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SUMMARY

The power of statistical tests to measure effect sizes in the presence of population stratification is
an important issue for the design and analysis of population-based association studies.
Comparisons of statistical tests have shown that the power of different statistical approaches varies
in different genetic scenarios. However, the impact of stratified population parameters on
statistical power is not yet understood in a general statistical framework, particularly the impact of
correlated population parameters. To investigate such impact in detail, we implemented a genetic
model for population-based association studies with stratified samples and evaluated the impact on
power with different genetic scenarios. The investigation shows that correlation between disease
prevalence and risk allele frequency among subpopulations impacts statistical power. In a model
with five subpopulations and moderate population divergence (Fst=0.01), the correlation accounts
for more than 85% of power difference. Our results also show that the estimation of genetic effect
for candidate loci is biased by population divergence. Beneficial alleles could be wrongly
characterized as risk alleles when prevalence differences and divergences of risk loci are large
among subpopulations.
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INTRODUCTION

The population-based case-control study is an essential tool for identification of disease loci
underlying complex traits (Clark, 2003; Risch & Merikangas, 1996). Because the genetic
contribution of disease loci is often weak, hundreds even thousands of individuals are
required for a well-designed study to achieve enough statistical power for screening
candidate loci (Dahlman et al. 2002; Hirschhorn & Daly, 2005). Problems arise with using
large sample sizes for loci with weak genetic contributions because the population
stratification often leads to spurious associations. The number of such spurious associations
could be much larger than the number of real positive results in a large-scale association
study with many genetic markers (Campbell et al. 2005; Freedman et al. 2004; Helgason et
al. 2005; Lander & Schork, 1994; Marchini et al. 2004).
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In the traditional case-control approach, many investigators base their analysis on the
assumption that samples are collected from unrelated individuals with similar genetic
backgrounds. However, this assumption could be problematic for a large-scale project
because the genetic background of human populations is not as uniform as assumed
(Freedman et al. 2004). Previous studies have revealed much information on the genetic
structure of modern human populations (Bowcock et al. 1991; Campbell et al. 2005;
Cavalli-Sforza & Feldman 2003; Garrigan & Hammer 2006; Helgason et al. 2005;
Rosenberg et al. 2002; Shi et al. 2004). Many genetic variants with extreme differences of
allele frequencies have been observed among different human populations, not only on
mitochondrial DNA and the Y chromosome but also on other parts of the human genome
(Collins-Schramm et al. 2002; Collins-Schramm et al. 2004; Rosser et al. 2000; Seielstad et
al. 1998). A slight genetic background difference between cases and controls is enough to
affect the results of a large-scale association study. Although genetic differentiation
(measured by Fst) is only about 0.01 among European populations, the divergence is large
enough to inflate type I error rate (Bacanu et al. 2000; Morton, 1992; Nicholson et al. 2002;
Price et al. 2006). Furthermore, disease prevalence differences among different geographic
areas also contribute to the heterogeneity of the genetic background (Bersaglieri et al. 2004;
Sabeti et al. 2002). Therefore, a careful study of the impact of population stratification on
the design of association studies is warranted.

Several different methods have been proposed to detect population stratification and to
control the false positive rate for case-control association studies with stratified samples. In
1999, Pritchard and Rosenberg detected population stratification by using a multilocus chi-
square test (Pritchard & Rosenberg, 1999). Subsequently, the use of Bayesian clustering
with a likelihood statistical test was proposed with a similar aim, and it was important that
the new approach could be used to estimate unknown population parameters (Pritchard et al.
2000a). Based on the estimated parameters, a statistical method called ‘structured
association’ (SA) was presented, which could test case-control differences while keeping the
false positive rate at a reasonable level (Pritchard et al. 2000b). Genomic control (GC) is an
alternative approach in which the traditional chi-square statistic is replaced by a new statistic
that divides the traditional chi-square statistic by an inflation factor. Through careful
calculation and simulation, it has been shown that the GC method could control the rate of
false positive results very well (Devlin & Roeder, 1999; Reich & Goldstein, 2001). Many
researchers have modified and improved the two existing approaches, GC and SA, in the
past few years (Gorroochurn et al. 2006; Rosenberg & Nordborg, 2006; Satten et al. 2001;
Yu et al. 2006). More recently, Price et al. combined principal component analysis (PCA)
with the Armitage trend test to control the false positive rate when hundreds or more loci
were available (Price et al. 2006). All the approaches mentioned above have shown success
in controlling the type | error rate in case-control designs with stratified populations.

Power issues are important in genetic studies of complex traits, especially in the era of
genome-wide association study (Lin, 2006; Storey & Tibshirani, 2003; Wang et al. 2005).
Previous reports proposed methods for controlling spurious associations and compared the
power of the different statistical approaches (Bacanu et al. 2000, Gorroochurn et al. 2006,
Price et al. 2006). However, only a limited number of population parameters were
thoroughly evaluated with respect to the power issue (Marchini et al. 2004, Devlin et al.
2001). In addition, one report showed that population stratification led to loss of statistical
power in a population-based association study without control for spurious associations (Shi
et al. 2004); however, details of the power loss were still not well investigated. Some
researchers have realized that prevalence differences among subpopulations lead to
sampling bias and make type | error control and the calculation of odds ratios difficult
(Satten et al. 2001). Nevertheless, no careful exploration of the impact of prevalence
differences on statistical power has been carried out. For a more complete characterization,
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the relationships between power difference and parameters of population stratification need
to be investigated under different genetic scenarios.

GC theory was introduced with an elegant genetic model by Devlin et al. (2001). Their
method and conclusion, based on a discrete-population model, can be generalized to
scenarios with admixture among the population groups or continuous variation across
geographic space (Gorroochurn et al. 2006; Rosenberg & Nordborg, 2006). The genetic
model with multiple discrete population groups supplies us an opportunity to view power
differences in a clear and explicit manner. Here, using a similar model, we show that
correlation of population parameters introduces serious power differences to statistical tests
in association studies with population stratification. The investigation also shows that the
effects of candidate alleles will be difficult to estimate accurately in stratified samples.

We assume that the population in a local area is composed of several subpopulations with
different genetic backgrounds. Each subpopulation is in Hardy-Weinberg equilibrium
(HWE) and indicated with ci (i =1, 2, 3...). We also suppose that our case and control
samples were randomly collected in this area without regard for the population structure.

Case-control effect size

Expectation

Case-control effect size is a measure of difference between case and control groups.
Statistical tests on case-control effect size are the basis of population-based association
studies. In the Devlin et al. paper, case-control effect size is defined as frequency difference

of allele A between case and control groups, 6=p” — p? (Devlin et al. 2001) where p” is the

frequency of allele A in the case group and p;’ is the allele frequency in the control group.
For a biallelic locus with alleles A and a, the frequency of allele A in the case or control
group can be calculated as

{ pR=2? +p? /2)
C

pi=3pl, +pl, /2
c (1)

D

D . e e - .
where p,, .and p,, . are the frequencies of individuals who come from subpopulation ¢ and

carry genotype AA or Aa in the case group, respectively; p"flw and pf are the frequencies of
individuals who come from subpopulation ¢ and carry genotype AA or Aa in the control
group, respectively.

of the effect size

Based on the definition of effect size and equation 1, expectation of effect size can be
calculated as

E@©)=) (E@D )+EPD )2 = Y (EWL, )+EpL,)/2)
c c (2)

We use f, f7, and f; as notations for penetrances of each genotype of the biallelic disease
locus in subpopulation ¢, f5=P(D|AA, c), fy=P(D|Aa, c), and fy=P(Dlaa, c). Suppose
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individuals of subpopulation ¢ appeared in the local population with frequency p. and

=1 . . . s
ZP . Hence, given disease prevalence pp , the frequencies of individuals who come

c

from subpopulation ¢ and carry different genotypes in case group or control group can be
calculated as

D o Fy P, Pe
Pia Pp
)D _ fl(p,.m Pc
1 :\ur__(. PU
D _ f() PaaPc
aa,c Pn (3)
or
a __ =5, pe
Ade 1 ~Pp
a __U=FDp, pe
Aac 1-p,

d_ (=FPupe
aa,c— 1_],’) (4)

respectively, where pS , p¢ , and <, are genotype frequencies in the subpopulation c. We
assume that all parameters on the right-hand side of equations 3 and 4 are well known. By
replacing expectations of genotype frequencies in equation 2 with the frequencies from
equations 3 and 4, we can calculate the expected case-control effect size.

Variance of the effect size

Let the vector PP denote the frequencies of individuals who come from different
subpopulations and carry different genotypes in the case group,

D_, D D D D D D D D D T
P _(p.m.(-l ’ p‘.u.(-: Tt p.m.m 2 Paser 1).'\11.('2 o pAu.('n’ Paac12 Paac2s -+ +» Paaen) >

D D D
where ;(p‘*“‘““w‘*""’ +p“““'i)_1. The superscript T denotes the transposition operator on a
vector. Suppose N individuals were involved in the case group. Given that the sampling
distribution of elements of NPP follows a multinomial distribution when the sample size is
large, the variance and covariance of elements of PP can be obtained:

pi(1 = pi)
Var(p;)=——
ar(p;) N 5
piPj . .
Cov(pi, pj)=— —,
ov(pi, pj) N @) ©)

Both pj and pj are elements of vector P.
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Using equations 5 and 6, the variance of the frequency of allele A in the case group, Var(pf),
can be calculated:

Var(p?)zz Var(pADA.{_’ )+Z Var(pf:m /2)+23, Z'Cov(pﬁ“, s pﬁ” )
i 1

i j>i

+25 3 Cov(p? 12, pP /2428 3.Cov(p? /2, p" /2)
L

Aa,cj

i j>i

(7)

Similarly, the vector of the frequencies of individuals who come from different
subpopulations and carry different genotypes in the control group is

—(d d d d d d d d a T
Pd—(p&m 2Pz 2 Praen Paver> Pracar* * > Pagen Paacl» Paac2s -+ +» Paacn) -

For simplicity, the same sample size (N) is assumed for the control group. Therefore, the

variance of the frequency of allele A in the control group, Var(p‘:), can be calculated:

Var( pff):Z Var( pi‘.{i )+Z Var( pf“_“_ / 2)+2Z_ Z'C ov( pi it piw )
1 1

i j>i

+23 X Cov(p? 12, p¢, j2)+25 X Cov(p?, . p?. [2)
L]

—~—. Aacj J
i j>i ’

(8

Each term of the right-hand side can be obtained from equations 5 and 6 by replacing p; and
p;j with the elements of frequency vector of control group.

All the elements of vectors PP and P9 were given previously in equations 3 and 4.

Statistical test and power calculation

When frequencies of allele A in each of the case and control groups, p” and p?, are
independent random variables and are approximated with normal distribution because
sample size is large, the asymptotic distribution of effect size follows normal distribution
(Lehmann, 1999). We can compose a statistic,

2_ 62
" Var(5) (9)

X

The distribution of this statistic follows a chi-square distribution with one degree of freedom
and with a noncentral parameter,

_ D)’
" Var(s) (10)

Under the hypothesis that there is no population stratification and no genetic contribution
from candidate loci, the distribution of %2 will follow a central chi-square distribution with
one degree of freedom (Abramowitz & Stegun, 1972). We can conduct a statistical test for
the null hypothesis by using equation 9.
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The statistical test still works even if population stratification exists. Conditioning on the
population divergence, the statistic conforms to a noncentral chi-square distribution with a
noncentral parameter Ao under the null hypothesis, where the relative risk (We use RR in
text and R in equations to denote relative risk below) of alleles of candidate locus is 1
(Abramowitz & Stegun, 1972; Hoel, 1962). The 1y can be obtained from equation 10 with
aforementioned model and population parameters. Under the alternative hypothesis
considering both population divergence and case-control effect size, the statistic conforms to
a non-central chi-square distribution with a noncentral parameter Ay, The Ay is calculated in
equation 10 according to the RR and other population parameters (See previous sections and
appendix for detail).

We calculated statistical power in two different ways: with or without adjustment for type |
error. For the estimate of power without adjustment for type | error, the distribution of the
statistic follows a noncentral chi-square distribution with a non-central parameter A under
the alternative hypothesis, whereas the distribution of the statistic follows a central chi-
square distribution under the null hypothesis. For the estimate of power with adjustment for
type | error, the distribution of the statistic also follows a noncentral chi-square distribution
with a non-central parameter A1, under the alternative hypothesis, whereas the distribution of
the statistic follows a noncentral chi-square distribution with a noncentral parameter A
under the null hypothesis. The degree of freedom of the statistical distributions is the same
in the two different ways.

Parameters of the model

All the population parameters on the right-hand side of equations 3 and 4 are necessary for
the power study. However, we give frequency and penetrance of each genotype in
subpopulations in an indirect way for good comparability with the results in other reports.

Because all the subpopulations are in HWE, we can calculate genotype frequencies from
allele frequencies in the subpopulations. To focus on the key aspects of the power issue in an
explicit manner, we assume that there are only two subpopulations with the same size in a
local area. Given divergence of candidate loci (measured by Fst) and frequency of allele A
in the local population, the frequency of allele A in each of the two subpopulations could be
calculated as

{ p_:‘ =p,+Fsap,(1-p,)
pf:pA - VFap,(1-p,) an

where pp is the frequency of allele A in the local population. p;‘ is the allele frequency in

subpopulation A, and pf is the allele frequency in subpopulation B. In equation 11, we
specify that the allele frequency in subpopulation A is always higher than that in
subpopulation B.

Knowledge of the penetrance of each genotype of disease locus is necessary to calculate
frequency of each genotype in the case or control group (Equations 3 and 4). Since RR of a
risk allele has appeared more frequently in reports of association studies for complex traits,
we follow this common choice in our study also. Given RR of risk allele, penetrance of each
genotype of the biallelic locus is calculated under different disease models when disease
prevalence and genotype frequencies are known (See appendix for detail). To simplify the
model, we assume that RR of risk allele is the same in different subpopulations,
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RR=RR.1=RR¢). This assumption is similar to that in a fixed effect model for genetic meta-
analysis and has been widely used for other purposes.

Disease prevalence differences among different subpopulations introduce sampling bias in
sample collection. Individuals who come from subpopulations with higher prevalence will
have more chance to be involved in the case group than those who come from ubpopulations
with lower prevalence. For simplicity, the term ‘correlation’ is used below to describe the
relationship between disease prevalence and allele frequency among subpopulations. In the
two-subpopulation model, there is a positive correlation between prevalence and allele
frequency when the prevalence of subpopulation A is higher than that of subpopulation B,
since the frequency of risk allele A is always higher in subpopulation A than in
subpopulation B. Conversely, there is a negative correlation when the prevalence in
subpopulation A is lower than that in subpopulation B.

ANALYTIC INVESTIGATION AND SIMULATION

Model with two subpopulations

Given the parameters mentioned above (Fst, allele frequency of local population, RR, model
of disease, and disease prevalence), the aforementioned two-subpopulation model offers an
opportunity to analytically investigate power difference in different genetic scenarios.
Statistical power, type | error rate, and other important variables of the statistical test for
case-control effect can be obtained from equations 9 and 10. We use a sample set with 1000
individuals in the case group and the same size in the control group to investigate patterns of
power difference in different scenarios. A statistical test with P<0.05 is considered
significant. Results of the analytical investigation are presented in Table 1 and Figures 1, 3,
and 4. Calculations were performed in R (The R Project for Statistical Computing, release
2.4.1, www.r-project.org).

Model with multiple subpopulations

RESULTS

Although, only scenarios with two subpopulations were discussed above, our general model
still holds when more than two subpopulations exist. We ran a simulation to generalize our
findings to scenarios with more than two subpopulations. To achieve parameters for the
model with multiple subpopulations, we assume there are five subpopulations of the same
size in the local area. We also assume that divergence of the risk allele among the
subpopulations is Fst=0.01 and frequencies of the risk allele follow a beta distribution with
mean pa and variance pa (1 — pa)Fst . While pa was given, the risk allele frequencies of the
five subpopulations were randomly generated in R with the above assumptions. Namely, the
generated frequencies kept all the assumptions to be true. Disease prevalence of the five
subpopulations was randomly assigned with uniform distribution in range from 0.03 to 0.05.
Hence, given RR of the risk allele to be 1.2 for each of the five subpopulations, statistical
power was calculated with the same method and sample size as before. A total of 1000
simulations were performed as described above. Statistical power from the simulations is
shown in Figure 2 with Pearson’s coefficient of correlation between risk allele frequencies
of subpopulations and subpopulations’ disease prevalence.

Property of the model under strong assumptions

Before discussing the pattern of power changes in our model in detail, we explore its basic
property in a special scenario with multiple subpopulations. Based on the definition of case-
control effect size and the genetic model, we rewrite the effect size in Bayes’ theorem as
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6=Z[ P(DIA, c) 3 P(dlA’C)]P(AIC)P(c)
C

PD) P (12)

We assume subpopulations are with allelic correlation defined by Fst (Wright, 1969) and
that allele frequency in subpopulations is an independent and identically distributed random
variable, with mean pp and variance pa (1 — pa)Fst . When the sample size is large enough,
hence assuming

V:Z[ P(D|A, c) B P(d|A, c)

P(D) Pa@ 1€

c

is a constant, the variance of the effect size can be approximated as
Var(8) ~ p,(1 — p,)FstV? (13)

In this equation, the larger genetic divergence leads to the larger variance of expected case-
control effect size. Based on equation 9, the value of our statistic will be smaller with the
increase of variance when effect size is a constant. Consequently, the statistical test is less
powerful when population divergence is larger.

Power differences in scenarios without adjustment for type | error

In many published association studies, no effort was made to control extra spurious
associations in statistical tests. In other words, the association studies were conducted in the
‘traditional’” manner without considering population divergence. Here, we show that the
correlation between disease prevalence and risk allele frequency among subpopulations
plays a critical role in the power differences of the statistical test in the case-control study. In
the discussion, “allele frequency” or “frequency of the risk allele” is the frequency of risk
allele in a local population if there is no other specific indication.

I. Power differences in scenarios with two subpopulations—Statistical power
differed significantly in the aforementioned model with two subpopulations (Figure 1).
Similar patterns of power difference were observed in different scenarios with RR=1.2 or
RR=1.4, with disease prevalence of 0.02 in subpopulation A and 0.06 in subpopulation B. In
those scenarios, statistical power was generally reduced with an increase in genetic
divergence (Figure 1a, 1c). The reduction is more than 20% in scenarios with structured
populations with moderate genetic divergence (Fst=0.01). Furthermore, population
divergence impacts power more for risk alleles with lower RR and lower minor allele
frequency (MAF). Due to the striking power loss, there is little probability of discovering a
disease locus with weak genetic contribution when genetic divergence is severe. By contrast,
while prevalence of disease is 0.06 in subpopulation A and 0.02 in subpopulation B, there is
an increase of statistical power with increase of genetic divergence (Fig. 1b, 1d).

It has been shown that the power of a statistical test is reduced with a decrease in MAF of
risk loci when no population stratification existed and RR was a constant (Wang et al.
2005). However, the power changes presented a different pattern in our model while the
genetic divergence was large (Fst=0.05). The weakest power did not appear with the lowest
or the highest risk allele frequency when disease prevalence was 0.02 in subpopulation A

Ann Hum Genet. Author manuscript; available in PMC 2009 November 1.
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and 0.06 in subpopulation B (Figure 1a, 1c). Rather, the weakest power was found where the
allele frequency was slightly lower than 0.2 or higher than 0.8 in the scenario with RR=1.4
(Figure 1a). In the scenario with RR=1.2, the weakest power appeared where the risk allele
frequency was about 0.6 (Figure 1c). By contrast, when the prevalence was 0.06 in
subpopulation A and 0.02 in subpopulation B (Figure 1b, 1d), the pattern of the power
decrease with MAF change was similar with that of the previous report (Wang et al. 2005).
However, the statistical test is more powerful for samples with large population divergence
than those with less divergence in the scenarios (Figure 1b, 1d).

Although the scenarios which were explored in Figure 1 are very limited, the exploration has
shown us a crucial result that correlation of disease prevalence and allele frequency among
subpopulations is very important for changes in statistical power. To look more into the
importance of the correlation, we present results from more scenarios in Table 1. As
expected, statistical power generally increases with increasing prevalence ratios of
subpopulations A and B in all three risk allele frequencies (0.1, 0.5, and 0.9) and two of
three divergence levels (0.01 and 0.05). For ratio smaller than 0.04/0.04, power generally
decreases with increases in divergence, and power generally increases with increases of
divergence for ratios larger than 0.04/0.04. The correlation between allele frequencies and
prevalence of subpopulations changed from ‘negative’ to “positive’ as the ratio increases
because the allele frequency of subpopulation A is always higher than the frequency of
subpopulation B in our model. This observation consolidates our point that the correlation is
important for statistical power in divergent populations.

When prevalence is the same in two different subpopulations (Table 1, 0.04/0.04), there is a
minor power reduction with increase of population divergence. Based on our model, the
expectation of effect size was no difference in these scenarios even though population
divergence changed. So the power decrease must be due solely to population divergence.
We have given a mechanism for this observation in a previous section with a simplified
approach (Equation 13). The current observation shows that our previous conclusion (from
Figure 1) can be generalized to more common scenarios. The observation also shows that
population divergence is not solely responsible for the power differences in different
scenarios, since the power difference is larger when we have both population divergence and
prevalence difference at the same time.

Il. Power differences in scenarios with multiple subpopulations—To validate our
discovery and extend our conclusion to scenarios with more than two subpopulations, we
performed a simulation and generated plots to show the relationship of statistical power and
Pearson’s coefficient of correlation between disease prevalence and risk allele frequency
among subpopulations (Figure 2). Details of the simulation have been described above
(model with multiple subpopulations). All three plots for three different risk allele
frequencies indicate that there is a tight relationship between statistical power and Pearson’s
coefficient. Positive coefficients generally lead to power increases and negative coefficients
generally lead to power decreases. Conditioning on our setting for the simulation, the
coefficient of determination demonstrates that Pearson’s coefficient (on the x-axis) explains
most of the variance of the power change (r2=0.904 for Figure 2a, r=0.898 for Figure 2b,
r2=0.868 for Figure 2c). Another interesting observation from Figure 2 is that the variance of
the power changes is smaller when Pearson’s coefficient is closer to zero. The observations
emphasize that Pearson’s coefficient is important but is not enough to explain all of the
power differences. Value of exact allele frequency and disease prevalence of each
subpopulation were necessary for a full explanation.
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Biased estimation of relative risk

The aforementioned power increase with increasing genetic divergence (Figures 1b and 1d)
must be due to the increase of case-control effect size in stratified samples, since we have
shown that the variance of case-control effect size increases with increase of genetic
divergence, leading to a reduction in power when case-control effect size is a constant
(Equation 13 and Table 1). Penetrance of genotypes is an important component of case-
control effect size (Equations 2, 3, and 4). Based on the relationship of population
parameters in genetic models (see appendix for details), the case-control effect size changes
with change of genetic divergence in our model while other population parameters are fixed.
Subsequently, the estimation of the RR from the case-control effect size would be biased if
the population stratification were ignored. We estimated the RR of a risk allele, without
considering the population divergence, from observed effect sizes in the aforementioned
scenarios with two subpopulations (used for Figure 1). The estimated RR varies, especially
with larger genetic divergence and allele frequency extremes (Figure 3). Moreover, the
results show that a risk allele could be mistaken for a protective one if population
substructure were not considered in association analysis (Figures 3a, 3c). Thus, population
stratification could be an important cause of ‘flip-flop’ associations, in which, for example,
an allele identified as a risk allele in recent report had been identified as a beneficial allele in
previous reports. Increasing numbers of “flipflop” associations were reported when recent
publications replicated previously reported disease-marker associations (Lin et al. 2007).
Even if the “flip-flop” did not happen, the biased RR would weaken the power of meta-
analysis for disease loci. Meta-analysis is more important than ever as investigators use
meta-analysis to guard against the lack of power in whole-genome association studies.

Power changes with adjustment for type | error

Population stratification increases statistical bias and makes the distribution of a statistic
more dispersed, which leads to an increase in type | error (Devlin et al. 2001). Using a fully
parameterized model, we can calculate the noncentral parameter of the statistical distribution
for our statistic under the null hypothesis that the genetic variant does not contribute to a
phenotype trait, even if population stratification exists. A new rejection criterion from the
noncentral chi-square distribution can keep type | error rate at p<0.05 accuracy for the
statistical test based on case-control effect size. In other words, commonly used criteria,
which come from a central chi-square distribution, were replaced with stricter criteria in our
approach. At the same time, the chi-square statistic, which was used before, was kept. Power
changes for this approach are shown in Figure 4. To make the results comparable with the
previous results, which were without adjustment for type I error (Figure 1), all population
parameters are the same as those used in the previous sections.

In the current approach, statistical power is reduced with increased genetic divergence when
disease prevalence and allele frequency are negatively correlated (Figures 4a, 4c). The
reduction shows a similar pattern but is more serious than that shown in Figures 1a and 1c.
The lowest power appears with the lowest or highest allele frequency in the current
approach. This pattern is the same as that observed in the scenarios without population
stratification, but different from that shown in Figure 1a and 1c.

When the correlation between the allele frequencies of subpopulations and the
subpopulations’ prevalence is positive and the RR is high (RR=1.4), the power increase is
negligible, even with large genetic divergence (Figure 4b). Although, in the previous
approach, the population stratification causes a clear power increase (Figures 1b, 1d). There
still is slight power improvement in samples with moderate or large genetic divergence
when the RR is low (Figure 4d). But overall statistical power decreases in stratified samples
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when there is the same probability of a negative or positive correlation, because the power
difference is larger when disease prevalence and allele frequencies are negatively correlated.

DISCUSSION

One of the most important motivations for studying the effect of population stratification in
association studies is to prompt investigators to pay more attention to population structure
and try their best to eliminate potential impacts of population stratification through
optimized research designs and sampling strategies. With the same goal, we built our model
on structured populations without admixture and presented the power differences in an
explicit manner. Those ideas in this study can be generalized to a complex model upon
structured population with admixture. However, a complicated model with more population
parameters is less helpful to introduce our ideas and will not lead to more important
conclusions than that of our study.

The possible difference in statistical power in different genetic models of disease is one of
the essential concerns in this study. We calculated the statistical power in dominant,
multiplicative, and recessive models separately. Only results based on the multiplicative
model were presented in this report, because no obvious difference was observed among the
different genetic models when other population parameters were held constant (data not
shown). In other words, the pattern of the power differences is model-independent when the
sample size is large.

Our study is valuable because it relates to several issues considered important by many
investigators. First, genetic contribution from single disease locus is often weak for common
disease (Lohmueller et al. 2003). Our investigation identified that population stratification
affects statistical power more when a risk allele has lower RR. Second, the prevalence of
many complex diseases, such as melanoma and prostate cancer, is evidently different in
different populations (Ries et al. 2007). We pointed out that this difference could increase
the impact of population stratification. Third, the number of main components in structured
populations is often limited, especially for populations in a limited area (Rosenberg et al.
2002). As we showed above (using the two-subpopulation model), the power differences are
large for association studies if a population is composed of two genetic components and
divergence (measured by Fst) of candidate loci are large (Figures 1a, 1c, 4a, 4c).

Risk allele frequency is one of the essential factors that contribute to prevalence of diseases.
A reasonable assumption is that populations with higher disease prevalence have a greater
probability of carrying a risk allele with higher frequency. If the assumption is realistic,
population stratification would benefit association studies of common disease in some
special cases. For example, there is clearly a power increase if disease prevalence and risk
allele frequency are positively correlated, even if type I error is controlled well (Figure 4d).

It is assumed in GC theory that allele frequencies are not correlated with the prevalence of
complex diseases among ancestral populations (Devlin et al. 2001). However, this
assumption may not be realistic. Populations with tighter genetic relations are more likely to
share similar living habits and other environmental factors. Given our results above,
differences in statistical power will be large for stratified samples when there is a substantial
correlation between risk allele frequencies and disease prevalence among subpopulations.
Therefore, more attention should be paid to sample divergence in association studies, not
only for reducing false positive results but also for acquiring more powerful research
designs.
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Appendix

Suppose all subpopulations are in HWE. We calculate penetrances of genotypes by means of

the two equations

_fgcpl\ +f11‘(1 =Py
A =p)tfip,

fe=fpi+2fip, (1= p)+fs(1 = p,)°

where R is RR of risk allele in subpopulation ¢ and € is prevalence of disease in
subpopulation c . pa is the frequency of risk allele A in the subpopulation.

l. Multiplicative model

In multiplicative model, we defined
Pls=rfi=f;
Based on the definition of RR, we have

R _Lpy+fid=p,)
A
_rifgpatriy-py)
Tod=p+rfgp,
=r

Because

F=fp+2fi P, (L= )+ 15 (1= p,)°
=rfopit2rigp, (1 = p)+f5(1 = p)°

we replace r with R and rewrite the equation as

f(‘
R2p2+2R.p,(1 - p)+(1 = p,)*

fo=
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Replacing the values of the r and fj in equation A.1.1, we get penetrances of all the three
genotypes, f, f7, and f5.

[I. Dominant model

In the dominant model, we have two different penetrance levels:

L=
RR could be written as

_Lparfid-pry)

Re= foU=pO+fip,
£

TN
With the equation

F=fpi+2fipa (1= P+ f5(1 = )’
:fz"pwaZfZ('.PA(l = p)+fa(l=p,)”

penetrances will be

e po_ fR.
h=R “Rp,+Q2—-p)+(1 =R.p)+(1-p,)

_f;(l _RCI}A)
07 R(1-p,)

Il1l. Recessive model

Penetrances in the recessive model are
L =5
We rewrite RR as

R.= Lpy+fid=-p,)
=R,
_Lpatf-ry)

I8

With the equation
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=21 p, (1= p)+f5(d = p,)
=fHp2+2fop,(1 - p)+fol - p,)?

we have

f(-: fC(Rr"'pA -1
2 p%(RC - 1+,)A)+pk4(l - P%)

. fv_fz(rpi
fl_fg_ l—p%
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Figure 1.

Power differences in two-subpopulation scenarios without adjustment for type | error
(statistical power on the y-axis; risk allele frequency on the x-axis). For Figures 1a and 1b,
RR=1.4. For Figures 1c and 1d, RR=1.2. Figures 1a and 1c show patterns when the
prevalence and the risk allele frequency are correlated negatively between subpopulations
(prevalence_A=0.02, prevalence_B=0.06, frequency_A>frequency_B). Figures 1b and 1d
show patterns when the prevalence and the risk allele frequency are correlated positively
between subpopulations (prevalence_A=0.06, prevalence_B=0.02,
frequency_A=>=frequency_B). Curves are marked for different divergence levels (* for Fst=0,
o for Fst=0.01, A for Fst=0.05).
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Figure 2.

Correlation between prevalence and risk allele frequency contributes to statistical power.
The correlation is shown on the x-axis as Pearson’s coefficient, and statistical power is
shown on the y-axis without adjustment for type I error. Suppose five subpopulations are of
the same size in a local area and the RR of a risk allele is 1.2 in the local population. The
Figure 2a shows results for a risk allele with frequency of 0.1 in the local population; the
Figure 2b shows results for a risk allele with frequency of 0.5 in local population; the Figure
2c shows results for a risk allele with frequency of 0.9 in the local population.
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Figure 3.

Bias of observed RR on the y-axis; risk allele frequency on the x-axis). For Figures 3a and
3b, RR=1.4. For the Figures 3c and 3d, RR=1.2. Figures 3a and 3c show patterns when the
prevalence and the risk allele frequency are correlated negatively between populations
(prevalence_A=0.02, prevalence_B=0.06, frequency_A = frequency_B). Figures 3b and 3d
show patterns when the prevalence and the risk allele frequency are correlated positively
between populations (prevalence_A=0.06, prevalence_B=0.02, frequency A >
frequency_B). Curves are marked for different divergence levels (* for Fst=0, ¢ for
Fst=0.01, A for Fst=0.05).
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Figure 4.

Power differences with adjustment for type | error. Figures 4a and 4c show results when the
prevalence and the risk allele frequency are correlated negatively between populations
(prevalence_A=0.02, prevalence_B=0.06, frequency_A=>frequency_B). Figures 4b and 4d
show results when the prevalence and the risk allele frequency are correlated positively
between populations (prevalence_A=0.06, prevalence_B=0.02, frequency A=>frequency_B).
For Figures 4a and 4b, RR=1.4. For Figures 4c and 4d, RR=1.2. Statistical power on the y-
axis; risk allele frequency on the x-axis. Curves were marked for different divergence levels
(* for Fst=0, - for Fst=0.01, A for Fst=0.05).
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