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SUMMARY
The maximum LOD score statistic is extremely powerful for gene mapping when calculated using
the correct genetic parameter value. When the mode of genetic transmission is unknown, the
maximum of the LOD scores obtained using several genetic parameter values is reported. This latter
statistic requires higher critical value than the maximum LOD score statistic calculated from a single
genetic parameter value.

In this paper, we compare the power of maximum LOD scores based on three fixed sets of genetic
parameter values with the power of the LOD score obtained after maximizing over the entire range
of genetic parameter values. We simulate family data under nine generating models. For generating
models with non-zero phenocopy rates, LOD scores maximized over the entire range of genetic
parameters yielded greater power than maximum LOD scores for fixed sets of parameter values with
zero phenocopy rates. No maximum LOD score was consistently more powerful than the others for
generating models with a zero phenocopy rate. The power loss of the LOD score maximized over
the entire range of genetic parameters relative to the maximum LOD score calculated using the correct
genetic parameter value appeared to be robust to the generating models.
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INTRODUCTION
The LOD score statistic is a powerful statistic for human gene mapping that has been used for
well over 50 years (Penrose, 1935; Morton, 1955). Since this statistic is a multiple of the
likelihood ratio test statistic, its values are in part determined by the genetic model parameter
values used in the analysis. The LOD score based on using the correct genetic model parameter
value has been shown to be more powerful than affected sib pair statistics and other gene-
model-free linkage statistics for detecting linkage (Greenberg et al., 1996; Greenberg et al.,
1998; Abreu et al., 1999).

In spite of the popularity of case-control association analysis of population data in recent years,
linkage studies using family data will continue to be very important. Clerget-Darpoux & Elston
(2007) list several advantages of family based linkage studies over association studies and
indicate that we will need both family based linkage studies and association studies to find
disease susceptibility genes. Although Clerget-Darpoux & Elston’s (2007) arguments are all
in the context of comparing a family based linkage study using affected sib pairs to an
association study, they also apply to family based linkage studies in general. Furthermore, the
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feasibility, efficiency, significance and the reliability of a family based linkage study may be
even greater using the LOD score method in the analysis.

A large proportion of linkage analyses involve complex diseases, where the correct genetic
model parameter values are unknown. The LOD scores based on incorrect genetic parameter
values reduce power to detect linkage (Clerget —Darpoux et al., 1986). In order to help
minimize this limitation, investigators have experimented with several genetic model
parameter values and reported the result that generates the highest maximum LOD score (e.g.,
Sherrington, 1988), sometimes referred to as the ‘mod score’ (Clerget-Darpoux et al., 1986),
the ‘maximized maximum LOD score’ (MMLS) (Greenberg, 1989) or LOD-M (Ulgen et al.,
2004). These investigators have also noted that maximizing over several genetic parameter
values can have a substantial effect on the null distribution. On the other hand the null
distribution is unaffected by the parameter values used (correct or incorrect) when the
maximized LOD score is based on a single parameter value (Williamson and Amos, 1990).

Several investigators conducted empirical studies on the null distribution and power of
maximized LOD scores obtained through considering more than one genetic parameter value
(Weeks et al., 1990; MacLean et al, 1993; Hodge et al., 1997; Greenberg at al., 1998; Ulgen
et al., 2004). Hodge et al. (1997) investigated the null distributions of maximized LOD score
statistics based on 2 (“dominance”), 10 (“penetrance”) and 20 (“dominance and penetrance”)
parameter values. They concluded that after subtracting 0.3 (using either their “dominance” or
“penetrance” maximized LOD score) or 0.6 (using their “dominance and penetrance”
maximized LOD score) one could use the critical value for the LOD score based on one genetic
parameter value.

Ulgen et al. (2004) investigated the LOD score obtained by maximizing over the entire range
of genetic parameter values (with the constraint that the disease associated allele frequency is
0.5 or less). They concluded that the resulting null distribution of the cube root of this maximum
LOD approximates a mixture in which 13% of the values equal 0 and the remaining non-zero
values are normally distributed with mean equal to 0.8 and standard deviation equal to 0.2.

Since the main motivation for using maximum LOD scores is to minimize the loss of power
caused by using incorrect genetic parameter values, the challenge is to identify the genetic
model parameter values or parameter space that will result in the greatest power. Clearly, a
LOD score based on fully maximizing over the genetic parameter space will be greater than a
maximum LOD score based on maximizing over a subset of 2 or 20 genetic parameter values
in that space. However we also know that the increase in maximum LOD associated with the
increase in the number of parameter values is fairly substantial in the null case (Hodge et al.,
1997; Ulgen et al., 2004). Thus maximizing over additional genetic parameter values may not
result in an increase in power after adjusting for inflated type I error.

Only a few studies have evaluated the power of maximum LOD scores based on more than
one genetic parameter value. Greenberg et al. (1998) investigated the power of the “corrected
dominance maximized LOD score”, obtained by subtracting 0.3 from the maximum LOD based
on the two genetic parameter values given by Hodge et al. (1997). They noted that (1) the
corrected dominance maximized LOD score had slightly lower power than the maximized
LOD calculated using one (correct) genetic parameter value and (2) the greatest loss in power
occurred when the actual generating model parameter values were quite different from the two
analysis values.

No study has compared the power of the “fully maximized LOD score”, the LOD score obtained
through maximization over the entire range of genetic parameter values, with the power of
“partially maximized LOD scores”, the LOD scores obtained by maximizing the LOD score
over a fixed set of genetic parameter values (for example, 2 or 20). One issue of particular
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interest is whether numerical maximization of the LOD score over the entire range of the
genetic parameters results in a large enough increase in the LOD to make up for the required
increase in the critical value associated with full maximization. The second issue is the choice
of the set of genetic parameter values to use in the calculation of a partially maximized LOD
score. This issue is only important if the partially maximized LOD scores obtained using 20
(or 2) parameter values result in the same or greater power than the fully maximized LOD. Of
particular interest is whether the partially maximized LOD score based on only two parameter
values suggested by Hodge et al. (1997) is as powerful as the partially maximized LOD score
based on 20 genetic parameter values for the low penetrance, high phenocopy, incomplete
dominance situations that are characteristic of complex diseases.

The focus of this paper is to compare the power of the fully maximized LOD score to the power
of partially maximized partially maximized LOD score statistics. We want to determine
whether it is worth it, given the required increase in the critical value, to fully maximize the
LOD score over the range of genetic parameter values. We consider LOD scores partially
maximized over 3 fixed sets of genetic parameter values and a fully maximized LOD score
obtained through maximization over the range of genetic parameter values. Our primary
purpose is to compare the power of two of the adjusted maximum LOD scores proposed by
Hodge et al. (1997) with the adjusted maximum LOD score proposed by Ulgen et al. (2004)
which requires a maximization algorithm and a much higher critical value for a significant
finding. The third partially maximized LOD score we will consider includes penetrance values
that allow for additivity and phenocopies. The power of this maximum LOD score will be also
compared with other partially and fully maximized LOD scores.

METHODS
Maximum LOD scores

The LOD score likelihood calculations are based on the assumption of a biallelic disease locus
with alleles D and d that are in Hardy Weinberg equilibrium. The genetic parameter value is
a vector, φ = {q,f0,f1,f2}, where q denotes the frequency of the disease allele, D, and fi denotes
the penetrance (the probability of being affected) of the disease for the genotype with i = 0, 1,
2 copies of D.

We consider 3 partially maximized LOD score statistics, which we denote as LOD-F2, LOD-
F20 and LOD-F20AP. The designation ‘F’ is used because these maximized LOD scores are
based on a fixed set of values for φ. The numbers 2 and 20 refer to the number of genetic
parameter values used in the partial maximization. The subscript ‘AP’ is used to differentiate
LOD-F20AP from LOD-F20. The LOD-F20AP statistic maximizes over fewer values of f2 than
LOD-F20 (4 vs. 10) but it additionally computes the LOD for settings of f1 and f0 that
correspond to additive effects of the D allele f1 = (f2 +f0 )/2, and phenocopies (f0 = 0.1).

The genetic parameter values used for each of these 3 partially maximized LOD score statistics
are given in Table 1. The values of the genetic parameters for LOD-F2 and LOD-F20 are the
same as those considered by Hodge et al. (1997). We propose LOD-F20AP with the objective
of obtaining greater power in those situations where we have additivity or phenocopies.

The power values of these partially maximized LOD score statistics are compared to the power
of LOD-M, the fully maximized LOD score statistic proposed by Ulgen et al. (2004). The
genetic parameter space for LOD-M is defined as 0 < q ≤ 0.5, and 0 ≤f0≤f1≤f2≤1. Of course,
all of these LOD scores are maximized over values of the recombination fraction θ, for 0 ≤ θ
≤ 0.5 . The power values of all of these maximized LOD score statistics are compared to the
“classical” maximum LOD score LOD-C, the LOD score obtained by setting φ equal to the
correct genetic parameter value and maximizing over 0 ≤ θ ≤ 0.5.
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Data Simulation
Two sets of nuclear family data were generated and investigated. The first was generated
through single ascertainment (one affected proband) and the second through double
ascertainment (two affected probands who are siblings). The SLINK (Ott, 1989; Weeks et al.,
1990) software simulated the phenotype data for the proband’s (or probands’) remaining family
members and the marker genotype data for the proband(s) and their siblings. The parents were
set to be heterozygous for 4 different alleles at the marker locus.

The disease phenotype and marker genotype data were generated under several genetic
parameter value settings. To make the power comparison of the maximum LOD score statistics
meaningful, we chose recombination parameter (θ) values and heterogeneity parameter (a)
values so that the power of the LOD-C was between 85% and 95% for most of the genetic
parameter values considered. In every case the family structure consisted of sets of nuclear
families with 4 offspring per family and every data set consisted of 240 individuals (or 40
nuclear families). In most cases, θ was set equal to 0.1. Whenever the power of LOD-C was
too low, θ was set at 0.01. For those situations that resulted in very high power with θ = 0.1,
the heterogeneity parameter, a, was set equal to 0.5. The SLINK software simulates
heterogeneity by setting the genetic parameter value for the unlinked disease locus equal to
that of the linked disease locus.

We generated data sets for each of 9 genetic parameter values as follows:

1. ‘D100’, a completely dominant disease allele with full penetrance: (q=0.01, f0=0.0,
f1=f2=1.0),

2. ‘R100’, a completely recessive disease allele with full penetrance: (q=0.01, f0= f1=0.0,
f2=1.0),

3. ‘D80’, a completely dominant disease allele with 80% penetrance: (q=0.01, f0=0.0,
f1=f2=0.8),

4. ‘R80’, a completely recessive disease allele with 80% penetrance; (q=0.01, f0= f1=0.0,
f2=0.8),

5. ‘D100-Q10’, a completely dominant disease allele with full penetrance and disease
allele frequency equal to 0.1 instead of 0.01 (as in D100 of (1)) (q=0.1, f0=0.0, f1=
f2=1.0),

6. ‘A50’, an additive model with full penetrance in the disease allele homozygote:
(q=0.01, f0=0.0, f1=0.5, f2=1.0),

7. ‘D100-P10’, a completely dominant disease allele with full penetrance and a nonzero
phenocopy rate: (q=0.01, f0=0.1, f1= f2=1.0),

8. ‘D90-P05’, a completely dominant disease allele with 90% penetrance, and a nonzero
phenocopy rate: (q=0.01, f0=0.05, f1= f2=0.9), and

9. ‘I80-P05’, a dominant disease allele, full penetrance in the disease homozygote and
a nonzero phenocopy rate: (q=0.01, f0=0.05, f1=0.8, f2=1.0).

We set q=0.01 in every case but (5) (D100-Q10). Parameter values (7)-(9) set f0>0.0 and hence
are referred to as “phenocopy values” whereas parameter values (1)-(6) are referred to as “no
phenocopy values”.

We also generated the data sets under the null hypothesis, i.e. θ=0.5, in order to obtain the null
distribution of the three partially maximized LOD scores. The simulated samples consisted of
n=200 families with 4 offspring per family. This was done for 10 generating genetic parameter
values (chosen from the analysis parameter settings of LOD-F20AP). The simulated samples

YOO and MENDELL Page 4

Ann Hum Genet. Author manuscript; available in PMC 2008 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



were constructed using double and single ascertainment methods resulting in 20 simulations.
For each of these simulations we obtained N=400 samples. The result was 8,000 simulated
samples for which we computed each of the partial maximum LOD scores under the null
hypothesis.

Computational Methods
For each data set, we computed LOD-F2, LOD-F20, LOD-F20AP and LOD-M scores as well
as the LOD score for the correct genetic parameter value (LOD-C). In order to calculate LOD
scores, we developed a program to compute the likelihood of the nuclear family data using
Elston-Stewart algorithm (1971), which was embedded in the program to calculate LOD-M
scores. The LOD-F2, LOD-F20 and LOD-F20AP scores were obtained as the maximum of the
2 or 20 LOD scores with different genetic analysis parameter values as defined above. The
validity of these computations was confirmed by comparing the results with the output from
the MLINK program (Lathrop & Lalouel, 1984).

We developed a separate program, based on Powell’s direction set method (Press et al.,
1993), to compute the fully maximized LOD, LOD-M. This program finds a minimum or
maximum of a function on n-dimensional space by moving along the lines with changing
directions. Powell’s algorithm may converge to a local maximum. We used several strategies
to obtain the global maximum. These include repeating the search using randomly selected
starting points, searches through the direction of unit vectors after computing a local maximum,
and searches that used the twenty parameter values of LODF-20 as starting points. Application
of the algorithm using 100 different random starting values 10 times per sample, resulted in
the program achieving results which varied less than 0.05 lod units in 99 out of 100 samples.
After confirming that the empirical distributions were essentially the same for 20 random
starting values and for 1000 random starting values (Kolmogorov-Smirov test), we used 20
random starting points for the simulation so that the required computation time was feasible.

The program “MLOD” that we have developed to calculate LOD-M for a given data set of n
nuclear families allows for an arbitrary number of random starting points and is available at
no cost at www.ams.sunysb.edu/~nmendell/mlod

Null Distributions
We obtained the empirical null distributions for LOD-F2, LOD-F20 and LOD-F20AP through
simulation of 8,000 data sets of n=200 families with k=4 offspring per family (4,000 with single
ascertainment and 4,000 with double ascertainment). We fit the cumulative distribution

 proposed by Ulgen (2004) to the results obtained for each of
the partially maximized LODS. We estimated π, μ, and σ using proportions of LOD values
equal to 0.0 (p), the mean (m) and the standard deviation (s) of the non-zero values of the cube
root of the maximum LODS, respectively.

The null distribution for LOD-M proposed in Ulgen et al. (2004), LOD-M

, was used to obtain critical values for LOD-M. A 50:50
mixture distribution of χ2

0 and χ2
1 was used to obtain the critical values for LOD-C (Ott,

1974).

Power comparisons
The power of an α level test based on each of the maximum LOD statistics (given in Table 1)
was estimated for each of the generating genetic parameter values (in Table 2) as the relative
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frequency in 1000 simulated data sets in which the maximum LOD score exceeded its α level
critical value (for α=0.05, 0.01, 0.0001).

We compared the power of the maximum LOD score statistics pairwise (for each genetic
parameter value and ascertainment method) using McNemar tests at the 0.05 level. We also
obtained ELODs of adjusted maximum LOD score statistics. We estimated the ratio of the
power of each of the fully and partially maximized LODs relative to the power of LOD-C for
each of the genetic parameter values considered.

Results
Null distributions obtained through simulation

The null distributions observed for the data generated using single and double ascertainment
were not significantly different based on a Kolmogorov-Smirov test. Therefore, we combined
the data sets and report parameters for a single null distribution for each of the LOD statistics.
The resulting null distribution parameter values and critical values are summarized in Table
3. The 0.0001 level critical values for LOD-F2 and LOD-F20 are estimated to equal 3.1 and
3.7, respectively. The corresponding critical value for LOD-F20AP is 3.9. The critical value of
LOD-M based on the null distribution proposed by Ulgen et al. (2004) equals 4.6 for α=0.0001.

Power comparison using the critical values from approximated null distributions
We next used the critical values in Table 3 to estimate the power of the maximized LOD scores
for each of the 9 generating genetic parameter values in Table 2 (N=1000 samples for each
parameter value). Table 4 reports the observed power values corresponding to three type I error
values (0.05, 0.01, 0.0001) for the maximized LOD scores and the LOD-C score for the data
generated using single ascertainment. Table 4 also presents the “adjusted” ELOD values of
these maximum LOD scores for each generating genetic parameter value. The adjustment for
each ELOD (subtracted from each ELOD) was calculated as the 0.0001 level critical value
minus 3.0 (the 0.0001 critical value for LOD-C). Thus the adjusted ELODs were obtained by
subtracting 0.11, 0.68, 0.91 and 1.61 from the ELODS for LOD-F2, LOD-F20, LOD-F20AP
and LOD-M, respectively.

Pairwise power comparisons of the maximum LOD score statistics using the McNemar test at
the 0.05 level provided rankings of the four maximum LOD statistics (‘1’ denoting the most
powerful). These ranks are shown in Table 4 (superscripts) for the 0.0001 level tests.
Examination of the ranks shows that, with the exception of D100 and D100-Q10, the power
values of LOD-F2, LOD-F20 and LOD-F20AP were significantly greater than LOD-M for all
genetic parameter values with a zero phenocopy rate. For D100 and D100-Q10, the power
values of LOD-M were the same as or greater than LOD-F2. However, LOD-F20AP was
essentially as powerful as either LOD-F2 or LOD-F20 for all of these zero phenocopy rate
situations. Further, power values of LOD-M and LOD-F20AP were significantly greater than
those obtained for LOD-F20 for the data generated using non-zero phenocopy rates (D100-
P10, D90-P05, I80-P05). The power of LOD-F20AP was slightly higher or the same as LOD-
M for all three of these models. Results based on adjusted ELODs for each of the maximum
LOD scores were consistent with the findings on the power values.

The ranking of the maximum LODs obtained for the simulations under the double
ascertainment method were essentially the same as those described above for the single
ascertainment method.

The relative power of LOD-M and each of the partially maximized LOD scores was then
calculated as the ratio of the power of the maximized LOD divided by the power of LOD-C.
These relative power values are plotted against the power of LOD-C in Figures 1a, 1b, 1c, and
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1d. (Figure 1). The varying power values are obtained by varying the Type I error. From the
plotted graphs, we observed that the ratio is not constant across the power values of LOD-C
and is lower for the lower power values of LOD-C.

We observe from Figure 1a that the ratio of the power of LOD-M to the power of LOD-C is
essentially the same for all generating parameter values. For example, at about 60% power for
LOD-C, the ratio of power of LOD-M to the power of LOD-C equals the 0.7 regardless of
genetic parameter value. However, in Figure 1b we see that the corresponding ratios for LODF2
when LOD-C has 60% power equals 0.9 for generating parameter value ‘A50’, 0.6 for
generating parameter value D100 and about 0.3 for generating parameter value ‘D100-P10’.
LOD-F20 showed the similar large differences in relative power associated with the generating
parameter value as LOD-F2 (Figure 1c). LOD-F20AP (Figure 1d) shows a lot less dependence
on the generating parameter value than LOD-F2 and LOD-F20. This indicates that the power
loss of LOD-F2 and LOD-F20 are highly dependent on the actual parameter values,
LODF-20AP is slightly less dependent whereas the power loss of LOD-M appears to be
independent of the true values of the genetic parameters.

DISCUSSION
Our results show that two factors affect the power of partially maximized LOD score statistics.
The first factor is the extent to which the candidate parameter values depart from those of the
generating genetic model. The second factor is the magnitude of the increase in the critical
value of the test statistic as the number of genetic parameter values used in the maximizing
process increases. This second factor affects the power of the fully maximized LOD score,
LOD-M, as well as the partially maximized LOD score statistics, but the magnitude of the
effect is much greater for LOD-M than for the other scores. LOD-M requires an increase of
1.6 lod units. In contrast, the increase in the critical value compared with LOD-C at α=0.0001
is quite small, 0.1 lod units, for LOD-F2, and gets larger for LOD-F20 and LOD-F20AP , 0.7
lod units and 0.9 lod units, respectively.

The genetic generating parameter values corresponding to phenocopy models (D100-P10,
D90-P05 and I80-P05) and incomplete dominance (A50 and I80-P05) are most relevant for
evaluating the effect of large departures of parameter values from analysis values. These results
are also particularly relevant to complex diseases involving several genes and non-genetic
factors in which a sizable proportion of affected individuals will not have the disease
predisposing allele.

We considered the D100, D80, R100 and R80 parameter values in this study because the same
generating parameter values were used by other investigators to incorporate the effects of
heterogeneity (Greenberg et al., 1998, Abreu et al., 1999). The “D100-Q10” parameter value
was considered in order to estimate the effect of misspecification of gene frequency on the
power of partially maximized LOD scores.

The results suggest that partially maximised LOD scores based on 20 values (LOD-F20 and
LOD-F20AP) have greater power than LOD-F2 whenever the true genetic parameter values
depart substantially from the two LOD-F2 analysis values. For example, LOD-F20 is more
powerful than LOD-F2 for the D100 generating parameter value, because the D100 generating
parameter value is not included in the LOD-F2 calculation. More interestingly, LOD-M is more
powerful (at the α=0.0001 level) than the maximum LOD scores based only on zero phenocopy
values (LOD-F2 and LOD-F20) whenever there are phenocopies, even when f0 equals 0.1.
This finding suggests that the maximum LOD is more sensitive to differences between the
analysis values of f0 and the true value of f0 than it is to the corresponding difference for f2.
Since the parameter f0 represents one dimension of the four-dimensional parameter space, the
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partially maximized LOD-F2 and LOD-F20 may not pick up the varying signal generated by
the f0 dimension.

The LOD-F20AP statistic was the most powerful for one of genetic parameter values that
resulted in non-zero phenocopy rates and close in power to LOD-M for the other two non-zero
phenocopy rate parameter values. The LOD-F20AP statistic was also more powerful than
LODM for genetic parameter values with zero phenocopy rates and genetic heterogeneity.
Thus, for the genetic parameter values considered in this study, the performance of LOD-
F20AP yielded the best or close to the best power overall.

Finally, we observed that the power of LOD-M relative to LOD-C is largely unaffected by the
genetic generating parameter values whereas the relative power of the partially maximized
LODs is substantially more sensitive to the genetic generating parameter values. Thus, a
nonsignificant finding based on LOD-M is not going to be due to using the wrong set of
parameter values in the analysis. On the other hand, a nonsignificant finding based on LOD-
M can be a result of the required inflation of the critical value.

This study has several limitations. First, we did not simulate under a realistic heterogeneity
model or an epistatic model. Second, we limited our pedigree structure to nuclear families of
uniform size and simulated samples in which every family had completely informative marker
information (both parents typed and heterozygous for different marker alleles). Third, we did
not consider the effects of genotyping or diagnostic errors.

We anticipate that larger pedigrees would result in greater power for all of the maximum LOD
scores whereas allowing for missing marker data and homozygous parents would lower power
of these maximum LOD scores. We conjecture that the power ranking of these LOD score
statistics is unlikely to be substantially affected by missing marker data and homozygous
parents.

A major contribution of this study is that our simulations have identified situations in which
LOD-M performs the same or better than some partially maximized LOD statistics. This
encouraging result was unexpected, making the finding all the more meaningful (Elston,
1989).

The null distribution values may vary slightly from the values we used, depending on sample
sizes, family structures and possibly, the genetic generating parameter values. Nevertheless,
the values given here seem to be accurate estimates of the relative ranking of the critical values
of these maximum LOD scores. We were surprised, however, to observe in our simulation,
that two partially maximized LOD scores based on the same number of analysis values, LOD-
F20 and LOD-F20P, differ in null distribution. The implication is that the null distribution
needs to be determined through simulation when using a partially maximized LOD score if the
genetic parameter set differs from those of LOD-F2, LOD-F20 and LOD-F20AP.

To conclude, our guidelines to investigators based on these simulations are as follows. (1)
Power is optimized by using LOD-F20AP for linkage analyses of complex diseases and/or traits
with completely unknown genetic parameter values. LOD-M can also be used and will result
in the same or little change in power. (2) For simple monogenic traits with no phenocopies and
reduced penetrance, power is optimized by LOD-F2. (3) For monogenic traits that may have
full penetrance, LOD-F20AP and LOD-F20 have a slight advantage over LOD-F2. These
guidelines apply only to the specific situations simulated by this study -- a sample of nuclear
families that are all approximately the equal in size, and obtained through either single or double
ascertainment.
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Figure 1. Ratio of the power of LOD-M, LOD-F2, LOD-F20 and LOD-F20AP to the power of LOD-
C, for three generating models
The ratio of power is obtained using the critical values for LOD-C and for maximum LOD
scores corresponding to the same Type I error varying from 0.5 to 10-7.
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Table 1
Genetic parameter values used for the five maximum LOD score statistics

LOD scores Genetic parameter values in maximization (in the order of {q,f0,f1,f2})*

LOD-C φc ={qc,, fc0, fc1,fc2} ; true genetic parameter vector for φ
LOD-F2 φ1,F2 ={0.01,0.0, 0.0, 0.5}, φ2,F-2={0.01,0.0, 0.5, 0.5}
LOD-F20 φi,F20 = {0.01, 0.0, 0.0, 0.1×i} for i=1, …, 10 ; {0.01, 0.0, 0.1 (i—10) , 0.1×(i—10)} for i=11, …, 20
LOD-F20AP φi,F20AP={0.01, 0.0, 0.0, 0.25×i} for i=1, …, 4; {0.01, 0.0, 0.25×(i—4), 0.25×(i—4)} for i=5, …,8;

0.01, 0.1, 0.1, 0.25×(i—8)} for i=9, …, 12; {0.01, 0.1, 0.25×(i—12) , 0.25×(i—12)} for i=13, …,16;
{0.01, 0.0, 0.5, 1.0}, {0.01, 0.1, 0.55, 1.0}, {0.01, 0.0, 0.3, 0.6}, {0.01, 0.1, 0.35, 0.6} for i=17, …, 20

LOD-M 0 < q ≤ 0.5, 0≤f0≤f1≤f2≤1

*
All LOD scores were also maximized over θ on [0, 0.5].
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