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SUMMARY
Endogenous digitalis-like factors, also called cardiotonic steroids, have been thought for nearly half
a century to have important roles in health and disease. The endogenous cardiotonic steroids ouabain
and marinobufagenin have been identified in humans, and an effector mechanism has been delineated
by which these hormones signal through the sodium/potassium-transporting ATPase. These findings
have increased interest in this field substantially. Although cardiotonic steroids were first considered
important in the regulation of renal sodium transport and arterial pressure, subsequent work has
implicated these hormones in the control of cell growth, apoptosis and fibrosis, among other
processes. This Review focuses on the role of endogenous cardiotonic steroids in the pathophysiology
of essential hypertension, congestive heart failure, end-stage renal disease and pre-eclampsia. We
also discuss potential therapeutic strategies that have emerged as a result of the increased
understanding of the regulation and actions of cardiotonic steroids.
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INTRODUCTION
For many years, high dietary salt intake was suspected to increase the risk of cardiovascular
and renal diseases.1,2 During the past few decades, however, the role of salt intake in the
development of hypertension has shifted from a topic of debate to a well-established
phenomenon.3-6 The effect of dietary salt on cardiovascular disease is indicated by data from
several large trials, such as the International Study of Salt and Blood Pressure (INTERSALT)
7 and the Dietary Approaches to Stop Hypertension (DASH) study.8 Against this background,
an understanding of the specific mechanisms underlying the deleterious effects of salt becomes
critically important.
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The topic of this Review is the role of endogenous cardiotonic steroids—also known as
digitalis-like factors or inhibitors of the sodium/potassium-transporting ATPase (Na+/K+-
ATPase)9—in linking dietary salt with cardiovascular and renal disease. We focus particularly
on effects in humans and how therapy might be targeted and outcomes affected. Endogenous
cardiotonic steroids have been the focus of research at our laboratories for the past two decades.
The importance and the very existence of such factors has been a matter of controversy;10,
11 however, notable breakthroughs in the field include the identification of specific
endogenous cardiotonic steroids in experimental and clinical studies,12-15 the detection of
altered concentrations of endogenous cardiotonic steroids in different disease states, the
elucidation of the roles of endogenous cardiotonic steroids in these settings,16,17 and, in
parallel, the discovery of the signaling functions of the Na+/K+-ATPase and its involvement
in many elements of basic cell biology.18,19 These issues, particularly the last, have been
reviewed in a series of excellent papers.16-23

The main purpose of the present Review is to emphasize the roles of endogenous cardiotonic
steroids in human health and disease—in particular with regard to the renal and cardiovascular
systems—and to highlight potential therapeutic targets that have arisen as a result of research
in this area. In short, we hope to establish that endogenous cardiotonic steroids have begun
their journey from bench to bedside.

HISTORICAL PERSPECTIVE
In the 1960s, it became obvious that the actions of the renin-angiotensin-aldosterone system,
vasopressin, and the sympathetic nervous system could not adequately explain physiologic and
pathophysiologic responses to acute or chronic expansion of blood volume.24,25 This point
was elegantly demonstrated in 1961 in a classic paper by de Wardener and colleagues,26 who
demonstrated that natriuresis induced by saline infusion is maintained even if renal perfusion
pressure and glomerular filtration rate are prevented from increasing. The factor responsible
for this phenomenon (the so-called ‘third factor’) was a topic of great interest in the 1960s and
1970s.9 Cort and Lichardus27 and Buckalew and colleagues28 demonstrated that volume
expansion is associated with increased levels of a circulating substance that inhibits active
sodium transport in vitro. Extremely important contributions to measuring and understanding
the implications of this ‘third factor’ were made by Schrier and co-workers29-31 and by Kramer
and Gonick.32 The latter group of investigators demonstrated in rats that volume expansion
stimulated the production of a substance that could inhibit activity of the Na+/K+-ATPase in
the kidney. In fact, Bricker and colleagues33,34 incorporated the concept of a circulating
inhibitor of the Na+/K+-ATPase in their model of renal failure progression and the pathogenesis
of the uremic syndrome, termed the ‘trade-off’ schema. In 1980, Gruber et al.35 demonstrated
in dogs that plasma volume expansion was associated with elevated levels of circulating
digoxin-like immunoreactive material. Shortly thereafter, Hamlyn et al.36 demonstrated that
plasma Na+/K+-ATPase-inhibitory activity correlated positively with blood pressure in a group
of patients with essential hypertension. At the same time, Kojima et al.37 showed that
administration of an antibody to digoxin lowered blood pressure in rats with hypertension
induced by administration of deoxycorticosterone and salt.

Interest in the concept of inhibitors of the Na+/K+-ATPase as the so-called third factor
decreased during the 1980s and 1990s, in part because of inconsistencies within the
experimental data. Most of the assays originally developed for inhibitors of the Na+/K+-
ATPase were based on cross-reactivity of the putative endogenous factors with various
antibodies to digoxin, but results of these tests varied dramatically.38-40 Probably the most
important factor causing this inconsistency is that digitalis, the prototypical inhibitor of the
Na+/K+-ATPase, is not natriuretic in normal individuals.41
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Enthusiasm for the study of endogenous cardiotonic steroids has steadily increased during the
past decade, mainly because several endogenous cardiotonic steroids, including ouabain,12,
42,43 marinobufagenin,14,15 telocinobufagin15 and bufalin,13 have been isolated and
characterized in both animals and humans (Figure 1). In addition, an effector function of the
Na+/K+-ATPase signal cascade has been identified that does not seem to depend on inhibition
of the ion transport function of the pump by endogenous cardiotonic steroids, but rather is
activated by binding of cardiotonic steroids to the caveolar Na+/K+-ATPase in the presence of
Src and the epidermal growth factor receptor (EGFR)19,44-47 (Figure 2). Finally, as a result
of the identification of specific endogenous cardiotonic steroids, reliable immunoassays have
been developed.16,48-54

SUBTYPES OF ENDOGENOUS CARDIOTONIC STEROIDS
Endogenous cardenolides

In 1991, Hamlyn and co-workers12 isolated from human plasma a cardiotonic steroid that was
indistinguishable in every way from the plant-derived cardenolide ouabain, and was, therefore,
named endogenous ouabain. Since this report was published, endogenous ouabain has been
isolated from bovine adrenal gland,42 bovine hypothalamus43 and rat adrenomedullary cells.
55 Mass spectrometry and nuclear magnetic resonance studies have indicated that mammalian
endogenous ouabain is identical to plant-derived ouabain.42,43,55 The adrenal cortex and
hypothalamus are considered to be the sites of ouabain production in mammals.55-57
Adrenocorticotropic hormone, angiotensin II, vasopressin, and phenylephrine stimulate the
release of ouabain from the adrenal cortex in vitro.58,59

Evidence suggests that digoxin is an endogenous cardiotonic steroid60,61 that might be an
endogenous antagonist of endogenous ouabain;16,62 however, the extensive variability in the
detection of digoxin-like immunoreactive material by highly specific commercial digoxin
immunoassays in digoxin-naive populations38-41,63 argues against this idea.

Endogenous bufadienolides
Amphibians produce cardiotonic steroids belonging to the bufadienolide class, which differ
from cardenolides in that they possess a doubly unsaturated six-membered lactone ring (Figure
1).64 Bufadienolide-containing preparations from frog and toad skin have been used for the
treatment of congestive heart failure in traditional medicines of the Far East.65 The highest
levels of bufadienolides are detected in the skin of species that migrate from dry to aquatic
environments.66 The skin regulates water and electrolyte homeostasis in amphibians;
bufadienolides and the Na+/K+-ATPase appear to be integral to this process.66,67 In support
of this concept, brain and skin levels of bufadienolides in toads have been shown to fluctuate
in response to changes in environmental salinity.67

The above observations triggered a search for mammalian bufadienolides. Initially, bufalin-
like immunoreactive material was detected in human bile and plasma.68-71 Lichtstein et al.
13 detected bufalin derivatives in the lenses of several mammalian species by using mass
spectroscopy. Other workers14,15 demonstrated marinobufagenin in mammalian plasma and
urine by the use of specific immunoassays, mass spectrometry and, subsequently, nuclear
magnetic resonance spectrometry.15 Sich et al.72 reported that human plasma and bovine
adrenal glands contained material that cross-reacted with antibodies against proscillaridin A,
a rare example of a plant-derived bufadienolide (Figure 1). Hilton and co-workers73 identified
a bufadienolide compound in human placentae and plasma by the use of mass spectroscopy.

Marinobufagenin emerged as a candidate mammalian endogenous cardiotonic steroid largely
because of the findings of studies that characterized the pharmacological properties of
amphibian bufadienolides.74-76 Our laboratory showed that venom from the toad Bufo

Bagrov and Shapiro Page 3

Nat Clin Pract Nephrol. Author manuscript; available in PMC 2008 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



marinus contained digoxin-like immuno-reactive material with vasoconstrictive, Na+/K+-
ATPase-inhibiting, and positive inotropic effects.74,75 Subsequently, this substance was
identified as marinobufagenin, a steroid previously described in toads.14,15 Other studies
found that various antibodies to marinobufagenin cross-reacted with material from human,
canine and rat plasma and/or urine.14,51,63,64,76

Komiyama et al.15 used tandem mass spectrometry and nuclear magnetic resonance
spectrometry to demonstrate that uremic human plasma contained increased levels of another
bufadienolide, telocinobufagin. This bufadienolide differs from marinobufagenin because it
has a hydroxyl at position 14 of the lactone ring rather than an epoxy group at position 14/15;
the authors hypothesized that telocinobufagin is a natural precursor of marinobufagenin.15

ROLE OF CARDIOTONIC STEROIDS IN HYPERTENSION
Endogenous ouabain

Effects on the kidney—Endogenous ouabain does not fulfill the criteria for classification
as a putative natriuretic hormone (i.e. it does not increase sodium excretion), but it does have
a role in the adaptation to both sodium depletion and sodium loading. Although a few studies
have shown that salt loading of normotensive rats stimulates release of ouabain,77,78 other
experiments performed in dogs,79,80 rats81 and humans48,49 have not reported this finding.
Among 180 patients with untreated hypertension, plasma levels of endogenous ouabain did
not change during 2 weeks of salt loading (administration of 170 mmol sodium per day), but
increased following 2 weeks of sodium depletion (intake restricted to 70 mmol per day).48 In
another study, salt depletion produced a four-fold rise in mean plasma endogenous ouabain
levels in 13 healthy men,50 and salt loading (171 mmol sodium daily) was associated with a
13-fold elevation in plasma endogenous ouabain levels after 3 days; levels decreased within 2
days, but remained higher than baseline.50 This pattern of ouabain response after salt loading
has also been observed in Dahl salt-sensitive rats82,83 and in humans with normal blood
pressure.84

Several lines of evidence support the idea that endogenous ouabain has a prohypertensive role;
these include the ‘adducin paradigm’,85 the induction of hypertension in ouabain-treated
rodents, the elevation of endogenous ouabain levels in hypertensive rats, and the central
prohypertensive action of this hormone. In rats, chronic peripheral administration of low doses
of ouabain (10-50 μg/kg per day) increased arterial pressure and induced cardiac hypertrophy.
86-91 Interestingly, administration of digoxin (200 μg/kg per day) actually reversed the
ouabain-induced hypertension in these rats.62

A mechanism for the prohypertensive effect of endogenous ouabain has been suggested by
experiments performed in Milan hypertensive rats. These rats carry a mutation in the gene that
encodes the cytoskeletal protein adducin and also exhibit increased circulating levels of
endogenous ouabain.92 Both of these characteristics are associated with heightened expression
and activity of the Na+/K+-ATPase in the renotubular epithelium; in the case of adducin, the
mutation leads to an increase in the residence time of the sodium pump in the cellular
membrane.87,93 Unlike the ouabain-resistant α1 Na+/K+-ATPase, expressed in the renal
epithelium, the α1 isoform found in the caveolae of renal tubular cells exhibits remarkable
sensitivity to ouabain.87 Subnanomolar concentrations of ouabain in the plasma of Milan
hypertensive rats lead to activation of this sodium pump and stimulation of the Src-EGFR-
extracellular-signal-regulated protein kinase (ERK)-dependent signaling pathway, which
results in renal sodium retention and hypertension.87

Endogenous ouabain can also raise blood pressure by inhibiting the transport function of the
α2 Na+/K+-ATPase in vascular smooth muscle, and thus promoting entry of calcium via the
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sodium-calcium exchanger.88,94 Mice genetically engineered to express the ouabain-resistant
α2 Na+/K+-ATPase do not manifest an increase in blood pressure following chronic
administration of ouabain, unlike control mice with ouabain-sensitive α2 Na+/K+-ATPases.
88 Accordingly, vascular smooth muscle from mice with ouabain-resistant α2 sodium pumps
is insensitive to the pressor effect of ouabain.88 Furthermore, mice genetically engineered to
have reduced expression of the α2 Na+/K+-ATPase (but not of the α1 Na+/K+-ATPase) become
hypertensive and their arteries exhibit enhanced tone in vitro.94

Some studies have not found major differences in ouabain affinity between the caveolar and
the non-caveolar Na+/K+-ATPase.47 We have observed, however, that in renal proximal
tubular epithelial cells both ouabain-induced signal transduction through the Na+/K+-ATPase-
Src-EGFR cascade and ouabain-induced clathrin-mediated endocytosis of the Na+/K+-ATPase
were limited to the Na+/K+-ATPase residing in caveolae.95,96 These discrepancies might be
explained by different levels of expression of the γ subunit of the Na+/K+-ATPase in the
preparations employed, as suggested by Nguyen and co-workers.97

In accord with the sodium-retaining effect of endogenous ouabain on the kidney,
polymorphisms of the adducin gene and raised levels of endogenous ouabain are associated
with altered renal sodium reabsorption both in experimental animals and in patients with
hypertension.98 Furthermore, in Milan hypertensive rats, administration of the digitoxin
derivative rostafuroxin (PST 2238)99 antagonized the interacting effect of endogenous ouabain
and mutated adducin on the caveolar renal Na+/K+-ATPase, lowered blood pressure and
inhibited the activity of the Na+/K+-ATPase in the renal medulla.87

Effects on the brain—Substantial evidence indicates that endogenous brain ouabain
contributes to the pathogenesis of salt-sensitive hypertension.100-103 In rats, centrally
administered ouabain elicits pressor and natriuretic responses, which are dependent on the
activation of the renin-angiotensin system.22,104,105 Likewise, central administration of salt
and systemic salt loading both lead to increases in brain levels of endogenous ouabain in Dahl
salt-sensitive rats; these increases are mediated by the brain renin-angiotensin system.102,
103,105 Leenen and co-workers106,107 demonstrated that an increase in the level of sodium
chloride in cerebrospinal fluid precedes the development of hypertension and that sodium ions
in the brain enter the intracellular space via epithelial sodium channels. Entry is modulated by
central mineralocorticoid receptors.108 Recent evidence indicates, however, that brain-
specific sodium channels, rather than epithelial sodium channels, have a key role as sensors of
cerebrospinal fluid sodium level.109 The above observations indicate that endogenous ouabain
might act as a central mediator of salt-sensitive hypertension (Figure 3).

Endogenous marinobufagenin
In normotensive rats, plasma levels of marinobufagenin increase in response to acute plasma
volume expansion, as well as following chronic administration of a high-salt diet.81,110,111
Enhanced production of marinobufagenin has also been demonstrated in humans with volume
expansion,51 pre-eclampsia,52 essential hypertension, primary aldosteronism, and end-stage
renal disease.53,54 At concentrations comparable to in vivo plasma levels, marinobufagenin
induces vasoconstriction in isolated human pulmonary and umbilical arteries52,76 as well as
substantial inhibition of the ouabain-resistant α1 Na+/K+-ATPase in rat aorta and rat renal
medulla.83,112 Additionally, immunoneutralization of marinobufagenin with a specific
antibody reduces blood pressure and renal sodium excretion in salt-loaded Dahl salt-sensitive
rats.83,102 These rats are, in fact, the same experimental model of hypertension in which Lewis
Dahl predicted the existence of an endogenous vasoconstrictive and natriuretic substance.113
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Interaction between endogenous ouabain and marinobufagenin
In Dahl salt-sensitive rats with salt-induced hypertension, an important interaction seems to
occur between brain and peripheral cardiotonic steroids. After acute and chronic salt-loading
in these animals, a transient increase in circulating endogenous ouabain precedes a sustained
increase in circulating marinobufagenin.82,83 This observation has led us to postulate that
endogenous ouabain, acting as a neurohormone, triggers release of marinobufagenin, which in
turn causes increases in cardiac contractility, peripheral vasoconstriction and natriuresis by
inhibiting the Na+/K+-ATPase (Figure 3).102,103 We have subsequently demonstrated that
the greatest transient increases in brain endogenous ouabain level occur in the amygdala,
hippocampus and supraoptic nucleus of the hypothalamus.102 Endogenous ouabain in the
brain activates the central renin-angiotensin system, which—possibly via sympathoactivation
—in turn activates the renin-angiotensin system in the adrenal cortex.102,103 Activation of
the adrenocortical renin-angiotensin system facilitates production and secretion of
marinobufagenin, which results in increased plasma and urinary levels of the bufadienolide.
This sequence of events was fully mimicked by intrahippocampal administration of a very low
dose (60 pg) of plant-derived ouabain.102 More recently, we demonstrated that, similar to Dahl
salt-sensitive rats, salt-loaded normotensive humans exhibit a transient increase in urinary
endogenous ouabain, which precedes a more sustained increase in renal marinobufagenin
excretion.84

Thus, it seems that two scenarios involving different patterns of response to cardiotonic steroids
are involved in the pathogenesis of hypertension. At least one of these scenarios—the adducin
paradigm—has been demonstrated to be relevant to human hypertension: levels of endogenous
ouabain become elevated in hypertensive individuals who possess the appropriate mutation or
mutations of the adducin gene.98 The clinical relevance of the other scenario, the interplay
between brain endogenous ouabain and circulating marinobufagenin, remains to be
established.

ROLE OF CARDIOTONIC STEROIDS IN RENAL SALT HANDLING
Although the definition of a natriuretic substance is one that increases urinary sodium excretion,
the prototypical cardiotonic steroid—i.e. digitalis or digoxin—is not natriuretic at typical
clinical doses.41 Nevertheless, studies indicate that some other cardiotonic steroids do seem
to function as natriuretic substances in vitro and in vivo.114 We have observed dose-dependent
and time-dependent endocytosis of the plasmalemmal Na+/K+-ATPase induced by cardiotonic
steroids in LLC-PK1 cells; this cell line has features of proximal tubule cells.115 In a canine
cell line that resembles distal tubular cells, no such depletion was observed. Endocytosis of the
plasmalemmal Na+/K+-ATPase has been shown to proceed via caveolae and via clathrin-
coated pits following activation of phosphoinositide-3 kinase by the Src-EGFR pathway.95,
96 In an in vivo rat model, we noted that endocytosis induced by marinobufagenin contributed
to the altered sodium reabsorption seen with increases in dietary sodium.111 Specifically, we
observed that increases in dietary sodium led to increased urinary excretion of marinobufagenin
and sodium, decreased proximal tubule expression of the Na+/K+-ATPase, increased
accumulation of the Na+/K+-ATPase in both early and late endosomes, and decreased sodium
reabsorption. Administration of an antibody to marinobufagenin blocked endocytosis of the
Na+/K+-ATPase and blunted the increase in urinary sodium excretion.111

Other work has demonstrated that cardiotonic steroids can induce decreases in the apical
expression of the sodium/hydrogen exchanger 3 (NHE3) in proximal tubule cells.114,116
Some of the long-term decrease in NHE3 expression caused by cardiotonic steroids is related
to decreases in NHE3 transcription, whereas binding of ouabain to the basolateral Na+/K+-
ATPase also seems to rapidly induce endocytosis of the apical NHE3.117 Taken together, the
above data suggest that salt loading is accompanied by an increase in the circulating level of
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marinobufagenin, which in turn induces a decrease in both basolateral and apical sodium
transport in the proximal tubule, resulting in increased urinary sodium excretion.

ROLE OF CARDIOTONIC STEROIDS IN CONGESTIVE HEART FAILURE
Congestive heart failure (CHF) is associated with fluid retention and plasma volume expansion,
conditions under which one would expect cardiotonic steroids to be released (Figure 3).118
As early as 1981, Schreiber, Kölbel et al.119 hypothesized that cardiotonic steroids might be
involved in myocardial hypertrophy and the regulation of tissue growth. In 1988, Morise et
al.120 demonstrated in rats that development of CHF was associated with increased plasma
activity of a Na+/K+-ATPase inhibitory factor. In 1990, Liu et al.121 showed in a group of 50
patients that the severity of CHF was positively associated with the degree of digoxin-like
immunoreactivity in plasma, as well as with erythrocyte sodium concentrations. The
relationship between cardiotonic steroids, cardiac geometry and central hemodynamic
parameters has been analyzed in several studies. Gottlieb et al.122 found that although plasma
endogenous ouabain level did not increase as cardiac failure progresses, levels were elevated
in patients with severely impaired left ventricular performance (left ventricular ejection fraction
less than 30%).

Manunta et al.123 demonstrated that the plasma concentration of endogenous ouabain
positively correlated with systolic and diastolic blood pressure in a patient group that comprised
110 normotensive individuals and 100 hypertensive individuals; levels also positively
correlated with left ventricular mass index and left ventricular end diastolic volume in the
hypertensive patients. Pierdomenico et al.124 found that circulating endogenous ouabain levels
in 92 hypertensive patients positively correlated with mean blood pressure and total peripheral
resistance index, and that left ventricular end diastolic volume index, stroke index and cardiac
index exhibited inverse correlations with the plasma ouabain level. In the same study, the
plasma endogenous ouabain level was substantially higher in patients with eccentric
remodeling than in those with normal left ventricular geometry or concentric hypertrophy.
124 In another study, the plasma ouabain level was higher in patients with left ventricular
dysfunction than in normal individuals, but did not correlate with left ventricular ejection
fraction.125

Pitzalis et al.126 found that levels of circulating endogenous ouabain predicted the progression
of heart failure in 140 patients with idiopathic dilated cardiomyopathy. Levels of endogenous
ouabain have also been found to predict ventricular hypertrophy in patients with end-stage
renal disease.127

In 23 consecutive hypertensive male patients with CHF, plasma marinobufagenin levels
exhibited a progressive increase that paralleled the progression of CHF and the increase in
plasma α-atrial natriuretic peptide.54 Although plasma endogenous ouabain levels did not vary
with the severity of CHF, it was noted that ouabain levels were substantially elevated in a subset
of patients who had an ejection fraction less than 30% (AY Bagrov, unpublished data), a finding
similar to that observed by Gottlieb and coworkers.122

Experimental data also indicate an association between elevated plasma levels of cardiotonic
steroids and cardiovascular remodeling. In one study, normotensive Fisher 344 × Brown
Norway rats subjected to a 4% salt diet exhibited increases in plasma marinobufagenin and
proportional increases in cardiac weight, in the absence of hypertension.81 Sustained ouabain
infusion, sufficient to cause a two-fold elevation in plasma ouabain immunoreactivity, also
induced left ventricular hypertrophy in a study of normotensive rats.87

A study performed in Dahl salt-sensitive rats subjected to a high-salt diet revealed coordinated
shifts in the physiological function of the left ventricle (compensated left ventricular
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hypertrophy progressing to dilated cardiomyopathy), the plasma levels of cardiotonic steroids,
and the relative amounts of the Na+/K+-ATPase α1, α2 and α3 isoforms within the left
ventricular myocardium.128 Specifically, the advancing stages of hypertrophy were associated
with an elevated plasma marinobufagenin level, increased expression of the α1 Na+/K+-
ATPase, decreased expression of the α2 Na+/K+-ATPase in the left ventricular myocardium,
and heightened sensitivity of the cardiac sodium pump to marinobufagenin. The transition to
CHF was associated with a decline in plasma marinobufagenin levels and decreased absolute
levels of the α1 Na+/K+-ATPase in the left ventricle. Levels of endogenous ouabain rose
substantially with the development of CHF, and this enhanced ouabain production was
associated with increased levels of the ouabain-sensitive α3 Na+/K+-ATPase in the left
ventricular myocardium, along with an increase in the sensitivity of the cardiac Na+/K+-
ATPase to ouabain.128

Ouabain and marinobufagenin induce apoptosis and growth-promoting signaling, respectively,
in cultured renal tubular cells.129 The existence of endogenous cardiotonic steroids that have
different effects on cell survival makes teleological sense, since different in vivo scenarios
might require modulation of sodium-pump-dependent functions either with concurrent
cytotoxic effects or without. Thus, the transition from compensated left ventricular hypertrophy
to CHF is accompanied by a decrease in plasma marinobufagenin level, but a three-fold
increase in plasma endogenous ouabain level occurs at the stage of decompensated CHF,128
when induction of cell death might be considered desirable.130

ROLE OF CARDIOTONIC STEROIDS IN RENAL FAILURE
The modern concept of uremic cardiomyopathy is of ventricular hypertrophy and progressive
loss of diastolic function in the context of renal disease, which can ultimately progress to
eccentric hypertrophy and, rarely, to systolic dysfunction.131 Echocardiographic studies
indicate that diastolic dysfunction and ventricular hypertrophy manifest extremely frequently,
whereas systolic dysfunction occurs in less than 20% of patients with end-stage renal disease.
Neither the diastolic dysfunction nor the ventricular hypertrophy can be explained solely by
the hypertension and anemia that generally complicate end-stage renal disease.132 As
mentioned earlier, plasma levels of telocinobufagin and marinobufagenin are substantially
elevated in patients with end-stage renal disease.15,53

To examine the role of cardiotonic steroids in renal disease, our laboratory has established
models of chronic kidney disease by the use of partial nephrectomy in the rat133 and, more
recently, the mouse.134 Animals subjected to partial nephrectomy develop increases in
marinobufagenin (similar to those seen in patients with renal disease) and diastolic dysfunction,
ventricular hypertrophy, and evidence of signaling through the Na+/K+-ATPase-Src-EGFR-
ERK cascade.133,134 Cardiac fibrosis occurs prominently in these models133-136 and also
complicates human uremic cardiomyopathy, albeit to a lesser degree.137 In the rat, infusion
of marinobufagenin to achieve a similar elevation in plasma level to that seen after partial
nephrectomy results in activation of the Na+/K+-ATPase-Src-EGFR-ERK cascade and
development of many of the phenotypical features of experimental uremic cardiomyopathy.
Active immunization against marinobufagenin attenuates most of the biochemical,
physiological and morphological features of uremic cardiomyopathy in animals subjected to
partial nephrectomy.135,136

Exposure to very small amounts of marinobufagenin (and of other cardiotonic steroids)
virtually identical to the circulating plasma concentrations seen in experimental and clinical
renal failure directly stimulated the production of collagen in primary cultures of cardiac
fibroblasts.134,135 Again, this effect required signaling through the Na+/K+-ATPase-Src-
EGFR cascade. The stimulation of collagen production was associated with increased
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transcription and translation of procollagen, but no change in the stability of procollagen or
collagen was identified.134

ROLE OF CARDIOTONIC STEROIDS IN PRE-ECLAMPSIA
Since pregnancy is associated with plasma volume expansion as a result of renal sodium and
fluid retention,138,139 it is logical to examine the role of cardiotonic steroids in pregnancy
and in pregnancy-associated diseases. Graves et al.140,141 were the first to demonstrate
increased circulating levels of cardiotonic steroids in pregnancy and to hypothesize that
cardiotonic steroids are involved in the pathogenesis of pre-eclampsia. After the introduction
of assays for specific cardiotonic steroids, levels of endogenous ouabain and marinobufagenin
were found to be increased by four-fold and eight-fold, respectively, in patients with severe
pre-eclampsia.52 In a study of women with milder pre-eclampsia, elevated levels of
marinobufagenin accompanied inhibition of the Na+/K+-ATPase in erythrocytes, but
endogenous ouabain levels were not markedly increased; ex vivo treatment of erythrocytes with
an antimarinobufagenin antibody—but not an antiouabain antibody—reversed this inhibition.
142

The role of cardiotonic steroids in pregnancy is not yet understood; however, in a study of 15
patients with pre-eclampsia, the anti-digoxin antibody Digibind® (GlaxoSmithKline,
Philadelphia, PA) lowered blood pressure.143-145 The mechanism underlying this effect is
believed to involve cross-reactivity with endogenous cardiotonic steroids.143-145 These data
are in agreement with the observation of a vasorelaxant action of Digibind® in isolated perfused
placentae from pre-eclamptic women146 and of heightened sensitivity of the Na+/K+-ATPase
to digitalis in such placentae.147 A characterization study showed that marinobufagenin-like
immunoreactive material from the plasma of pre-eclamptic women exhibits chromatographic
properties similar to that of marinobufagenin produced by cultured murine adrenocortical cells.
148

The role of cardiotonic steroids in pre-eclampsia has been explored further in experimental
animals. Salt supplementation—with drinking water containing 1.8% sodium chloride—
during days 14-20 of gestation in pregnant Sprague-Dawley rats was associated with an
increase in the plasma levels of marinobufagenin (but not of ouabain), an elevation of blood
pressure, proteinuria, and a decrease in fetal weight, size, and number.149 Administration of
an anti-marinobufagenin antibody resulted in a 28 mmHg decrease in blood pressure and a
simultaneous increase in the activity of the Na+/K+-ATPase in thoracic aortae.149 In pregnant
rats rendered hypertensive by deoxycorticosterone acetate and salt supplementation, uterine
arteries exhibited enhanced sensitivity to the vasoconstrictor action of marinobufagenin, and
an antimarinobufagenin antibody had an antihypertensive effect.150 Thus, it appears that
increases in circulating marinobufagenin levels are responsible for the Na+/K+-ATPase
inhibition induced by preeclampsia and contribute to the pathogenesis of pre-eclampsia.
Accordingly, low concentrations of marinobufagenin impair the differentiation of the
cytotrophoblast in vitro.151

ROLE OF CARDIOTONIC STEROIDS IN OTHER CONDITIONS
Considering the fact that cardiotonic steroids regulate the transport and signaling functions of
a key membrane enzyme, it is not surprising that the list of disorders in which these factors are
implicated is not limited to essential hypertension, end-stage renal disease, pre-eclampsia, and
cardiac failure. Several lines of evidence indicate the involvement of cardiotonic steroids in
behavioral stress,81,152 physiological response to exercise,153 myocardial ischemia-induced
arrhythmias,154 manic-depressive disorder,155,156 and ethanol addiction.157
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Elevated levels of cardiotonic steroids, along with perturbed function of the Na+/K+-ATPase,
have been found in patients and experimental animals with diabetes mellitus.158,159 More
recent evidence indicates that rats with type 1 diabetes exhibit higher urinary levels of
marinobufagenin and more profound inhibition of the Na+/K+-ATPase than rats with type 2
diabetes, implying that the degree of glycemia seen in diabetes co-varies with level of
marinobufagenin excretion and extent of Na+/K+-ATPase inhibition.160 Along with clinical
data demonstrating that cardiotonic steroids are stimulated by oral glucose challenge,161 this
evidence implicates cardiotonic steroids in tissue glucose tolerance.

Cardiotonic steroids are also likely to be involved in the pathogenesis of cancer,162 and the
growing body of in vitro evidence of growth-promoting but anticancer effects of cardiotonic
steroids raises the possibility of using inhibitors of the Na+/K+-ATPase to treat cancer.163

NOVEL THERAPEUTIC POSSIBILITIES
Both the ion transport function of the Na+/K+-ATPase and the Na+/K+-ATPase signaling
pathway offer potential targets for therapeutic intervention (Figure 2). Although most of these
targets have not yet been specifically addressed, it is interesting to note that some have been
investigated, whether deliberately or inadvertently.

The development of antagonists to the Na+/K+-ATPase is an obvious approach to developing
therapies that target cardiotonic steroids, but would not discriminate between the two
mechanisms of Na+/K+-ATPase activity. Interesting data exist for rostafuroxin, a digitoxin
derivative that is designed to serve as an endogenous ouabain antagonist.164 Rostafuroxin has
been shown to have beneficial effects in a rodent ouabain infusion model, causing a reduction
in blood pressure and in left ventricular and renal weight.87,99 The efficacy of rostafuroxin in
hypertensive patients and the possible dependence of this efficacy on the adducin genotype is
being assessed in the ongoing phase II multicenter Ouabain and Adducin for Specific
Intervention on Sodium in Hypertension (OASIS-HT) study.165 Spironolactone and its major
metabolite canrenone are also potential antagonists of cardiotonic steroids. In experimental
studies, both spironolactone and canrenone antagonized the binding of ouabain to the Na+/
K+-ATPase as well as ouabain-induced inhibition of the pump.166 Canrenone reduced blood
pressure and restored activity of the Na+/K+-ATPase in a study of rats with experimental
volume-dependent hypertension,167 and has been proposed as a treatment for digitalis toxicity.
168

In vivo immunoneutralization of cardiotonic steroids might at first appear an eccentric approach
to the treatment of hypertension, and blockade of volume-sensitive hormones in a volume-
contracted state may seem counterintuitive. The clinical evidence of the efficacy of Digibind®
in pre-eclampsia, however, constitutes one of the most convincing arguments for a
prohypertensive role of cardiotonic steroids and for therapeutic immunoneutralization.
143-145 A multicenter, double-blind, placebo-controlled efficacy study of Digibind® in pre-
eclampsia (DEEP) is in progress.169 Immunoneutralization of cardiotonic steroids might also
be effective in patients with cerebral salt-wasting syndrome, a condition that frequently
accompanies cerebral injury and is associated with life-threatening natriuresis. For example,
in a study by Menezes and co-workers,170 Digibind® reduced renal sodium excretion in a
patient following brain tumor removal.

Another potential target for intervention is protein kinase C (Figure 2). Cicletanine, an anti-
hypertensive agent that inhibits protein kinase C, is effective in the treatment of experimental
salt-sensitive hypertension and attenuates inhibition of the Na+/K+-ATPase both in vitro and
in vivo.171 Atrial natriuretic peptide potentiates marinobufagenin-induced inhibition of the
renal Na+/K+-ATPase in vitro via cGMP-dependent mechanisms, but reduces
marinobufagenin-induced inhibition of the sodium pump in vascular smooth muscle.172 Thus,
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atrial natriuretic peptide might have the capacity in some settings to antagonize the undesirable
effects of cardiotonic steroids while potentiating their desired effects. As our understanding of
the Na+/K+-ATPase signaling pathway expands, additional targets for clinical intervention will
become obvious.

CONCLUSIONS
Understanding of the role of cardiotonic steroids in health and disease has progressed
tremendously during the past few decades, with the discovery of several endogenous
cardiotonic steroids in mammals and the elucidation of the roles of these molecules in a wide
range of diseases; however, current knowledge is only the tip of the iceberg. We expect that
many additional therapeutic avenues will open up as the capacity to measure levels of
endogenous cardiotonic steroids improves, the understanding of the biosynthesis, metabolism
and regulation of these molecules deepens, and the knowledge of the role of Na+/K+-ATPase
signaling in health and disease becomes more detailed.

KEY POINTS
• Several endogenous cardiotonic steroids, or digitalis-like factors, have been

isolated and characterized in humans; of these, ouabain, from the cardenolide class,
and marinobufagenin, from the bufadienolide class, are the most extensively
studied

• In addition to inhibiting the ion transport function of the sodium/potassium-
transporting ATPase, binding of endogenous cardiotonic steroids to this sodium
pump can activate signaling via the Src-epidermal growth factor receptor pathway

• In Dahl salt-sensitive rats with salt-induced hypertension, endogenous ouabain
acts as a neurohormone and stimulates the release of marinobufagenin, a natriuretic
and vasoconstrictor

• Endogenous cardiotonic steroids are implicated in congestive heart failure, pre-
eclampsia and diabetes mellitus

• Potential therapeutic approaches to targeting endogenous cardiotonic steroids
include immunoneutralization, receptor antagonism and protein kinase C
inhibition
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Figure 1.
Chemical structures of selected cardiotonic steroids. Ouabain belongs to the cardenolides, a
class of cardiotonic steroids found in the common foxglove (Digitalis purpurea) and in other
plants. The bufadienolides marinobufagenin and proscillaridin A are found in the cane toad
(Bufo marinus) and sea squill (Urginea maritima), respectively. The image ‘Urginea maritima
flowers’ by Júlio Reis is reproduced under the Creative Commons Attribution ShareAlike 2.5
License (http://creativecommons.org/licenses/by-sa/2.5/). The image of Bufo marinus is
reproduced under the Creative Commons Attribution 3.0 Unported License
(http://creativecommons.org/licenses/by/3.0/).
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Figure 2.
The two pathways via which binding of cardiotonic steroids to the Na+/K+-ATPase exerts
genomic and non-genomic effects. In the classic ‘ionic’ pathway (left), inhibition of the pump
function of the Na+/K+-ATPase by CTS results in an increase in cytosolic sodium concentration
and a decrease in cytosolic potassium concentration. These changes induce an increase in
cytosolic calcium level, which in turn activates a variety of pathways with genomic and non-
genomic effects. The pump function of the caveolar Na+/K+-ATPase might be more sensitive
to CTS than that of the noncaveolar Na+/K+-ATPase. The ‘signaling’ pathway (right) involves
the association of Src with the Na+/K+-ATPase in a caveolar domain. Binding of CTS to the
Na+/K+-ATPase activates Src, which in turn transactivates the EGFR and PLC, leading to a
cascade that involves generation of ROS, activation of ERK through activation of MEK,
activation of Akt (protein kinase B) via PI(3)K, stimulation of endocytosis and activation of
PKC. These steps induce the genomic and non-genomic effects of CTS. Note that both the
classic and signaling pathways allow intervention at the level of the binding of CTS to the
Na+/K+-ATPase, by immunoneutralization or pharmacological antagonism; however, the
signaling pathway presents several additional targets for interference, such as Src activation
and transactivation of the EGFR, PLC activation, activation of MEK, generation of ROS and
activation of PI(3)K. Modulation of the signaling pathway at the level of PKC, ERK and Akt
might also be possible. Abbreviations: CTS, cardiotonic steroids; EGFR; epidermal growth
factor receptor; ERK, extracellular regulated kinase; MEK, mitogen-activated protein kinase;
Na+/K+-ATPase, sodium/potassium-transporting ATPase; PI(3)K, phosphoinositide-3 kinase;
PKC, protein kinase C; PLC, phospholipase C; ROS, reactive oxygen species.
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Figure 3.
Interactions between brain endogenous ouabain, the central renin-angiotensin system, and
circulating marinobufagenin in the pathogenesis of salt-sensitive hypertension. In salt-loaded
Dahl salt-sensitive rats, sodium retention occurs because renal sodium transport is impaired.
Sodium retention stimulates the release of endogenous ouabain in the hippocampus,
hypothalamus and pituitary. Brain endogenous ouabain stimulates the RAS in the
hypothalamus and pituitary, which activates the SNS. These events stimulate the RAS in the
adrenal cortex, and activate adrenocortical production of marinobufagenin. Marinobufagenin,
a natriuretic and a vasoconstrictor, induces natriuresis via inhibition of the renotubular Na+/
K+-ATPase. Excessive release of marinobufagenin leads to inhibition of the Na+/K+-ATPase
in vascular smooth muscle cells—which potentiates vasoconstriction—and in the heart—
which increases cardiac contractility—causing hypertension. Abbreviations: Na+/K+-ATPase,
sodium/potassium-transporting ATPase; RAS, renin-angiotensin system; SNS, sympathetic
nervous system.
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