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The arrival of new antiviral drugs to treat chronic hepatitis B virus (HBV) and hepatitis C virus (HCV)
infections has given rise to great expectations along with concerns regarding the selection of drug-
resistant variants. Many lessons learnt from HIV therapeutics can be helpful for designing adequate
treatment strategies against viral hepatitis, the avoidance of sequential weak monotherapies being one
of them. Although HIV, HBV and HCV share many biological features, including very rapid viral
dynamics, distinctive characteristics explain why the speed of selection of drug resistance differs sub-
stantially between these viruses, being faster for HCV than for HIV and slower for HBV.
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Chronic infection due to HIV, hepatitis B virus (HBV) and hepa-
titis C virus (HCV) accounts for a substantial proportion of
deaths worldwide. Around 36 million people are currently living
with HIV. These numbers are approaching 400 million and 200
million for chronic HBV and HCV infections, respectively.
Because of similar routes of transmission, these viruses are seen
more frequently than expected in co-infection.1,2 Besides sharing
epidemiological niches, HIV, HBV and HCV share several bio-
logical similarities, which largely explain the therapeutic diffi-
culties arising when treating any of them, drug resistance being
one complication, if not the most challenging.

Viral dynamics are rapid for all three of these viruses.
Estimates of the daily production of virions are in the range of
1010 for HIV,3 1012 for HCV4 and 1012–1013 for HBV.5,6 The
half-life of free viral particles is very short, below 1 h for HIV7

and between 2 and 3 h for HCV.4,8 For HBV, there is some con-
troversy and estimates vary between 3 and 24 h.5,6 What is more
different is the half-life of infected cells. It has been estimated
to be �1 day for CD4þ T lymphocytes productively infected
with HIV,9 several days or weeks for hepatocytes infected with
HCV4 and up to 100 days for those infected with HBV, with a
large lifespan heterogeneity.10

Mutations occur frequently during the replication of HIV,
HBV and HCV. The reverse transcriptase enzymes of HIV and
HBV as well as the RNA-dependent RNA polymerase of HCV
are intrinsically error-prone and lack proofreading function,
allowing for frequent replication errors to occur. The result is the
generation of multiple viral variants, known as a quasispecies,
that coexist and reach population densities in direct proportion to

their relative replication fitnesses. It has been predicted that
every nucleoside of the 3.2 kb HBV genome6 or the 10 kb HIV11

and HCV genomes theoretically can be substituted every day
within a given infected patient. Table 1 summarizes the main dis-
tinctive viral dynamic features of these three viruses.

As any drug pressure may act to select pre-existing drug
resistant viral variants, the speed of selecting drug resistance
mainly depends on the turnover of the viral nucleic acid acting
as a source of new viral genomes. In the case of HIV, it is the
proviral DNA integrated within the chromosomes of infected
cells. For HBV, it is the cccDNA present within the nucleus of
infected hepatocytes as extra-chromosomal (episomal) material.
Finally, for HCV, there is no stable reservoir of genetic material
and the HCV-RNA strands present in infected hepatocytes serve
as templates for producing new HCV virions that soon thereafter
are released (Figure 1).

The viral genetic material within infected cells is relatively
stable and shows longer half-life for HIV and HBV, in compari-
son with HCV. Whereas HIV proviral DNA may persist as long
as the lifespan of an infected CD4þ T lymphocyte, and the
same applies to HBV cccDNA within infected hepatocytes,12,13

HCV-RNA strands are short-lived molecules with a half-life of
�10 h,14 in constant renewal replicating within infected hepato-
cytes associated with cytoplasmic vesicular membraneous struc-
tures.15 Given these facts, it is easy to understand that the time
required for selecting drug resistance mutations, present at base-
line only as minority genomic variants, to expand and fill a
major part of the virus population should be longer for HBV
than for HIV and that it must be particularly short for HCV.
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This may explain in part why resistance to lamivudine used as
monotherapy may be recognized within only 3 weeks in HIV,16

whereas it only develops after several months to years of
therapy in HBV.17

The major determinants involved in the selection of
drug-resistant mutants for all these viruses are the fitness of the
mutants and the replication space available for the spread of
mutants.18 In chronic hepatitis B, the replication space is pro-
vided by hepatocyte turnover, which allows the loss of HBV
wild-type infected cells and the generation of non-infected hep-
atocytes that are susceptible to new HBV mutant infections.
This process is usually very slow in chronic hepatitis B because
the immune-mediated killing of infected cells is slow.19 In con-
trast, in HIV, the turnover of CD4þ T lymphocytes is quite
rapid, allowing the mutant viruses to expand rapidly. The spread
of mutants in the presence of the drug will also depend on the
relative fitness of these variants. For HCV, the diversity of the
viral genome is greater than that for HBV, and the rate of

superinfection of these cells is not well defined, but the extra-
ordinary rapidity of emergence of drug-resistant HCV mutants is
in agreement with the short turnover of HCV-RNA molecules in
the cytosol of infected hepatocytes.

In a situation in which most potential target cells are already
infected and releasing virions, it is clear that infected cells with
a long half-life will provide only a minimal opportunity for
replacing the original virus population by a new one of
drug-resistant variants. This is the case for HBV, whose infected
hepatocytes may survive for several weeks or months.10,20 In
contrast, CD4þ T lymphocytes infected with HIV show a
shorter half-life (�1 day).9 This is why the dynamics of selec-
tion of drug resistance are so different comparing HBV and
HIV, despite their respective genetic material being archived
within the nucleus of infected cells.

Besides the different half-lives of each of the respective viral
genetic materials, other factors may explain the relatively slow
selection of drug resistance in HBV, compared with HIV and/or
HCV (Table 2). Among others are the constraints imposed by
the fact that the HBV genome shows overlapping reading
frames. In this way, changes at one position may affect the struc-
ture and function of more than one viral protein. Indeed, it is
well known that some lamivudine-associated resistance
mutations may modify the antigenicity of the HBV surface
antigen, as a result of the large overlap between the HBV poly-
merase and envelope genes.21 HBV escape mutants induced by
antiviral therapy have recently attracted much attention as they
may represent a public health threat in the near future.22

Moreover, mutants of the viral polymerase gene may induce
mutations in the overlapping surface antigen which may then

Table 1. Main distinctive viral dynamic features of HIV, HBV and HCV

HIV HBV HCV

Virus

daily production of virions per day 1010 1012–1013 1012

half-life of free virions (h) 1 3–24 2–3

half-life of intracellular virions days (dependent on

infected cells t1/2)

months (dependent on

infected cells t1/2)

hours (not dependent on

infected cells t1/2)

mutation rate very high high very high

constraints due to ORFs in targeted viral enzymes moderate high none

immune-mediated escape mutants frequent infrequent frequent

Target cells

half-life of infected cells days months weeks

size of susceptible cells compartment large small probably large

intracellular viral reservoir yes (integrated cDNA) yes (cccDNA) no

ORFs, overlapping reading frames; cDNA, complementary DNA; cccDNA, covalently closed circular DNA.

Figure 1. Schematic representation of the virus life cycle for HIV, HBV and

HCV.

Table 2. Factors explaining the slower selection of drug resistance

in HBV when compared with HIV and HCV

1. Slower turnover of genetic material acting as source of newly

produced viral particles in HBV than HIV and HCV.

2. Constraints in the HBV genome imposed by overlapping reading

frames, which do not exist in HIV or HCV.

3. More effective immune escape for HIV and HCV than for HBV.
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generate defective or less infectious mutants that may need
trans-complementation of the mutant protein by wild-type to
package and propagate the mutant virus (some of the M204I and
the A181T mutants are examples).23

Another mechanism by which HBV may select for drug
resistance much slowly than HIV or HCV relies on the immune
system. Rapid selection of immune escape mutants has been
described for HIV and HCV,24,25 although immune tolerance
may appear to persist throughout the entire course of chronic
HBV infection, providing little selective pressure.26

Several therapeutic consequences derive from these biologi-
cal considerations. The first is that eradication of HIV and HBV
will not be attainable even after several years of complete virus
suppression with current antiviral therapies, as relatively stable
reservoirs of viral genetic material may exist waiting to awaken
in the event of drug pressure being discontinued. In contrast, the
fragile nature of HCV-RNA molecules in continuous turnover
may provide a unique opportunity for eradication. Indeed, the
vast majority of patients who achieve sustained virological
response with interferon-based therapies do not show a rebound
in HCV replication thereafter,27,28 suggesting that the virus has
definitively been eliminated. This is true even in HIV–
HCV-co-infected persons, in whom immunodeficiency might
raise suspicion of possible late relapses.29,30

A last therapeutic implication of these differences in the kin-
etics of selection of drug-resistant mutants is the difficulty in
proving the benefit of combination therapy in chronic hepatitis
B. It was relatively easier to demonstrate against HIV and is cur-
rently being shown against HCV using STAT-C molecules.31

Although drugs targeting different steps of the life cycle of both
HIV and HCV have been developed, and this has not been the
case for HBV, it is clear that the relatively slow rate of emergence
of drug-resistant HBV mutants in comparison with HIV or HCV
leaves room for anti-HBV monotherapy. Clearly, it will not be the
case using drugs with relatively low potency, suboptimal dosing
and/or low genetic barrier for resistance, such as lamivudine,
emtricitabine, telbivudine or adefovir. However, it may apply to
drugs such as entecavir or tenofovir, which have much more
potent antiviral activity and high genetic barrier to resistance, and
for which the annual rate of selection of resistance is below 1% to
2%, at least in drug-naive chronic hepatitis B patients.32–34
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