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Abstract
Motivation—DNA arrays permit rapid, large-scale screening for patterns of gene expression and
simultaneously yield the expression levels of thousands of genes for samples. The number of samples
is usually limited, and such datasets are very sparse in high-dimensional gene space. Furthermore,
most of the genes collected may not necessarily be of interest and uncertainty about which genes are
relevant makes it difficult to construct an informative gene space. Unsupervised empirical sample
pattern discovery and informative genes identification of such sparse high-dimensional datasets
present interesting but challenging problems.

Results—A new model called empirical sample pattern detection (ESPD) is proposed to delineate
pattern quality with informative genes. By integrating statistical metrics, data mining and machine
learning techniques, this model dynamically measures and manipulates the relationship between
samples and genes while conducting an iterative detection of informative space and the empirical
pattern. The performance of the proposed method with various array datasets is illustrated.

1 INTRODUCTION
DNA arrays provide simultaneous readouts for the expression levels of thousands of genes in
samples (DeRisi et al., 1996). Innovative techniques to efficiently and effectively analyze these
rapidly growing data are required, which will have a significant impact on the field of
bioinformatics.

The raw array images are transformed into gene expression matrices where the rows usually
represent genes and the columns represent samples. It is meaningful to cluster both genes and
samples in gene expression data (Brazma and Vilo, 2000). Co-expressed genes can be grouped
based on their expression patterns (Eisen et al., 1998) and in such gene-based clustering, the
genes are treated as the objects, while the The samples can be partitioned into homogeneous
groups and each group may correspond to a particular macroscopic phenotype, such as the
present or absent clinical syndromes or cancer types (Golub et al., 1999). Thus, sample-based
clustering regards the samples as the objects and the genes as the attributes. To group samples
to reveal their macroscopic phenotypes is regarded as the process of empirical sample pattern
detection.
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In typical array datasets, the volume of genes and the number of samples are very different,
e.g. 101–102 samples versus 103–104 genes. Gene- and sample-based methods therefore face
very different challenges. Techniques that are effective for gene-based clustering, e.g. CAST
(Ben-Dor et al., 1999), MST (Xu et al., 2002), HCS (Hartuv and Shamir, 2000), and CLICK
(Shamir and Sharan, 2000), are not necessarily adequate for analyzing samples.

The existing methods of grouping samples fall into two major categories: supervised analysis
and unsupervised analysis. The supervised approach assumes that phenotype information is
attached to the samples and that biological samples are labeled, e.g. as being diseased versus
normal. The major supervised analysis methods include the neighborhood analysis (Golub et
al., 1999), the support vector machine (Brown et al., 2000), the tree harvesting method (Hastie
et al., 2001), the decision tree method (Zhang et al., 2001), the genetic algorithm (Li et al.,
2001), the artificial neural networks (Khan et al., 2001), a variety of statistical approaches
(Jiang et al., 2001; Thomas et al., 2001) and rank-based methods (Park et al., 2001). In these
methods, a subset of samples is used as the training set to select a small percentage of
informative genes (around 50–200) which manifest the phenotype distinction of the training
samples: finally, the whole set of samples is classified based on the selected informative genes.

We will focus on unsupervised sample pattern detection which assumes no phenotype
information being assigned to any sample. Since the initial biological identification of sample
phenotypes has been slow, typically evolving through years of hypothesis-driven research,
automatically discovering sample pattern presents a significant contribution in array data
analysis (Golub et al., 1999). Unsupervised sample pattern detection is much more difficult
than supervised manner because the training set of samples, which can be utilized as a reference
to guide informative gene selection, is not available. Many mature statistical methods such as
t-test, Z-score (Thomas et al., 2001), and Markov filter (Xing and Karp, 2001) cannot be applied
without the phenotypes of samples being known in advance. Thus identifying informative
genes and empirical partition of samples become very challenging problems.

In this paper, we tackle the problem of unsupervised sample pattern detection by developing
a novel analysis model called empirical pattern detection (ESPD) which includes a series of
statistics-based metrics and iterative adjustment. We claim the following contributions.

• A formalized problem statement of ESPD of sparse high-dimensional datasets is
proposed. Major differences from traditional clustering or recent subspace clustering
problems are elaborated.

• A series of statistics-based metrics incorporated in unsupervised empirical pattern
discovery are introduced. These metrics delineate local pattern qualities to coordinate
between sample pattern discovery and informative genes selection.

• An iterative adjustment algorithm is presented to approach the optimal solution. The
method dynamically manipulates the relationship between samples and genes while
conducting an iterative adjustment to approximate the informative space and the
empirical pattern simultaneously.

• An extensive experimental evaluation over real datasets is presented. It shows that
our method is both effective and efficient and outperforms the existing methods.

The remainder of this paper is organized as follows. Section 2 gives the problem description
and the pattern quality metrics while the algorithm is presented in Section 3. Experimental
results appear in Section 4. The related work and concluding remarks are in Section 5.
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2 THEORY AND METHODS
2.1 Problem statement

Let  = {s1, s2, …, sm} be the set of samples and  = {g1, g2, …, gn} be the set of genes. The
data matrix can be represented as  = {wi,j |i = 1 ~ n, j = 1 ~ m}(n ≫ m), where wi,j corresponds
to the value of the sample sj on gene gi.

Problem—Given a data matrix  and the number of samples’ phenotypes , our goal is to
find  mutually exclusive groups of the samples matching their empirical phenotypes and to
find the set of genes which manifests the meaningful pattern.

Examples—Figure 1 is a simplistic illustration of the gene expression patterns in an array
dataset with three empirical phenotypes (  = 3), labeled as ‘Class 1’, ‘Class 2’ and ‘Class 3’.
The goal of analyzing such datasets is to discover these three classes of the samples and to
identify a set of genes that manifests this class structure. In Figure 1, genea and geneb show
the idealized expression patterns: there are no noise and the expression levels of the genes are
low for one class of samples, intermediate for another class and high for the third class.
Genec and gened include noise but the genes expression patterns are quite similar to genea and
geneb and the variance is relatively small. Because such genes provide ‘good’ information for
correctly grouping samples, they are regarded as informative genes. The gene expression
patterns of genee and genef are noisy, have high variance and cannot be used to distinguish
between sample classes. Genes with such patterns are called non-informative genes.

Definition 1: Each group of a partition of samples is called a base. The partition of samples
matching the empirical phenotypes of the samples is called samples’ empirical pattern. Thus
the empirical sample pattern is formed by  intra-similar and well-separated bases.

Definition 2: An informative gene is a gene which manifests empirical sample pattern. Thus,
each informative gene should display approximately invariant signals in each base and highly
differential signals for the samples in different bases. The whole set of informative genes is
called informative space.

Challenges—The real world applications are complex. The values within data matrices are
all unlabeled real numbers and an obvious boundary between informative genes and non-
informative genes is not readily accessible. The following two major reasons make it very hard
to detect the empirical sample pattern and informative space by unsupervised methods.

• The volume of genes is very large while the number of samples is very limited. No
distinct class structures of samples can be properly detected by the existing techniques
(e.g. density based approaches).

• Most of the genes collected are not informative. A small percentage <10% (Golub et
al., 1999) of genes that manifest phenotypic sample patterns are buried in a large
amount of noise. This makes it difficult to construct an informative space.

2.2 Statistics-based metrics
We use a series of statistics-based metrics to capture the pattern steadiness within each base
and dissimilarity between different bases to detect the empirical pattern and to search the
informative space.

Let Sy ⊆  be a base, Gx ⊆  be a subset of genes, and Mx,y = {wi,j| i ∈ Gx, j ∈ Sy} be the
corresponding sub-matrix with Sy projected on Gx.
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2.2.1 Intra-pattern-steadiness
Definition 3: The intra-pattern-steadiness of a base projected on a set of genes is measured by
the average row variance [indicated by ℛ (x, y)] of the corresponding sub-matrix.

The general formula is

(1)

where w̄i,Sy = (Σj∈Sy wi,j)/|Sy|, is the mean value of samples in Sy. The variance of each row
measures the variability of a given gene within the base. Low average row variance value
indicates that the expression of a group of genes is relatively invariant. Thus the lower the
average row variance, the stronger the pattern-steadiness exhibited by the gene group across
the samples in the base.

In Table 1, we compare the effect of average row variance with two typical local pattern
similarity metrics such as the residue (used by Yang et al., 2002) and mean squared residue
(used by Cheng and Church, 2000). Figure 2 shows two sets of genes over a base of six samples.
All above measurements are calculated on these two bases. The smaller the values of the
metrics, the more similar the genes. Both residue and mean squared residue strongly suggest
that the genes in Figure 2A are more similar to each other than the genes in Figure 2B. However,
the genes in Figure 2B display approximately invariant signals on the base and are more
informative than genes in Figure 2A for manifesting the empirical sample pattern. Only the
average row variance is adequate for intra-pattern-steadiness metric.

2.2.2 Inter-pattern-divergence—Definition 4. Inter-pattern-divergence of two different
bases (denoted as Sy and Sy′) projected on the same subset of genes (denoted as Gx ) is measured
by the average block distance [indicated by  (x, y, y′))] which is expressed by the following
formula:

(2)

where w̄i,Sy is the mean value of samples in Sy on gene i and w̄i, S′y is the mean value of samples
in S′y on gene i. The average block distance is normalized by |Gx| to avoid the possible bias
due to the volume of genes.

2.2.3 Pattern quality
Definition 5: The pattern quality of a sample partition which contains  bases ({Sy1, Sy2,…,
Sy

}) on a set of genes Gx is measured by the reciprocal of the accumulation of the pairwise square-
root of intra-pattern-steadiness divided by inter-pattern-divergence between each pair of
bases.

The formula for this pattern quality (Ω) is:
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(3)

where Sy ∩ Sy′ = ∅.

The purpose of pattern discovery is to identify the empirical pattern where the patterns inside
each base are steady and the divergence between each pair of bases is large. As indicated by
Equation 3, a large value of pattern quality is expected for qualifying empirical pattern and
informative genes.

Figure 3 shows three gene sets on the same set of samples of two bases, the horizontal axis
shows the samples. Table 2 gives the intra-pattern-steadiness, inter-pattern-divergence and
pattern quality measurements of the datasets shown in Figure 3. The dataset in Figure 3A
includes three genes which manifest the pattern reflected by the two bases. The dataset in Figure
3B includes all genes within (A) plus two more genes (g4 and g5) which show low variance
within each base. The new genes show less divergence between two bases so that they do not
manifest the pattern. The overall pattern quality therefore become lower, thus the two new
genes should not be included into the informative space. The dataset in Figure 3C is also
constructed from Figure 3A by adding two more genes (g6 and g7) which show both low
variance and large divergence. Table 2 shows the overall pattern quality become higher (from
14.27 to 15.35), thus the pattern became better by including them (g6 and g7) into the
informative space. Therefore the dataset in Figure 3C is the best among these three datasets
measured by pattern quality.

From these definitions, the problem of ESPD can be formalized as:

1. m samples  = {s1, s2,…, sm}, each measured by n-dimensional genes  = {g1, g2,…,
gn};

2. the number of phenotypes .

Output: A -partition of samples (empirical pattern) and a subset of genes (informative space)
such that the pattern quality (Ω) of the partition projected on the gene subset is maximized.

3 ALGORITHM
In general, the ESPD problem is NP-hard. An approach for obtaining a globally optimal
solution is to try every possible -partitions of the samples, identify corresponding informative
genes for each partition and then choose the best one by comparing the pattern quality values.
However, this method yields a very inefficient algorithm.

We will present an iterative pattern adjustment algorithm to approach the optimal solution. The
algorithm starts with a random partition (formed by  bases) of samples and a subset of genes
as the candidate of the informative space, then iteratively adjusts the partition and the gene set
toward the optimal pattern.

3.1 Preliminaries
The algorithm maintains two basic elements, a state and the corresponding adjustments. The
state of the algorithm describes the following items:

• A partition of samples {Sy1, Sy2,…,Sy
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}. Each Syj is a base which satisfies Syi∩Syj = ∅ (yi ≠ yj) and .

• A set of genes Gx ⊆  which is a candidate for the the informative space.

• The pattern quality (Ω) of the state is calculated based on the partition on Gx.

An adjustment is an indivisible action for a sample or a gene which can change the current
state of the algorithm. An adjustment of a state is one of the following:

• for a gene gi ∉Gx, insert gi into Gx ;

• for a gene gi ∈ Gx, remove gi from Gx ;

• for a sample sj ∈ Sy′, move si to base Sy″, where Sy′ ≠ Sy″.

To measure the effect of an adjustment to a state, we calculate the quality gain of the adjustment
as the change of the quality, i.e., ΔΩ = Ω′ − Ω, where Ω and Ω′ are the quality of the states
before and after the adjustment, respectively.

Now, the goal becomes, given a starting state, we try to apply a series of adjustments to reach
a state such that the pattern quality is maximized. The algorithm records a best state, in which
the highest pattern quality so far is achieved.

3.2 An iterative adjustment approach
The algorithm (the pseudo-code shown in Fig. 4) consists of two phases: initialization and
iterative adjustment. During the initialization phase, an initial state is randomly created and
the corresponding pattern quality (Ω) value is computed.

During each iteration of the adjustment phase, all genes and samples are examined one by one.
Each gene can be either inserted or removed from the current state. The corresponding quality
gain (ΔΩ) is calculated. For each sample, there are (  − 1) possible movements, i.e. the sample
can be moved to one of the other (  − 1) groups. The quality gain is calculated respectively.
The movement with the largest quality gain is chosen as the adjustment of the sample. The
adjustment of a gene or sample will be conducted if ΔΩ is positive. If ΔΩ is negative, the
adjustment will be conducted with a probability p = exp[ΔΩ/(Ω × T (i))].

The algorithm is sensitive to the order of gene and sample adjustments in each iteration. To
give every gene or sample a fair chance, all possible adjustments are randomized at the
beginning of each iteration.

The probability function p has two components. The first component, ΔΩ/Ω is the fractional
decrease of pattern quality. Greater fractional decrease results in less probability the adjustment
being performed. The second component, T (i), is a decreasing simulated annealing
(Kirkpatrick et al., 1983) function where i is the iteration number. When T (i) is large at the
beginning, p will be close to 1 and the adjustment has high probability to be conducted. As the
iteration goes on, T (i) becomes smaller and the probability p will also become less. In our
implementation, we set T (0) = 1 and T (i) = 1/(1 + i), which is a slow annealing function.

As indicated by Kirkpatrick et al. (1983), a simulated annealing search can reach the globally
optimal solution as long as the simulated annealing function is slow enough and there are
sufficient number of iterations. The upper bound of the number of iterations is the total number
of possible solutions. However, for real applications, we should consider the trade-off between
running time and optimal solution. Thus, we set the termination criterion as whenever in an
iteration, no positive adjustment can be obtained. Once the iteration stops, the partition of
samples and the candidate gene set in the best state will be output.
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The time complexity of this method is dominated by the iteration phase. The time to compute
Ω at the beginning is in O(m × |Gx |). In each iteration, the time complexity depends on the
calculation of Ω′ for the possible adjustments. Since Equations (1)–(3) are all accumulative,
we can simplify the formula by only computing the changed part of the metrics. It can be proved
that the time cost of computing Ω′ is O(m) for each gene, and O(m · n) for each sample. There
are n genes and m samples involved in each iteration. Therefore, the algorithm’s time
complexity is O(n · m2 · I), where I is the number of iterations.

4 EXPERIMENTS AND RESULTS
In this section, we will report an extensive performance evaluation of the proposed algorithm,
using various real-world gene expression datasets.

4.1 The array datasets
• The multiple sclerosis datasets—The multiple sclerosis (MS) dataset consists of

array-derived gene expression profiles that were provided by our collaborators in the
Department of Pharmaceutical Sciences and in the Department of Neurology. The
dataset contains two pair-wise group comparisons of interest. The first data subset,
‘MS versus Controls’, contains array data from 15 MS samples and 15 age and sex-
matched controls while the second subset is referred to as ‘MS-IFN’ because it
contains array data from 14 MS samples prior to and 24 h after interferon-β (IFN)
treatment. Each sample is measured over 4132 genes.

• The leukemia datasets—The leukemia datasets are based on a collection of leukemia
patient samples reported in Golub et al. (1999). It contains measurements
corresponding to acute lymphoblastic leukemia (ALL) and acute myeloid leukemia
(AML) samples from bone marrow and peripheral blood. Two matrices are involved:
one includes 38 samples (27 ALL versus 11 AML, denoted as G1), and the other
contains 34 samples (20 ALL versus 14 AML, denoted as G2). Each sample is
measured over 7129 genes.

• The hereditary breast cancer dataset—The hereditary breast cancer dataset is from
Hedenfalk et al. (2001). They reported on a microarray experiment concerning the
genetic basis of breast cancer. Tumors from 22 women were analyzed, three types of
samples are included in one data matrix: 7 of the women known to have the BRCA1
mutation, 8 known to have BRCA2 and 7 being labeled ‘Sporadics’. Each sample is
measured over 3226 genes.

• The SRBCT dataset—Khan et al. (2001) studied the diagnose of the small, round
blue-cell tumors (SRBCTs). SRBCTs include rhabdomosarcoma (RMS), Burkitt
lymphomas (BL, a subset of Hodgkin lymphoma), neuroblastoma (NB), and the
Ewing family of tumors (EWS). They published a dataset with 2308 genes and 63
samples. The 63 training samples include 23 EWS, 8 BL, 12 NB and 20 RMS.

The ground-truth of the partition, which includes such information as how many samples
belong to each class and the class label for each sample, is only used to evaluate the
experimental results.

4.2 Effectiveness evaluation
4.2.1 Partition of the samples—The Rand Index (Rand, 1971) between the ground-truth
of phenotype structure P of the samples and the partition result Q of an algorithm is adopted
to evaluate the effectiveness of the algorithm. Let a represent the number of pairs of samples
that are in the same cluster in P and in the same cluster in Q, b represent the number of pairs
of samples that are in the same cluster in P but not in the same cluster in Q, c be the number
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of pairs of samples that are in the same cluster in Q but not in the same cluster in P, and d be
the number of pairs of samples that are in different clusters in P and in different clusters in
Q. The Rand Index (Rand, 1971) is RI = (a + d)/(a + b + c + d). The Rand Index lies between
0 and 1. Higher values of the Rand Index indicate better performance of the algorithm.

To evaluate the performance of the proposed ESPD model, we first compare with some related
approaches on detecting macroscopic phenotypes of samples. Table 3 provides the results
obtained by applying our model and the related algorithms. All these algorithms were applied
to the matrices after data normalization. The normalization formula is: w′i,j = (wi,j − w̄i)/σi,
where w′i,j denotes the normalized value for gene i of sample j, wi,j represents the original
value, w̄i is the mean of the values for gene i over all samples, and σi is the SD of the ith gene.

The tools J-Express (Rhodes et al., 2001), CIT (Dysvik and Jonassen, 2001) and CLUSFAVOR
(Peterson, 2002) all provide multiple analysis methods such as hierarchical clustering, k-means,
self-organizing maps. We tried every method for each tool. Some tools (Rhodes et al., 2001;
Peterson, 2002) also provide the dimensionality reduction technique called principal
component analysis (PCA) to reduce the gene dimension before clustering the samples. For
these tools, we applied each clustering algorithm after running PCA on each dataset. For
CLUTO, the clustering method we applied is the graph-partitioning-based algorithm
(Schloegel and Karypis, 2000). The partition based clustering methods provided by the above
tools, δ-cluster method, and our iterative adjustment approach are heuristic rather than
deterministic, the results might be different in different executions. Thus for each tool or
approach, we run the experiments multiple times using all different methods and different
parameters and calculate the average Rand Index values. Therefore, the results shown in Table
3 are all average values.

Table 3 indicates that the ESPD model proposed in this paper consistently achieve clearly better
pattern detection results than the previously proposed methods. We analyze the results briefly
as follows (more discussion will be provide in Section 5.1). In clustering methods such as
hierarchical clustering, k-means, self-organizing maps, objects are partitioned based on the full
dimensional genes, the high percentage of irrelevant genes largely lower the performance. As
indicated by Yeung and Ruzzo (2000), the principal components in PCA do not necessarily
capture the class structure of the data. Therefore, the methods assisted by PCA can not
guarantee to improve the clustering results. The central idea of subspace clustering is different
from our empirical sample pattern detection. It is not surprising therefore that the δ-cluster
algorithm is not effective in identifying the sample pattern.

4.2.2 Selection of the informative genes—In the following, we evaluate the informative
genes identified by our approach on the Leukemia-G1 dataset and the SRBCT dataset.

Usually, there is no commonly accepted ground-truth on the informative genes. Even for the
dataset Leukemia-G1 which often serves as the benchmark for microarray analysis methods
(Siedow, 2001), different researchers identified different informative genes. Golub et al.
(1999) applied a supervised method, named neighborhood analysis, to select top 50 genes to
distinguish between ALL and AML classes. Thomas et al. (2001) used a statistical regression
modeling approach to identify another set of 50 informative genes within the same dataset.
Among these two 50-gene sets, 29 genes are overlapped.

Figure 5 shows the pattern detection result of Leukemia-G1 dataset by our model. The
algorithm selected 45 informative genes. In Figure 5, each column represents a sample, while
each row corresponds to an informative gene. Different grey degrees in the matrix indicates
the different expression levels. First 27 samples belong to ALL group while the rest 11 samples
belong to AML group which agree with the ground-truth of the sample partition. Figure 5
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shows that the top 19 genes distinguish ALL-AML phenotypes according to ‘on-off’ pattern
while the rest 26 genes follow ‘off-on’ pattern. Abbreviated gene description and accession
numbers for the probes on the array are provided on the first two columns on the right.

We also compare this result with the above two extensively accepted supervised methods
(Golub et al., 1999; Thomas et al., 2001). The column labeled as ‘match-NA’ in Figure 5
indicates whether the corresponding gene is also identified by the neighborhood analysis
method. ‘YES’ means match while ‘NO’ means not match. The column labeled as ‘match-
SRM’ indicates whether the corresponding gene is identified by the statistical regression
modeling approach. Interestingly, as shown in Figure 5, 31 out of the 45 informative genes
identified by our model match the neighborhood analysis method and 27 genes match the
statistical regression modeling approach.

Figure 6 shows the pattern detection results on Leukemia-G1 dataset of 50 experiments by our
method. In Figure 6A, the upper polyline shows the number of informative genes output of
each experiment. The polyline marked as ‘matching NA’ means the number of informative
genes that are also identified by the neighborhood analysis method. The polyline marked as
‘matching SRM’ means the number of informative genes that are identified by the statistical
regression modeling approach. On the average, about 57% of them match that of the
neighborhood analysis method and 52% of them match that of the statistical regression
modeling. As mentioned in Section 1, unsupervised approaches are more complex than
supervised methods. Similar percentage of matching informative genes with the above
supervised methods therefore indicates that, even without supervision, the ESPD model learns
well from the real-world datasets.

4.2.3 Multi-class experiments—Given the promising results using ESPD model on 2-class
datasets, we investigated the multi-class Breast Cancer and SRBCT datasets which have 3 and
4 classes of samples, and 3226 and 2308 genes, respectively. The accuracy of class discovery
using the ESPD model was 0.864 for the Breast Cancer data and 0.923 for the SRBCT data.
On average, the informative gene sets from ESPD contained 66 genes for the Breast cancer
dataset and 86 genes for the SRBCT data.

We also assessed the overlap between the informative genes identified by ESPD model and
those of the original authors. The informative gene sets identified by Hedenfalk et al. and Khan
et al. contained 51 and 96 genes, respectively, Hedenfalk et al. (2001) and Khan et al.
(2001). In the Breast cancer dataset, the overlap ranged from 30 to 33 genes whereas for the
SRBCT dataset the overlap ranged from 26 to 34 across the executions of the ESPD algorithm.
Figure 6B shows the results on the SRBCT dataset of 50 experiments by the ESPD model. The
upper polyline shows the number of informative genes output of each execution. The lower
polyline means the number of informative genes that are also identified by the supervised
method reported in Khan et al. (2001). Figure 6B indicates that among 76–97 informative
genes, about 27.7–44.2% of them match that of the method reported in Khan et al. (2001).

The extent of overlap is quite good given that ESPD model is unsupervised and uses no
information regarding class labels. The mismatches between the informative gene set may be
caused, in part, by the differences on the underlying approaches taken for identifying
informative genes. Importantly, the ESPD model uses a graded or quantitative informative
gene criterion whereas Khan et al. (2001) applied an ‘on-off’ binary informative gene scheme.

We also conducted two-way classifications by applying our method on the SRBCT dataset
four times to identify the informative genes for each sample class, i.e. identifying informative
genes that discriminate RMS samples from the rest samples using k = 2, and then identifying
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informative genes distinguishing BL class from the rest and so on. The overall informative
genes identified matched 40–45 genes from Khan et al. (2001).

4.3 Efficiency evaluation
Table 4 reports the average number of iterations and the response time (in s) of the gene
expression datasets. The algorithm was run 50 times with different parameters. The algorithm
is implemented with MATLAB package and is executed on SUN Ultra 80 workstation with
450 MHz CPU and 256 MB main memory. The number of iterations is dominated by the
simulate annealing function we used. We used a slow simulate annealing function for
effectiveness of the approaches. Table 4 indicates that an experiment can be finished within
several minutes; because the number of genes in the human genome is about 30,000–50,000,
efficiency is not a major concern.

5 DISCUSSION
5.1 Why existing methods may not work well

5.1.1 Various bioinformatics applications—For biological applications, several array
data analysis tools are available for seeking phenotypes of samples, e.g. CLUSFAVOR
(Peterson, 2002), J-Express (Rhodes et al., 2001), CIT (Dysvik and Jonassen, 2001), and
CLUTO (Schloegel and Karypis, 2000). In these approaches, samples are partitioned by K-
means (Tavazoie et al., 1999), self-organizing maps (SOM) (Golub et al., 1999), hierarchical
clustering (HC) (Eisen et al., 1998), or graph based clustering algorithms (Xing and Karp,
2001; Ding, 2002). However, these traditional clustering techniques may not be effective for
detecting empirical sample pattern because the similarity measures used in these methods are
based on the full gene space and cannot handle the noise in the gene expression data.

Although some approaches (Xing and Karp, 2001; Ding, 2002; Peterson, 2002) reduce gene
dimension or filter genes for clustering samples, the genes filtering processes are noninvertible.
The deterministic filtering causes the samples to be grouped based on the local decisions and
some can only be applied on gene expression matrices with two phenotypes. In general,
biologists are interested in methods applicable to any number of phenotypes of samples.
Methods using PCA can reduce the number of genes involved in the datasets, but the results
largely depend on the data distribution, and do not necessarily capture real phenotype structures
(Yeung and Ruzzo, 2000).

5.1.2 Subspace clustering methods—Recent efforts on data mining and bioinformatics
have studied methods for discovering clusters embedded in subspaces of a dataset (Agrawal
et al., 1998; Getz et al., 2000; Cheng and Church, 2000; Yang et al., 2002). The main objective
of subspace clustering is to find subsets of objects such that the objects appear as a cluster in
a subspace formed by a subset of the attributes. Although, the subspace clustering problem
may appear similar to the empirical sample pattern detection problem, there are significant
differences.

• In subspace clustering, the gene subsets for different sub-space clusters are different
while our goal is to find a unique set of genes to manifest a partition of all samples.

• Two subspace clusters can share some common samples and genes. Some samples
may not belong to any subspace cluster. In EPSD, the sample partition is exclusive
and exhaustive.

• The pattern similarity measurements (e.g. residue) of the subspace clustering
algorithms which focus on gene expression data analysis (Yang et al., 2002; Cheng
and Church, 2000; Getz et al., 2000) are not adequate for empirical sample pattern
detection. Figure 2 shows two sets of genes over six samples. In Figure 2A, the genes
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all exhibit similar patterns. They will be considered as a subspace cluster by methods
proposed by Cheng and Church (2000), Getz et al. (2000), and Yang et al. (2002).
But we require the genes not only have similar pattern but also show steady signals
within each base (as shown in Fig. 2B).

• The subspace clustering algorithms only detect local correlated genes and samples,
they do not consider distribution over full gene dimension. But in our applications,
the genes selected must both present high pattern similarity within one base and show
large dissimilarity between different bases.

5.2 Conclusions of our model
In this paper, we have described the problem of detecting empirical pattern of sparse high-
dimensional datasets. We also have presented a new ESPD model which includes a series of
statistics-based metrics and an iterative adjustment approach to solve the problem.

The research is motivated by the needs of emerging high-dimensional array gene expression
data analyzing applications and is designed to improve the unsupervised empirical pattern
detecting performance for gene expression datasets. Our results show that without sample
phenotypes as training information, our method can detect the empirical sample patterns and
select informative genes from the array data-sets. The ESPD model takes the number of
phenotypes as the input parameters and iteratively detect significant patterns within samples
while dynamically selecting informative genes which manifest the empirical interest. We
demonstrated the performance of proposed approach by extensive experiments on various real-
world gene expression datasets. The empirical evaluation shows that our approach is effective
for unsupervised analysis of sparse high-dimensional gene expression datasets.
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Fig. 1.
Examples of the gene expression patterns across three sample classes. The first 3 samples
belong to Class 1, the second 4 samples to Class 2 and remainder to Class 3.
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Fig. 2.
An example showing the performance of the intra-pattern-steadiness metric.
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Fig. 3.
An example showing the effect of the pattern quality metric. Samples s1–s5 belong to one base
and s6–s10 are in the other base.
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Fig. 4.
The pseudo-code of the iterative adjustment approach.
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Fig. 5.
An empirical sample pattern detection result of Leukemia-G1 dataset.
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Fig. 6.
Informative genes identified by 50 executions of the algorithm on (A) the Leukemia-G1 dataset
and (B) the SRBCT dataset.
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Table 1

Comparision of different pattern similarity for the synthetic datasets of Figure 2

Measurement Data (A)Data (B)

Residue 0.200.45
Mean squared residue 0.050.40
Average row variance 339.075.30
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Table 2

The intra-pattern-steadiness, inter-pattern-divergence and pattern quality values for the datasets of Figure 3

Measurement Data (A) Data (B) Data (C)

Intra-pattern-steadiness 4.25 3.44 4.52
Inter-pattern-divergence 41.60 25.20 46.16
Pattern quality 14.27 9.61 15.35
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Table 4

Average number of iterations and response time (in s) with respect to the matrix size

Data Data size # of iterations runtime (s)

MS-IFN 4132 × 28 96 63
MS vs. controls 4132 × 30 102 68
Leukemia_G1 7129 × 38 116 158
Leukemia_G2 7129 × 34 117 155
Breast cancer 3226 × 22 94 57
SRBCT 2309 × 63 88 71
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