID-101 panel; Becton, Dickinson & Co., Franklin Lakes, NJ) to cefotaxime (CTX) and/or ceftazidime (CAZ) was observed in 206 of 9,946 *Escherichia coli* (2.1%) and 64 of 1,391 *K. pneumoniae* clinical isolates (4.6%) submitted to our laboratory from four regional hospitals and two associated community clinics in the western Sydney area of New South Wales, Australia, from March 2005 to May 2007. Of these, 81 randomly selected isolates (61 *E. coli* and 20 *K. pneumoniae* isolates) from different patients had been stored and were screened for bla_{CTX-M} , bla_{SHV} , and bla_{TEM} genes by PCR (Table 1).

The majority (50 of 61 *E. coli* isolates and 10 of 20 *K. pneumoniae* isolates) yielded amplicons with $bla_{\rm CTX-M}$ universal primers (18). Subsequent multiplex PCR (30) and analysis of sequences (ABI PRISM 3100 genetic analyzer; Applied Biosystems, Foster City, CA) revealed genes encoding CTX-M-3 (n = 4), CTX-M-15 (n = 33), and CTX-M-62 (n = 1) from the CTX-M-1 group and genes encoding CTX-M-9 (n = 3), CTX-M-14 (n = 17), CTX-M-24 (n = 2), and CTX-M-27 (n = 1) from the CTX-M-9 group (Table 2) ($bla_{\rm CTX-M-9}$ and $bla_{\rm CTX-M-14}$ coexisted in one isolate).

The CTX-M-3 enzymes identified in this study are encoded

by the first reported and now widespread bla_{CTX-M-3} gene (e.g., GenBank accession no. Y10278) (here designated bla_{CTX-M-3a}) (12), which is closely related to *bla*_{CTX-M-15}. A novel variant of CTX-M-3 (Pro167Ser) has the CAZ resistance characteristic of this substitution (26) and was designated CTX-M-62. Ceftazidime resistance, but not cefotaxime resistance, was transferred to E. coli with bla_{CTX-M-62} on a conjugative plasmid, but the incompatibility group of the plasmid could not be determined. *bla*_{CTX-M-62} is a G509T variant of a *bla*_{CTX-M-3} gene, here designated bla_{CTX-M-3b} (e.g., GenBank accession no. AB059404), previously reported from Asia, which differs from *bla*_{CTX-M-3a} at 8 nucleotide positions (Table 3). Additional novel (silent) bla_{CTX-M} variants were seen (Table 3): bla_{CTX-M-9b} is a C109T variant of all previously deposited bla_{CTX-M-9} sequences (e.g., GenBank accession no. AF174129) and $bla_{\text{CTX-M-24}}$ variants, including bla_{CTX-M-24a} (e.g., GenBank accession no. AY143430) and the novel bla_{CTX-M-24e} with AGG at codon 275. Using primers located in ISEcp1 (ISEcp1IR-F) and ISCR1 (CR1-F) combined with primers located in bla_{CTX-M-1} group genes (CTXM1-R) and *bla*_{CTX-M-9} group genes (CTXM9-R), *bla*_{CTXM-9} was found adjacent to ISCR1, while all other bla_{CTX-M} genes were associated with ISEcp1, as expected.

Four *E. coli* isolates yielded amplicons with *bla*_{SHV} primers, all found to be the ESBL gene bla_{SHV-12}. Sequencing of amplicons obtained from all 20 K. pneumoniae isolates suggested single bla_{SHV} genes in 17 (3 bla_{SHV-1}, 11 bla_{SHV-11}, and 1 each of bla_{SHV-27} , bla_{SHV-28} , and $bla_{SHV-109}$). SHV-109 is a novel variant most similar to SHV-61 (Thr268Met) and SHV-11 (Thr268Met with Leu10Arg in the signal peptide). The remaining three isolates appeared to have bla_{SHV-12} plus another bla_{SHV} gene, with uncut and cut amplicons evident on electrophoresis after digestion with NheI (New England Biolabs, Ipswich, MA), which cuts at the position of a relevant sequence variation in *bla*_{SHV-12}. Separate sequencing of purified uncut and cut bands revealed that one isolate had both bla_{SHV-12} and bla_{SHV-1} and that two isolates had both bla_{SHV-12} and bla_{SHV-11} . Fifty-nine isolates also had bla_{TEM} genes, all encoding (non-ESBL) TEM-1.

The 66 isolates (54 *E. coli* and 12 *K. pneumoniae* isolates) with $bla_{\text{CTX-M}}$ (n = 60) and/or $bla_{\text{SHV-12}}$ (n = 7) (one isolate, JIE162, had both $bla_{\text{SHV-12}}$ and $bla_{\text{CTX-M-15}}$), were subjected to

^{*} Corresponding author. Mailing address: CIDM, Level 3, ICPMR Building, Westmead Hospital, Westmead, NSW 2145, Australia. Phone: 61-2-9845-6255. Fax: 61-2-9891-5317. E-mail: jon.iredell@swahs .health.nsw.gov.au.

^v Published ahead of print on 25 August 2008.

TABLE	E 1.	PCR	primers	used	in	this	study
-------	------	-----	---------	------	----	------	-------

Primer	Sequence $(5'-3')^a$	Target	GenBank accession no.	Position	Reference
CTX-M-U1 CTX-M-U2	ATGTGCAGYACCAGTAARGTKATGGC TGGGTRAARTARGTSACCAGAAYCAGCGG	bla _{CTX-M} genes	AY458016	20993–20218 20426–20454	18
CTXM1-F CTXM1-R	AAAAATCACTGCGCCAGTTC AGCTTATTCATCGCCACGTT	<i>bla</i> _{CTX-M-1} group	AY458016	21202–21221 20807–20826	30
CTXM2-F CTXM2-R	CGACGCTACCCCTGCTATT CCAGCGTCAGATTTTTCAGG	<i>bla</i> _{CTX-M-2} group	X92507	49–67 581–600	30
CTXM8-F CTXM8/25-R	TCGCGTTAAGCGGATGATGC AACCCACGATGTGGGTAGC	<i>bla</i> _{CTX-M-8} group	AF189721	285–304 954–973	30
CTXM9-F CTXM9-R	CAAAGAGAGTGCAACGGATG ATTGGAAAGCGTTCATCACC	<i>bla</i> _{CTX-M-9} group	AF174129	6343–6364 6528–6547	30
CTXM25-F ^b	GCACGATGACATTCGGG	<i>bla</i> _{CTX-M-25} group	AF518567	2673-2689	30
42bp-F	GGATTGACCGTATTGGGAGTT	<i>bla</i> _{CTX-M-9} group	AF252622	1716–1736	This work
5'orf903-R	CGGTTGATGAGGGCTTTATT	IS903	AF252622	2738–2757	This work
5'orf3-R	GGCGGAAACAATGAGAAAAC	ORF3	AF252622	7478–7497	10
orf477-F	GGTGGCATAATTTTTGAAGT	ORF477	AY458016	20151-20170	This work
ISEcp1IR-F	CAATGTGTGAGAAGCAGTCTAAA	Near IRR ISEcp1	AY458016	21332-21354	This work
CR1-F	ACAAATCGGAAGGTCTCG	ISCR1	AF174192	5702-5719	11
SHV-F SHV-R	CGCCGGGTTATTCTTATTTGTCGC TCTTTCCGATGCCGCCGCCAGTCA	$bla_{\rm SHV}$ and adjacent regions	X98101	3–27 995–1018	21
FIN DEB	ATTCTTGAAGACGAAAGGGC ATGAGTAAACTTGGTCTGAC	bla_{TEM} and adjacent regions	AY458016	23841–23860 24913–24912	4
blaTEM-F blaTEM-R	GAGTATTCAACATTTTCGT ACCAATGCTTAATCAGTGA	bla _{TEM}	AY458016	24052–24070 24890–24908	16
VEB-F VEB-R	CGACTTCCATTTCCCGATGC GGACTCTGCAACAAATACGC	$bla_{\rm VEB}$	AF010416	343–362 985–966	19
GES-1A GES-1B	ATGCGCTTCATTCACGCA CTATTTGTCCGTGCTCAG	bla _{GES}	AF156486	1332–1349 2195–2178	25
BES-1F BES-1R	AGCGGCGAGAGTTACAGCTA AGAGGATGGCGATATCGTTG	bla _{BES}	AF234999	343–362 931–912	This work
SFO-F SFO-R	GTTCGGTAGCGCACCATTAT TTGCCCAAAGTTAGGGTTTG	bla _{SFO}	AB003148	1477–1496 2028–2009	This work
PER-UF PER-UR	CCTGACGATCTGGAACCTTT TCATCGASGTCCAGTTTTGA	bla _{PER}	Z21957	645–666 1055–1036	This work
CA1 OR1	ATGTCGCASAYHGAAAATGC CCTTGCAGTTWWHTGTGRRTAA	IncFII copA or oriR	AY458016	88558–88577 90150–90171	22

 a H = A, C, or T; K = G or T; M = A or C; R = A or G; S = C or G; W = A or T; Y = C or T.

^b Paired with CTXM8/25-R.

pulsed-field gel electrophoresis after XbaI (New England Biolabs) restriction of DNA purified from whole-cell extracts (14), and *E. coli* phylogenetic groups were assigned (7) (Table 2). Forty-eight unique strains were identified in this way among the 54 *E. coli* isolates, and 8 unique strains were identified from the 12 *K. pneumoniae* isolates.

(14), with rifampin (80 or 200 μ g/ml) (Sigma, St. Louis, MO) plus ampicillin (80 μ g/ml), CTX (2 μ g/ml), or CAZ (2 μ g/ml) by filter (29) and/or broth mating methods (9). Plasmid replicon typing of transconjugants as previously described (6), with an additional PCR for IncFII (22), revealed significant plasmid diversity (Table 2). Consistent with previous reports, multiple

plasmids to rifampin-resistant E. coli DH5 $\alpha(\Delta lacZ)$ selected

Most (47/60) bla_{CTX-M} genes transferred on conjugative

		5			
Species ^a	Isolate (JIE) ^b	Drug resistance profile ^c	bla_{TEM} variant ^d	$bla_{\rm SHV}$ variant	Inc group ^e
Isolates with $bla_{\text{CTX-M-15}}$ (<i>n</i> = 33)					
E coli B2	101	CTX CAZ GEN TOB SXT CIP	1h		FIA+FIB+FII+N
E coli B2	$\frac{101}{118}$ 157 224	CTX CAZ GEN TOB SXT CIP	- 1h 1h		FIA+FII
F coli B2	186/295	CTX CAZ GEN TOB SXT CIP	1b/1b		FII
E coli B2 E coli B2	$\frac{100}{250}$	CTX CAZ GEN TOB FOX SXT CIP	10/10 1b		FIA + FIB + FII
E coli D	$\frac{250}{085}$ 166 204	CTX CAZ GEN TOB FOX SXT CIP	10 1b – –		FIA + FIB + FII
E coli D	$\frac{000}{106}$,100,204	CTX CAZ GEN TOP SYT	10, , 10 1b		
E coli B_2	226/242	CTX CAZ GEN TOB SAT	1a, 10 1b/1b		 I1
E coll D	$\frac{230}{242}$	CTX CAZ CEN TOD SAT	10/10 1b		11 T1
E coli D	$\frac{174}{180}$ 201	CTX CAZ CEN TOD CIP	10		11
E. coll A E. coll P2	109, 291	CTX CAZ GEN TOD CIP	-, 11 1b		—
E. coll B2 E. coll B2	100	CTX CAZ GEN TOD CIP	10		- EII
E. coll B2	$\frac{100}{142}$	CTX CAZ CIP	10		
E. coll B2	$\frac{143}{222}$	CTX CAZ CIP	10		ND
E. COII A	222 007/154/09/	CTX TOD SYT CID	10		
E. coll B2	$\frac{097}{124}$	CIX TOB SXI CIP	10/-/-		FIA+FII
E. coli D	$\frac{134}{000}$	CIX CAZ GEN TOB FOX CIP	1.		FIA+FIB+FII
E. coli D	<u>098</u>	CTX CAZ GEN TOB FOX CIP	11		FIA+FIB+FII
E. coli B1	$\frac{113}{122}$	<u>CTX</u> <u>CAZ</u> SXT CIP	1b		11
E. coli D	<u>139</u>	<u>CTX</u> <u>CAZ</u> SXT CIP	1b		11
E. coli B2	289	CTX GEN TOB CIP			-
K. pneumoniae	<u>120/127,146</u>	<u>CTX CAZ GEN TOB SXT</u> CIP	1b (all)	11 (all)	ND
K. pneumoniae	162^{f}	CTX CAZ GEN TOB FOX SXT CIP	1b	11, 12	_
Isolates with bla _{CTX-M-3}					
(n = 4)					
E. coli D	161	CTX GEN TOB FOX SXT CIP	1b		FII+B
E. coli D	095	CTX GEN TOB FOX SXT	1b		_
E. coli D	077	CTX GEN FOX SXT CIP	1b		Ν
E. coli B2	251	CTX GEN CIP	1b		FII + Y
Isolate with <i>blace</i> with <i>blace</i>					
(n = 1)					
K pneumoniae	137	CAZ SXT	1h	1	ND
n. prietimonitae	<u>107</u>		10	1	
Isolates with $bla_{\text{CTX-M-14}}$					
(n-17)	0.01	CTY CEN TOD SYT	16		EII
E. coll A	$\frac{001}{0049}$ 110k 106	CTX CEN TOD SXT	10		
E. coll D	$\frac{0.04^{\circ}}{1.02}, \frac{1100}{1.02}, \frac{190}{1.02}$	CTX CEN TOD SXT	10, 10, 11		
E. coll D	$\frac{102}{152}$ 100	$\frac{CIA}{CTY} \text{ SYT CID}$	10		D
E. cou D	$\frac{155}{201}, \frac{180}{100}$	CTX CEN TOD FOX SYT CID	-, 10		
E. cou D	$\frac{201}{160}$	CTX GEN TOD OVE OD	10		
E. coll D	$\frac{108}{121}$	CTX GEN TOP FOX CIP	10		ND
E. coli D	121	CTX GEN TOB FOX CIP	1b		-
E. coli A	088	CIX GEN CIP	16		II D
E. coli B2	<u>052</u>	<u>CTX</u> CAZ GEN TOB SXT	1b		В
K. pneumoniae	<u>014/021/025/056</u>	<u>CTX</u> <u>GEN</u> TOB <u>SXT</u>	1b (all)	11 (all)	ND
K. pneumoniae	<u>223</u>	CTX		11	FII
Isolates with bla _{CTX-M-9}					
(n = 3)					
E. coli D	059/084 ^g /277	<u>CTX</u> GEN <u>TOB</u> <u>SXT</u>	-/1b/-		FIB
Isolates with blacry Mar					
(n = 2)					
E coli D	216	CTX GEN TOB FOX SXT CIP	1h		FII
E coli B?	$\frac{210}{298}$	$\frac{OIN}{CTX}$ OBLY TO DI ONI SHIT ON	10		FII
	200				111
Isolate with <i>bla</i> _{CTX-M-27}					
(n = 1)	059	CTY CAT CEN TOD DOV OVT OD	11.		EII
E. coll A	<u>860</u>	<u>UIA CAZ GEN</u> IOB FOX SXT CIP	10		FII
Isolates with <i>blasses</i>					
as the only FSBI					
gene $(n = 6)$					
E coli D	163	CAZ SXT	1b	12	FIB
E coli B2	038	CAZ SXT	1b	12	_
\mathbf{L} . CON \mathbf{D}	0.00		10	14	

TABLE 2. Isolates with ESBL genes

Continued on following page

Species ^a	Isolate $(JIE)^b$	Drug resistance profile ^c	bla_{TEM} variant ^d	$bla_{\rm SHV}$ variant	Inc group ^e
E. coli D E. coli B2 K. pneumoniae K. pneumoniae	$ 119 \\ 124 \\ 024 \\ 205 $	CTX CAZ GEN TOB FOX SXT CIP <u>CAZ GEN TOB SXT</u> CTX CAZ GEN TOB FOX SXT CIP CTX CAZ GEN TOB FOX SXT CIP	1b 1b 1b	12 12 1, 12 11, 12	A/C

^a E. coli phylogenetic groups are shown.

^b JIE isolates (shown in the table without JIE prefix) with identical DNA fingerprints (pulsed-field gel electrophoresis) are separated by slashes (e.g., <u>097/154/286</u>), and JIE isolates with dissimilar DNA fingerprints are separated by commas. JIE isolates from which the ESBL gene was transferred to *E. coli* by conjugation are underlined. –, absence of *bla*_{TEM} gene.

^c Isolates were not susceptible by NCCLS/CLSI guidelines (20) to drugs unless left blank. None were resistant to imipenem or amikacin. Resistance phenotypes transferred to *E. coli* by conjugation are underlined. CTX, cefotaxime; CAZ, ceftazidime; GEN, gentamicin; TOB, tobramycin; FOX, cefoxitin; SXT, trimethoprim-sulfamethoxazole; CIP, ciprofloxacin.

^d bla_{TEM-1i} is identical to bla_{TEM} in GenBank accession no. EF035590 (E. coli, India), a C228T variant of bla_{TEM-1a} (e.g., EMBL accession no. X54604); slashes and commas reflect identity relationships as in footnote a above.

^e Inc group, incompatibility groups of conjugative plasmids; ND, Inc group not determined; -, no plasmid transferred.

^f Neither *bla*_{CTX-M-15} nor *bla*_{SHV-12} was transferred from isolate JIE162 by conjugation.

^g The JIE084 isolate carried both *bla*_{CTX-M-9} and *bla*_{CTX-M-14}; only *bla*_{CTX-M-14} was found in the IncFII-positive transconjugant.

plasmid replicons were present in some transconjugants but IncF plasmids were numerically most important (13). All non-IncF amplicons and several IncF amplicons were sequenced, confirming the specificity of PCR typing. Several different HpaI (New England Biolabs) restriction patterns were observed among $bla_{CTX-M-15}$ and $bla_{CTX-M-14}$ plasmids (IncF and IncI1) extracted from transconjugants by alkaline lysis (28), but none matched the recently described epidemic IncFII plasmids in Europe (8) (not shown).

Three-quarters of the 66 isolates were not susceptible to gentamicin or tobramycin, and most were resistant to both (Table 2). Three-quarters were also resistant to trimethoprim-sulfamethoxazole. Aminoglycoside resistance was cotransferred with $bla_{\rm CTX-M-15}$ particularly. Although more than 60%

TADID	2	OTV M		
TABLE	3.	CIX-M	gene	variants

bla _{CTX-M} gene variant ^a	Original GenBank accession no. ^b	Reported location(s)	Variation(s) ^c
3a	Y10278	Various	
3b	AB059404	Japan, Taiwan	8 nt
15a	AY044436	Various	
62	EF219134	Australia	
9a	AF174129	Various	
9b	EU418915	Australia	C109T
14	AF252622	Various	
24a	AY143430	Mainland China, Taiwan	823–825 CGC
24b	AJ972953	France	823-825 CGT
24c	DQ343293	Mainland China	823–825 AGG;
24d	EE374096	Latin America	823-825 AGA
24e	EU418918	Australia	823–825 AGG
27	AY156923	France, Australia	

^{*a*} Letters designated in order of identification; other variants of some genes exist but are not relevant here.

^b Accession nos. listed in http://www.lahey.org/Studies/ are in bold typeface.

^c nt, nucleotides. Nucleotides 823 to 825 encode Arg at Ambler position 275 in CTX-M-24.

of the original isolates were ciprofloxacin resistant, this phenotype was not transferred to transconjugants (Table 2). Variable associations of $bla_{CTX-M-15}$ with genes conferring β -lactam and aminoglycoside resistance have been previously documented (2, 8), and further investigation is ongoing.

Nearly three-quarters of the 66 isolates with ESBL genes were recovered from urine. Two-thirds (35/54) of the *E. coli* isolates were from community-acquired infections, almost all of unique clonal type. *K. pneumoniae* isolates were more commonly (8/12) collected in the hospital setting and were less diverse (Table 2).

We detected no ESBL-type bla_{SHV} , ESBL-type bla_{TEM} , or bla_{CTX-M} in 15 isolates. Despite having reduced susceptibility to CTX or CAZ (MIC $\geq 2 \mu g/ml$), there was no zone enhancement to suggest an ESBL in any of these isolates by disk approximation test (15, 17), and none of the several less common ESBL genes were detected by PCR (Table 1). The majority (13/15) were cefoxitin resistant, and most carried either a plasmid-borne *ampC* gene (bla_{DHA} or $bla_{CMY-2-like}$; n = 7) or a metallo- β -lactamase gene (bla_{IMP-4} ; n = 3).

In summary, $bla_{\text{CTX-M}}$ genes are well-established in the general community here, and $bla_{\text{CTX-M-15}}$ (and, to a lesser extent, $bla_{\text{CTX-M-14}}$) is particularly dominant despite the presence of novel local variants. Our data indicate that these genes, including $bla_{\text{CTX-M-15}}$, are associated with a variety of plasmid replicons and are present in a wide range of bacterial strains.

Nucleotide sequence accession numbers. The nucleotide sequences of bla_{CTX-M} and bla_{SHV} genes from representative isolates have been submitted to GenBank under accession nos. EU418908 to EU418920. The $bla_{CTX-M-62}$ sequence is available under GenBank accession no. EF219134.

We are grateful to Glenys Conner, Peter Jelfs, Qinning Wang, and Matthew O'Sullivan for helpful advice and practical support.

Z.Z. was supported by an Endeavor International Postgraduate Student Scholarship from the Australian Government Department of Education, Science and Training. S.R.P. was supported by grants from the National Health and Medical Research Council of Australia.

REFERENCES

- Bonnet, R. 2004. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother. 48:1–14.
- Boyd, D. A., S. Tyler, S. Christianson, A. McGeer, M. P. Muller, B. M. Willey, E. Bryce, M. Gardam, P. Nordmann, and M. R. Mulvey. 2004.

Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum β -lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob. Agents Chemother. **48**:3758–3764.

- Bradford, P. A. 2001. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14:933–951.
- Canica, M. M., C. Y. Lu, R. Krishnamoorthy, and G. C. Paul. 1997. Molecular diversity and evolution of *bla*_{TEM} genes encoding β-lactamases resistant to clavulanic acid in clinical *E. coli*. J. Mol. Evol. 44:57–65.
- Canton, R., and T. M. Coque. 2006. The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol. 9:466–475.
- Carattoli, A., A. Bertini, L. Villa, V. Falbo, K. L. Hopkins, and E. J. Threlfall. 2005. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63:219–228.
- Clermont, O., S. Bonacorsi, and E. Bingen. 2000. Rapid and simple determination of the *Escherichia coli* phylogenetic group. Appl. Environ. Microbiol. 66:4555–4558.
- Coque, T. M., A. Novais, A. Carattoli, L. Poirel, J. Pitout, L. Peixe, F. Baquero, R. Canton, and P. Nordmann. 2008. Dissemination of clonally related *Escherichia coli* strains expressing extended-spectrum β-lactamase CTX-M-15. Emerg. Infect. Dis. 14:195–200.
- Coque, T. M., A. Oliver, J. C. Perez-Diaz, F. Baquero, and R. Canton. 2002. Genes encoding TEM-4, SHV-2, and CTX-M-10 extended-spectrum β-lactamases are carried by multiple *Klebsiella pneumoniae* clones in a single hospital (Madrid, 1989 to 2000). Antimicrob. Agents Chemother. 46:500– 510.
- Eckert, C., V. Gautier, and G. Arlet. 2006. DNA sequence analysis of the genetic environment of various *bla*_{CTX-M} genes. J. Antimicrob. Chemother. 57:14–23.
- Espedido, B. A., S. R. Partridge, and J. R. Iredell. 2008. bla_{IMP-4} in different genetic contexts in *Enterobacteriaceae* from Australia. Antimicrob. Agents Chemother. 52:2984–2987.
- 12. Gniadkowski, M., I. Schneider, A. Palucha, R. Jungwirth, B. Mikiewicz, and A. Bauernfeind. 1998. Cefotaxime-resistant *Enterobacteriaceae* isolates from a hospital in Warsaw, Poland: identification of a new CTX-M-3 cefotaximehydrolyzing β-lactamase that is closely related to the CTX-M-1/MEN-1 enzyme. Antimicrob. Agents Chemother. 42:827–832.
- Hopkins, K. L., E. Liebana, L. Villa, M. Batchelor, E. J. Threlfall, and A. Carattoli. 2006. Replicon typing of plasmids carrying CTX-M or CMY β-lactamases circulating among *Salmonella* and *Escherichia coli* isolates. Antimicrob. Agents Chemother. 50:3203–3206.
- Hunter, S. B., P. Vauterin, M. A. Lambert-Fair, M. S. Van Duyne, K. Kubota, L. Graves, D. Wrigley, T. Barrett, and E. Ribot. 2005. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J. Clin. Microbiol. 43:1045–1050.
- Jarlier, V., M. H. Nicolas, G. Fournier, and A. Philippon. 1988. Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in *Enterobacteriaceae*: hospital prevalence and susceptibility patterns. Rev. Infect. Dis. 10:867–878.
- Maynard, C., S. Bekal, F. Sanschagrin, R. C. Levesque, R. Brousseau, L. Masson, S. Lariviere, and J. Harel. 2004. Heterogeneity among virulence

and antimicrobial resistance gene profiles of extraintestinal *Escherichia coli* isolates of animal and human origin. J. Clin. Microbiol. **42**:5444–5452.

- Midolo, P. D., D. Matthews, C. D. Fernandez, and T. G. Kerr. 2002. Detection of extended spectrum β-lactamases in the routine clinical microbiology laboratory. Pathology 34:362–364.
- Mulvey, M. R., G. Soule, D. Boyd, W. Demczuk, and R. Ahmed. 2003. Characterization of the first extended-spectrum β-lactamase-producing Salmonella isolate identified in Canada. J. Clin. Microbiol. 41:460–462.
- Naas, T., P. Bogaerts, C. Bauraing, Y. Degheldre, Y. Glupczynski, and P. Nordmann. 2006. Emergence of PER and VEB extended-spectrum β-lactamases in *Acinetobacter baumannii* in Belgium. J. Antimicrob. Chemother. 58:178–182.
- NCCLS/CLSI. 2003. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 6th ed. NCCLS/CLSI document M7-A6. National Committee for Clinical Laboratory Standards, Wayne, PA.
- Nuesch-Inderbinen, M. T., H. Hachler, and F. H. Kayser. 1996. Detection of genes coding for extended-spectrum SHV β-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur. J. Clin. Microbiol. Infect. Dis. 15:398–402.
- Osborn, A. M., F. M. da Silva Tatley, L. M. Steyn, R. W. Pickup, and J. R. Saunders. 2000. Mosaic plasmids and mosaic replicons: evolutionary lessons from the analysis of genetic diversity in IncFII-related replicons. Microbiology 146:2267–2275.
- Paterson, D. L., and R. A. Bonomo. 2005. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev. 18:657–686.
- 24. Paterson, D. L., K. M. Hujer, A. M. Hujer, B. Yeiser, M. D. Bonomo, L. B. Rice, and R. A. Bonomo. 2003. Extended-spectrum β-lactamases in *Klebsiella pneumoniae* bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicrob. Agents Chemother. 47:3554–3560.
- 25. Poirel, L., I. Le Thomas, T. Naas, A. Karim, and P. Nordmann. 2000. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum β-lactamase, and the class 1 integron In52 from *Klebsiella pneumoniae*. Antimicrob. Agents Chemother. 44:622–632.
- Poirel, L., T. Naas, I. Le Thomas, A. Karim, E. Bingen, and P. Nordmann. 2001. CTX-M-type extended-spectrum β-lactamase that hydrolyzes ceftazidime through a single amino acid substitution in the omega loop. Antimicrob. Agents Chemother. 45:3355–3361.
- Rodriguez-Martinez, J. M., L. Poirel, A. Pascual, and P. Nordmann. 2006. Plasmid-mediated quinolone resistance in Australia. Microb. Drug Resist. 12:99–102.
- Sambrook, J., and D. W. Russell. 2001. Molecular cloning: a laboratory manual, vol. 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Valenzuela, J. K., L. Thomas, S. R. Partridge, T. van der Reijden, L. Dijkshoorn, and J. Iredell. 2007. Horizontal gene transfer in a polyclonal outbreak of carbapenem-resistant *Acinetobacter baumannii*. J. Clin. Microbiol. 45:453–460.
- Woodford, N., E. J. Fagan, and M. J. Ellington. 2006. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J. Antimicrob. Chemother. 57:154–155.