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Abstract

Background: RNA isolation and purification steps greatly influence the results of gene expression
profiling. There are two commercially available products for whole blood RNA collection,
PAXgene™ and Tempus™ blood collection tubes, and each comes with their own RNA
purification method. In both systems the blood is immediately lysed when collected into the tube
and RNA stabilized using proprietary reagents. Both systems enable minimal blood handling
procedures thus minimizing the risk of inducing changes in gene expression through blood handling
or processing. Because the RNA purification steps could influence the total RNA pool, we
examined the impact of RNA isolation, using the PAXgene™ or Tempus™ method, on gene
expression profiles.

Results: Using microarrays as readout of RNA from stimulated whole blood we found a common
set of expressed transcripts in RNA samples from either PAXgene™ or Tempus™. However, we
also found several to be uniquely expressed depending on the type of collection tube, suggesting
that RNA purification methods impact results of differential gene expression profiling. Specifically,
transcripts for several known PHA-inducible genes, including IFNy, ILI3, IL2, IL3, and IL4 were
found to be upregulated in stimulated vs. control samples when RNA was isolated using the ABI
Tempus™ method, but not using the PAXgene™ method (p < 0.0, FDR corrected). Sequenom
Quantiative Gene Expression (QGE) (SanDiego, CA) measures confirmed IL2, IL4 and IFNy up-
regulation in Tempus™ purified RNA from PHA stimulated cells while only IL2 was up-regulated
using PAXgene™ purified (p < 0.05).

Conclusion: Here, we demonstrate that peripheral blood RNA isolation methods can critically
impact differential expression results, particularly in the clinical setting where fold-change
differences are typically small and there is inherent variability within biological cohorts. A modified
method based upon the Tempus™ system was found to provide high yield, good post-hybridization
array quality, low variability in expression measures and was shown to produce differential
expression results consistent with the predicted immunologic effects of PHA stimulation.

Page 1 of 10

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2164/9/474
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18847473
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genomics 2008, 9:474

Background

Microarrays have rapidly become the assay of choice for
clinical investigators wanting to measure gene expression,
owing to their high-throughput and relative ease of use. As
with any assay, it is critical that experimental variance is
minimized in order to permit measurement of true bio-
logical variance. In clinical microarray studies, the sources
of experimental variance can be considerable. While a
range of corrections exist to detect and correct for variabil-
ity introduced during hybridization and due to chip qual-
ity, little attention has been paid to the impact of
specimen collection, handling and processing on the
resulting gene expression measures.

For immunological studies, peripheral blood is com-
monly used in microarray experiments, as it is the most
easily obtained source of lymphocytes, granulocytes, and
other cells that may provide insight into immune func-
tion. Historically, gradient density-based methods have
been used to purify white blood cells from peripheral
blood. However, it is known that, within minutes of col-
lection, peripheral blood gene expression profiles change
significantly due to transcript induction and transcript
degradation[1], and it is almost certain that the purifica-
tion process introduces further changes in expressed tran-
scripts.

To address these concerns, RNA whole blood collection
tubes have been developed that have the considerable
advantage of lysing whole blood at the time of collection,
while simultaneously stabilizing RNA for later purifica-
tion. The PAXgene™ Whole Blood RNA isolation system
contains a proprietary solution that reduces RNA degrada-
tion and transcript induction upon peripheral blood col-
lection [2,3]. Using the Qiagen total RNA isolation
method, this system has been evaluated for clinical appli-
cations using RT-PCR[4] and Affymetrix microarrays [3,5];
in some cases it has shown a lack of concordance in gene
expression with other isolation methods[2,6,7]. The Tem-
pus™ Whole Blood RNA isolation system offers an alterna-
tive approach to peripheral blood RNA isolation, again
using a proprietary solution to directly lyse whole blood
and stabilize RNA. There have, as yet, been no reports of
the efficiency or accuracy of the Tempus™ Whole Blood
RNA isolation system or comparisons to other methods.

In this report, we compare these two whole blood RNA
purification methods for use in microarray experiments to
measure immune response gene expression, and show
that the choice of RNA purification method can have sig-
nificant implications. Using phytohemagglutinin (PHA)
stimulated whole blood as a test case, we found that RNA
yield and hybridization quality indicators were better for
RNA isolated using the Tempus™ RNA purification
method. While PHA induced a set of transcript expression
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changes detected in both Tempus™ and PAXgene™ sam-
ples, use of the Tempus system resulted in the identifica-
tion of a greater number of gene expression changes that
would be expected to result from PHA stimulation.

Results

RNA yield and hybridization quality indicators

RNA yield, RNA purity, and post-hybridization quality
indicators were compared for specimens collected directly
into the two whole blood RNA isolation system tubes.
Slightly higher mean RNA yields were observed in sam-
ples isolated using the Tempus™ system compared to PAX-
gene™ (5.6 pg/ml and 5.01 pg/ml, respectively, Fig. 1),
with Tempus™ samples showing greater variability. RNA
yield was adjusted for blood collection starting volumes,
which was 3 ml for Tempus ™ and 2.5 ml for PAXgene™.
Tempus™-collected specimens yielded a higher purity of
RNA, based on higher OD,,5oratios (Fig. 1) and higher
"Percent Present Calls", an indicator of the number of
transcripts reliably detected (Fig. 1). In addition, RNA iso-
lated by the Tempus™ methodology showed decreased
GAPDH 3'/5' ratios. This is an indicator for RNA degrada-
tion where cRNA synthesis is 3' biased, hence the more
degraded the RNA the less signal for probes detecting the
5' end of transcripts (Fig. 1).

Controlling for Li Heparin

We aimed to compare gene expression profiles of periph-
eral blood RNA from cells stimulated by phytohemagglu-
tinin (PHA), a mitogen known to induce expression of
immune activation transcripts including those for IL-2, IL-
4, and IFNy[8]. However, because blood collection with
either Tempus™ or PAXgene™ systems results in immedi-
ate lysis of peripheral blood cells, blood had to be col-
lected first and subsequently PHA-stimulated in Li
Heparin tubes (Becton-Dickenson, San Jose, California),
prior to transfer to the test systems.

To control for the effect of Li Heparin tube collection, we
performed an initial comparison of 5 healthy control
samples drawn directly in PAXgene™ or Tempus™ tubes vs.
the same 5 healthy control samples drawn in Li Heparin
tubes with no PHA stimulation. RNAs were hybridized to
the HG-U133 2.0 Plus Affymetrix GeneChip® microarray.
Only two transcripts, for the B-cell translocation transcript
BTG-1, were identified as down-regulated in samples col-
lected with Li Heparin tubes, compared to those collected
in Tempus tubes. Interestingly, just one transcript was up-
regulated using PAXgene™ tubes, corresponding to one of
the transcripts up-regulated in the Tempus™ system,
BTG1. These results suggest that collection of samples into
Li Heparin tubes prior to PHA stimulation had a minimal
effect on differential expression and would have negligi-
ble effect on the interpretation of differences between the
two tube types.
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Differences in RNA quality and yield between PAXgene™ and Tempus™. The tempus system has higher mean
yields, improved RNA purity based on OD 260/230 ratios, less degradation based on GAPDH 3'/5 ratios, and a higher number

of expressed transcripts based on Percent Present Calls.

Detection of transcriptional response to PHA stimulation
To compare PAXgene™ and Tempus™ tubes, whole blood
samples collected in Li Heparin tubes from 7 healthy con-
trols were split into PHA-stimulated or unstimulated alig-
uots. After 3 hrs, samples were transferred to each
respective RNA isolation system and hybridized to the
HG-U133 2.0 Plus Affymetrix GeneChip® microarray.

Hierarchical clustering of absolute expression levels, irre-
spective of gene function, showed that the primary sepa-
ration occurred between stimulated vs. unstimulated
samples (as opposed to different sample collection sys-

tems). The clustering was generated on the 28 individual
samples using the 1,266 differentially expressed tran-
scripts that were either up- or down-regulated by PHA-
stimulation (Fig. 2A). Stimulation condition forms a pri-
mary division, followed by a secondary split based on
PAXgene™ or Tempus™ collection. However, hierarchical
clustering of the change in expression level between non-
stimulated and stimulated samples per participant
showed a fair degree of consistency across PAXgene™ and
Tempus™ systems, as illustrated in Figure 2B. In order to
determine how use of either platform influences measures
of gene expression of the transcripts of interest, a break-
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Figure 2

A Hierarchical clustering of individual samples for the 1,338 transcripts generated from a union set of tran-
scripts statistically significant as either up- or down-regulated using Tempus™ or PAXgene™ tubes. PHA stim-
ulation is associated with the primary segregation of samples (Blue and Gold Bar), with RNA collection tube as a secondary
grouping (Pink and Teal). B. Hierarchical clustering of fold change values within a participant/tube condition for PHA stimula-
tion vs. no PHA stimulation shows consistent grouping by participant despite difference in collection tubes (Note color bars by
participant). C. Venn diagram for comparisons of 3 hr PHA stimulation vs. 3 hrs with no stimulation. Substantial up-regulated
transcripts using Tempus™ compared to PAXgene™, and a greater number of down-regulated transcripts using PAXgene™
compared to Tempus™.
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down of overlap and concordance of up-regulated and
down-regulated transcripts for each platform was per-
formed.

PHA-stimulation resulted in 538 transcripts being
detected as upregulated, and 392 downregulated when
the Tempus™ system was used. For the PAXgene™ system,
400 were found to be upregulated and 539 downregulated
(p < 0.01, FDR) by PHA stimulation (Fig. 2C). Among all
of these, 335 upregulated (56% of the union set) and 268
downregulated transcripts (40% of the union set) were
common between the two platforms. Among the 203
upregulated immune function transcripts uniquely identi-
fied by the Tempus™ Whole Blood RNA isolation system
were 1L-2, IL-3, IL-4, IFNy, STAT3, IRF4, IL-21R, CLA4,
CD44, BCL6 and STAT1. In contrast, the 65 upregulated
immune function transcripts uniquely identified by the
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PAXgene™ Whole Blood RNA isolation system included
IL-2RA, BCL6 (alternate transcript), IL-1RN, CCL18, and
CD48 (Additional file 1). Expression profiles of several
transcripts known to be up-regulated by PHA such as IL-2,
IL-3, IL-4, and IFNy [9] are illustrated for all 7 subjects in
Fig 3A. Samples isolated using PAXgene™ preparation
resulted in 271 transcripts uniquely identified as down-
regulated, while Tempus™ tube preparation resulted in
124 transcripts not identified as down-regulated by PAX-
gene™ (Fig. 2A, B, C) (Additional file 2).

To validate differential expression measured by microar-
ray, real time PCR was performed on four of the seven
samples that had sufficient RNA remaining. Using the
Sequenom Quantitative Gene Expression (QGE) plat-
form, eighteen immune function transcripts were
assessed, including IL-2, IL-4, IENy, controls and others
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Differential expression of individual subjects for four transcripts known to be differentially expressed upon
addition of PHA: IL2, IL4, IFNG, and IL3. Using the Tempus ABI system, all four transcripts are identified as up-regulated
by PHA stimulation, with an FDR-adjusted p value < 0.01 and a fold change > 2. These four transcripts are not identified using

the same criteria from data generated using PAX system.
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not known to be regulated by PHA. Other transcripts
assessed include: TGFB, P19, Perforin, MIG, IP10, IL10,
GB, FOXP3, CXCR3, CTLA4, CTGF, CD3, CD25, CD20,
and CD103. Transcripts for IFNy, IL-2, IL-4 were statisti-
cally significant for differential expression between un-
stimulated and stimulated samples using the Tempus™
system (p < 0.05). Samples prepared using the PAXgene™
system exhibited greater variability in transcript levels in
both unstimulated and stimulated conditions, thus trend-
ing towards upregulation for IL-2, IL-4, and IFNy, but not
statistically significant (fig 4).

Discussion

While there are an increasing number of studies using
microarrays and/or quantitative real time PCR as immune
monitoring tools in clinical trials, there have been few
studies assessing the contribution of the RNA purification
method to the expressed gene profile. Here, we have dem-
onstrated that the choice of RNA preparation method can
have significant influence on resulting gene expression
measures.

Using PHA-stimulated versus unstimulated whole blood
as a model, we anticipated that a large number of tran-
scripts would be differentially expressed, given that PHA is
global activator of human peripheral T lymphocytes and
has been shown to induce a number of immune response
transcripts, including several cytokines. Indeed, microar-
ray analysis revealed that PHA altered the expression of a
large number of transcripts, regardless of whether RNA
purification was performed by Tempus™ or PAXgene™
methods. While both methods revealed a common set of
376 transcripts whose expression was altered by PHA-
stimulation, Tempus™-prepared specimens revealed an
additional 189 up-regulated transcripts that were not
detected in PAXgene™-prepared specimens, many of
which fall into the category of immune response or cellu-
lar proliferation transcripts. Notable in this group are
immune response transcripts such as the cytokines IL-2,
IL-4 and IFNy, which are known to be induced by PHA[7].
Transcriptional changes could not be attributed to differ-
ences in cell numbers since 3 hours of stimulation by PHA
is not long enough to increase cell numbers.

Such differences in expression results may reflect differ-
ences in quality of the purified RNA: in these experiments,
use of the PAXgene™ resulted in poorer RNA quality and
post-hybridization metrics compared to specimens pre-
pared using the Tempus system. In addition, RNA yields,
on average, were higher using the Tempus™ system, as
were microarray quality assurance measures such as RNA
Purity and Percent Present Calls.

In human gene expression profile studies, the combina-
tion of biological variation as well as technical variation
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from sample to sample plays a greater role than in many
other experimental settings. This is primarily due to the
fact that there is no ability to repeat a condition and that
it is not possible to provide technical replicates for each
condition, meaning that each individual patient for a
given condition or treatment is treated as a biological
"replicate”. In this case, the differential expression
between unstimulated and PHA-stimulated transcripts
with respect to fold-change across patients was more vari-
able with PAXgene™ RNA. Mean expression estimates for
immune function transcripts most often had higher
standard errors that led to higher p-values using the PAX-
gene™ system.

Conclusion

Overall these findings have important implications for the
use of gene expression profiling to monitor immune sys-
tem changes in humans. Given the biological variation of
humans and the differences in sample handling inherent
in multicenter clinical trials, controlled sample processing
and quality is essential to ensure valid results. There may
be advantages and disadvantages to each platform based
on issues such as blood volume, cost, or need for automa-
tion. These studies demonstrate that the choice of plat-
form, and its associated methods, is important for
defining expressed transcripts, and that reproducibility
and quality in RNA preparation are critical to define
changes in expressed gene profiles that meet the statistical
rigor necessary for interpretation and validation of signa-
tures for clinical trial monitoring.

Methods

Study Design and Blood Collection

Our objective was to assess the effect of two available
blood collection systems with regard to differential gene
expression in clinical samples. The primary comparison
was of unstimulated peripheral blood samples with those
stimulated ex vivo with phytohemagglutinin (PHA)
(Remel, Kansas, P/N HA16/30852801). Both PAXgene™
and Tempus™ whole blood collection tubes were used in
this step. Since cells are immediately lysed upon collec-
tion with either PAXgene™ or Tempus™, blood had to be
initially drawn in Li Heparin tubes (P/N 367880, BD,
Franklin Lakes, NJ) prior to transfer into either system. A
secondary comparison was made between samples drawn
directly in both collection systems versus. Samples were
drawn in Li Heparin and then immediately transferred
into their respective tube types, to determine if Li Heparin
adversely effected gene expression on its own.

For these comparisons, whole blood was collected from
seven healthy individuals who provided informed con-
sent, under the approval of the Institutional Review Board
of Brigham and Women's Hospital. A total of 110 mL of
peripheral blood was collected from each participant
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PHA

Sequenom QGE assay: Tempus™ appears to have slightly higher differential expression estimates than PAX-
gene™ for IL2, IL4 and IFNG. IL4, IFNy, were statistically significant for Tempus ™ samples (P < 0.05). Both Tempus™

and PAXgene™ systems show IL2 as up-regulated (p < 0.05).
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using Li Heparin tubes. Whole blood from individual par-
ticipants was pooled into a 200 mL plastic container and
a set of seven aliquots from the pool was incubated for 3
hrs at room temperature with no stimulant added; a sec-
ond set of seven aliquots was stimulated with 25 pg/mL of
PHA and incubated for 3 hrs. After incubation, samples
were subsequently transferred to either PAXgene™ or Tem-
pus™ tubes. To assess whether stimulation by PHA was
successful, FACS detection for IFNy (BD, Franklin Lakes,
NJ) was performed. Samples from five of the seven sub-
jects were drawn directly into PAXgene™ and Tempus™
tubes for assessing the effect of Li Heparin alone as
described above. In total, 48 samples were collected and
hybridized as part of the analysis.

RNA Isolation and quality assessment

RNA was extracted at the ITN Central Nucleic Acid Isola-
tion Core Facility in Pittsburgh, PA according to the ITN-
modified method for the Tempus™ system. The PAXgene™
Whole Blood RNA samples were processed using the PAX-
gene™ Blood RNA Kit based on the Qiagen method for
column purification of nucleic acids (Part Number
762134, Qiagen). Whole blood samples collected into
Tempus™ vacuette were extracted using ABI Prism™ 6100
Nucleic Acid PrepStation™ and using Tempus™ extraction
reagents. Samples were frozen immediately at -70°C upon
collection. Extraction steps included addition of PBS
buffer to compensate for short blood sample draws, a
wash step with Purification Wash Solution 1 two times at
80% vacuum for 500 seconds, followed by a single wash-
ing step using Purification Wash Solution 2 at 80% vac-
uum for 120 seconds. An extra vacuum step was
performed to eliminate Purification Wash Solution 2
from the filter. Upon changing the reservoirs on the ABI
6100 PrepStation™, three more washing steps were per-
formed using Purification Wash Solution 2 at 80% vac-
uum for 120 seconds. At the elution step, adapter plates
were changed one extra time to ensure the purity of the
eluted RNA. Eluted RNA was then concentrated using the
Microcon YM-100 (Millipore, Billerica, MA). RNA purity
and yield were assessed prior to hybridization using the
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA) [10-12]

Processing of Microarrays and MassARRAY Quantitative
Gene Expression (QGE)

The ITN Central Microarray Facility (Expression Analysis,
Durham, NC) performed all hybridizations with the
Affymetrix HG-U133 2.0 Plus microarray. All processing
was done according to manufacturer's instructions.
Globin reduction was performed followed by cRNA target
amplification using the Affymetrix In-vitro Transcription
(IVT) Kit. Standard pre- and post-hybridization quality
control metrics were used to assess sample processing and
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hybridization quality. Microarrays have been deposited
within GEO (Accession number GSE12711).

Confirmation by MassARRAY Quantitative Gene
Expression (QGE) Analysis

Multiplexed primer and competitive template designs
were created using the MassARRAY QGE Assay Design
software v1.0 (Sequenom, San Diego, CA) for random
hexamer priming, such that at least one PCR primer
spanned an exonic boundary per each transcript assayed.
The 20 gene panel assayed for this study was designed as
a single 20-plex reaction.

Copy number determination for each transcript was con-
ducted using real-time competitive PCR coupled with
product resolution via Matrix-Assisted Laser Desorption/
Ionization Mass Spectrometry (MassARRAY QGE, Seque-
nom, San Diego, CA.), as previously described [13]. Prod-
ucts were resolved on a linear MALDI-TOF mass
spectrometer (MassARRAY Compact, Sequenom, San
Diego, CA.). Signal acquisition, allele assignment and
peak area integration per spectrum were conducted with
the MassARRAY RT Workstation v3.4 (Sequenom, San
Diego, CA). Data was analyzed using MassARRAY QGE
Analyzer v3.4 (Sequenom, San Diego, CA.) with copy
numbers for each transcript per sample determined based
on the EC50 of standard curve titrations of known com-
petitor amounts per assay vs. a fixed amount of cDNA
template.

Normalization of copy numbers between samples for the
different assays was conducted using a multiplexed set of
ten well-characterized human housekeeping (normaliza-
tion) transcripts plus an 18s RNA assay and geNorm soft-
ware. Normalization factors per sample were calculated
using the geometric mean of the most stable combination
of these normalization assays, determined by the measure
of their pairwise variation as calculated by geNorm[14].

Statistical Analysis

Microarray normalization and preprocessing was per-
formed as follows: Log-transformed Affymetrix microar-
ray intensity values were processed using the 'threestep'
function in the R/Bioconductor affyPLM package[14];
background correction was accomplished using the
MASIM method (MASS5 location-dependent background
correction followed by subtraction of ideal mismatch
from perfect match); normalization was performed using
the scaling method, to adjust the range of expression
intensities across arrays; and summarization used the
Tukey Biweight method to estimate a robust mean of mul-
tiple probe intensities.

The normalized data from the experiments were fit into

linear models using the Bioconductor package
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limma[15]. The primary analysis comparing differential
expression was a 2 x 2 factorial design with tube type
(Tempus™, PAXgene™) and PHA stimulation (stimula-
tion, no stimulation) as factors. The analysis to assess the
effect of Li Heparin tube collection was a 2 x 2 factorial
design using two factors: tube type (Tempus™, PAXgene™)
and initial blood collection method (direct blood draw
into Tempus™ or PAXgene™ tubes, collection in Li
heparin).

Pair-wise comparisons of interest were performed using
moderated t-statistics to test for significant differential
expression. The Benjamini-Hochberg multiple compari-
son adjustment|[16] was used to control false discovery
rate (FDR) at the .01 level. Transcripts meeting this statis-
tical threshold and showing a fold change > 2 were con-
sidered differentially expressed. Hierarchical clustering
was performed using Agilent GeneSpring GX.

Sequenom QGE analysis was performed using the Mann-
Whitney test to identify differentially expressed transcripts
between samples with and without PHA stimulation
using Tempus™ and PAX platforms respectively.
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Tempus ABI tubeABI-p value p-value for Tempus ABI tube, FDR correct-
edPAX-log2ratio log 2 ratios for PAXgene tube tubePAX-p value p-value
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