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Abstract
DNA mismatch repair (MMR) proteins are ubiquitous players in a diverse array of important cellular
functions. In its role in post-replication repair, MMR safeguards the genome correcting base mispairs
arising as a result of replication errors. Loss of MMR results in greatly increased rates of spontaneous
mutation in organisms ranging from bacteria to humans. Mutations in MMR genes cause hereditary
nonpolyposis colorectal cancer, and loss of MMR is associated with a significant fraction of sporadic
cancers. Given its prominence in mutation avoidance and its ability to target a range of DNA lesions,
MMR has been under investigation in studies of ageing mechanisms. This review summarizes what
is known about the molecular details of the MMR pathway and the role of MMR proteins in cancer
susceptibility and ageing.
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1. Introduction
Ensuring the fidelity of DNA replication is central to preserving genomic integrity, and DNA
mismatch repair (MMR) is critical for maintaining the fidelity of replication. We review what
is known concerning the molecular mechanism of MMR, its role in DNA damage signalling,
and its relationship to cancer and ageing. The recent literature is emphasized; for more
comprehensive discussions, please see Harfe and Jinks-Robertson (2000), Jiricny (2006),
Kunkel and Erie (2005), Modrich (2006), Schofield and Hsieh (2003).

Replication is an extraordinarily faithful process (Iyer et al., 2006); mutations occur at a
frequency of roughly 1 in 109 to 1010 base pairs per cell division. Nucleotide selection at the
base incorporation step and the proofreading function of DNA polymerases collectively result
in an error rate of approximately 10-7 per bp per genome. The MMR pathway, a DNA repair
pathway conserved from bacteria to humans, targets base substitution mismatches and
insertion-deletion mismatches (IDLs) that arise as a result of replication errors that escape the
proofreading function of DNA polymerases. In doing so, MMR contributes an additional 50–
1000-fold to the overall fidelity of replication. Thus, inactivation of MMR confers a strong
mutator phenotype in which the rate of spontaneous mutation is greatly elevated. A hallmark
of many MMR-deficient cells is instability at microsatellite regions consisting of mono- and
di-nucleotide repeats. Strand slippage during replication through microsatellite regions gives
rise to IDLs that are normally repaired by MMR; hence, microsatellite instability (MSI) is
widely used as a diagnostic marker for loss of MMR activity in tumour cells (Umar et al.,
2004).
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1.1. Mutation avoidance and post-replication repair
In Escherichia coli, the methyl-directed MMR system has been extensively studied, and the
entire pathway has been reconstituted in vitro from purified proteins in the Modrich laboratory
(Table 1, reviewed in Kunkel and Erie, 2005;Schofield and Hsieh, 2003). MMR in prokaryotes
is initiated when mismatches are recognized by a highly conserved MMR protein, MutS. MutS
and a second conserved protein, MutL, act in concert to license the excision repair pathway by
activating endonucleolytic cleavage by a third MMR protein, MutH. MutH directs its nicking
activity to the unmethylated strand at transiently hemimethylated CATC sites shortly after
replication. This methyl-directed nicking by MutH ensures that MMR in E. coli is directed to
the newly synthesized DNA strand containing the error. In vitro studies helped to establish that
MMR is bidirectional with respect to the excision step. In other words, MMR can utilize a nick
on either side of the mismatch. With the help of MutL, this nick in the nascent strand acts as
a point of entry for helicase II that unwinds the nascent strand, a process that is facilitated by
single-strand binding protein (SSB) (Matson and Robertson, 2006;Robertson et al., 2006b).
This exposes the strand to digestion by one of four single-strand exonucleases having either
3′-5′ or 5′-3′ polarity: ExoI, ExoVII, ExoX, or RecJ (Burdett et al., 2001). The resulting DNA
gap is repaired in a reaction involving pol III and ligase thereby restoring the duplex to its intact
parental genotype.

MMR in eukaryotes follows the broad outline described above for the E. coli methyl-directed
MMR pathway (see Fig. 1 and discussion below), and reconstitutions in the Li and Modrich
laboratories of MMR reactions from purified proteins possess many of the key features
associated with MMR in vivo (Constantin et al., 2005;Dzantiev et al., 2004;Zhang et al.,
2005). These studies were predicated on a large body of earlier work that identified individual
components from active fractions of cell extracts and characterized partial reactions (reviewed
in Jiricny, 2006). Zhang et al. (2005) have demonstrated MMR of a G-T mismatch in 5′-directed
repair reactions containing MutSα, MutLα, RPA, EXO1, PCNA, RFC, HMGB1, DNA
polymerase δ, and DNA ligase I (Yuan et al., 2004). Substitution of MutSβ for MutSα allowed
repair of a 3 nt IDL. MutLα was not required for 5′-directed repair, but did regulate EXO1-
catalysed excision. 3′-Directed repair was not supported in this system. Constantin et al.
(2005) reconstituted a nick-directed, bidirectional reaction involving seven components:
MutSα, MutLα, RPA, EXO1, PCNA, RFC, and DNA polymerase δ. Again, MutLα was not
required for 5′-directed repair, but was essential for 3′-directed repair. EXO1 was required for
both 3′- and 5′-directed repair.

Some notable differences between MMR in E. coli and MMR in eukaryotes are readily apparent
(reviewed in Modrich, 2006). First, whereas bacterial MutS and MutL proteins function as
homodimeric proteins, their eukaryotic counterparts are invariably heterodimers composed of
two related, but distinct protein subunits. In fact, eukaryotic cells possess several MutS and
MutL homologues, and the choice of subunit partner dictates substrate specificity and cellular
function (see Table 1; Kunkel and Erie, 2005). MSH2-MSH6, or MutSα, targets base-base
mispairs and +1 IDLs; MSH2-MSH3, or MutSβ, targets primarily IDLs though recent genetic
and biochemical data support a role for yMsh3 in the repair of certain base-base mispairs in
vivo (Harrington and Kolodner, 2007). Second, although the E. coli methyl-directed MMR
system has been completely defined, a minimal human system has only been recently
reconstituted with purified proteins (see below), and many aspects of the pathway remain
unclear. Third, while E. coli and closely related Gram-negative bacteria can take advantage of
dam methylation to direct strand-specific repair, such signals are not available to other
prokaryotic or eukaryotic cells.

A number of key issues concerning the molecular mechanism of MMR remain unresolved.
Chief among them are: (i) How are MMR proteins recruited to newly replicated DNA most
likely in the context of the replication machinery, and how does MutS recognize mismatches?
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(ii) What is the nature of the MutS (MutSα)-MutL (MutLα)-heteroduplex DNA complex that
licenses MMR? (iii) How does MMR couple the mismatch recognition step with a strand-
specific excision step? The last is critical as the gapped DNA intermediate formed during
MMR, if not repaired, renders the cell vulnerable to replication arrest and the formation of
lethal double-strand breaks (DSBs).

1.1.1. Mismatch recognition—E. coli MutS recognizes seven of eight possible base-base
mismatches, C:C mismatches being refractory to this repair pathway, and IDLs of up to four
bases. Co-crystal structures of MutS proteins containing short, C-terminal truncations from E.
coli and T. aquaticus bound to a variety of mispairs and IDLs reveal a homodimeric protein
clamped around the DNA at the mismatch (see Fig. 2; Junop et al., 2001;Lamers et al,
2000;Natrajan et al, 2003;Obmolova et al., 2000). The homodimers form a θ where the
mismatched DNA resides in the lower channel while the upper channel is unoccupied.
Interestingly, in the bacterial MutS proteins, binding of a mismatch induces asymmetry in the
two protein subunits such that only one makes direct contact with the mismatch. Recent
biochemical and genetic studies reveal that the dimer is the biologically functional unit of E.
coli MutS although the protein exists in vitro as a dimer-tetramer equilibrium (Mendillo et al.,
2007). In the crystal structures, the DNA is sharply kinked about 60° towards a narrowed major
groove at the mismatch. A conserved Phe-X-Glu motif at the N-terminus of bacterial MutS,
originally identified in cross-linking studies, and eukaryotic MSH6 constitutes the mismatch
binding motif with the Phe residue involved in an aromatic ring stack with the mismatched
base displaced 2–3 Å into a widened minor groove (Dufner et al., 2000;Malkov et al., 1997).
Mutation of the Phe abrogates mismatch binding in vitro and confers loss of MMR in vivo
(Bowers et al., 1999;Das Gupta and Kolodner, 2000;Drotschmann et al., 2001;Yamamoto et
al., 2000). The carboxyl group of Glu is hydrogen-bonded to a mismatched base. Mutation of
this residue results in more complicated phenotypes, but the Glu residue appears to contribute
specificity to mismatch interactions and is involved in nucleotide cofactor-mediated allosteric
regulation of MutS proteins (Drotschmann et al., 2001;Lebbink et al., 2006;Schofield et al.,
2001 a).

Crystal structures of human MutSα bound to several mismatched DNAs have recently been
determined (see Fig. 3; Warren et al., 2006,2007). The structure utilized full-length MSH2 and
a truncated MSH6 missing the N-terminal 340 amino acids. The resulting MSH6 truncation is
more or less collinear with the bacterial proteins as the N-terminal region that is absent is
specific to MSH6. Thus, like the bacterial structures, the MSH2 and truncated MSH6 subunits
of the hMutSα-mismatch co-complex each retain the five-domain configuration and, together,
form a θ-shaped clamp on the DNA. There is asymmetric utilization of a Phe-X-Glu motif in
MSH6 but not MSH2 at the mismatch binding site, DNA kinking at the mismatch, and, at the
opposite end of MutSα heterodimer, two composite ABC transporter ATPase sites that, like
the bacterial proteins, are connected to the distant mismatch binding site via long α-helical
levers. Interestingly, in the hMutSα structure, the upper channel that could, in principle,
accommodate a second DNA helix in bacterial MutS, is largely occluded by disordered loops
in the case of hMutSα.

The N-terminal domains of MSH3 and MSH6 proteins present intriguing possibilities with
regard to function. PCNA-interacting protein (PIP) boxes are located here (see below). In
yMsh6 and human MSH6, the N-terminal region possesses DNA binding activity, a PWWP
domain characteristic of proteins that associate with chromatin and a conserved motif at the
extreme C-terminus of the domain required for both MMR and DNA damage signalling (Clark
et al., 2007). Clearly, these N-terminal domains of MutSα and MutSβ function in multiple
contexts.
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MutS proteins have ATP binding domains that are essential for MMR (Haber et al., 1988), and
are members of the ABC transporter ATPase superfamily (Gorbalenya and Koonin, 1990).
Each dimeric MutS protein has two composite nucleotide binding sites each of which are
comprised of six conserved motifs include Walker A and Walker B motifs from one protein
subunit and an ABC signature motif contributed by the opposing subunit. These ATP binding
sites are located at the opposite end of the molecule from the mismatch binding site. The
composite nature of the ATP binding sites explains why loss of subunit dimerization results
in the simultaneous loss of ATPase activity (Biswas et al., 2001). The importance of these
nucleotide binding sites for MMR is reflected in the fact that mutations in these sites frequently
turn up as HNPCC alleles and confer strong mutator phenotypes in E. coli and Saccharomyces
cerevisiae. In addition, the two nucleotide binding sites are asymmetric with binding constants
in the 1 –20 μM range. A number of biochemical studies has established that the two ATP
binding sites are nonidentical with MSH6 (and presumably its bacterial counterpart) having a
high affinity for ATP and MSH2 having a higher affinity for ADP (Antony and Hingorani,
2003, 2004; Antony et al., 2006; Bjornson and Modrich, 2003; Martik et al., 2004). Seemingly
identical mutations in the ATP binding sites of either MSH2 or MSH6 can have different effects
on MMR in vivo and DNA binding and ATP hydrolysis in vitro supporting the notion that
nucleotide binding/hydrolysis plays a central role in regulating the activities of MutS proteins
(Jacobs-Palmer and Hingorani, 2007). For example, dominant mutations in or near the ATP
binding site of yMsh2 and yMsh6 exert their effects by either occluding the mismatch binding
site thereby inhibiting other mismatch repair pathways from functioning or alter the interaction
with MLH1-PMS1 such that MLH1-PMS1 function is compromised (Hess et al, 2006). The
nucleotide binding domain and the mismatch binding domain are connected by long α-helices
that act as levers in which small movements in the nucleotide binding domain triggered by
nucleotide occupancy/hydrolysis are amplified by the levers resulting in larger movements in
the mismatch binding domain (Junop et al., 2001; Lamers et al., 2004).

The importance of the nucleotide binding sites of MutS proteins for function is mirrored by
the presence of HNPCC alleles in key conserved residues in the nucleotide binding domain of
hMSH2 (see Fig. 3). Similarly, cadmium, an ubiquitous environmental carcinogen, targets the
ATP binding site of MutS and inhibits MMR in vivo in yeast and in human cell extracts (Jin
et al., 2003). Subsequent work has established that cadmium metal inhibits the ATPase activity
of both MutSα and MutSβ and disrupts the interaction of MutSα with mismatched DNA
(Banerjee and Flores-Rozas, 2005;Clark and Kunkel, 2004). In addition, cadmium alters the
MMR-dependent response to DNA alkylating agents suppressing cell cycle arrest in treated
cells (Lutzen et al., 2004).

The C-terminus of MutS proteins contains a helix-u-turn-helix motif (see Fig. 2) that is essential
for subunit dimerization, mismatch binding, ATP hydrolysis, and in vivo MMR (Biswas et al.,
2001). The extreme C-terminus was truncated in the bacterial proteins used in structural studies,
and the corresponding E. coli mutSΔ800 mutant in single copy behaves like a mutS null strain
for mutation avoidance, anti-recombination and sensitivity to cytotoxic agents in a dam
background (Calmann et al., 2005a,b). Full-length MutS proteins exist in a dimer-tetramer
equilibrium whereas the Δ800 truncation proteins are largely dimers raising the question of
the functional relevance of the tetrameric form and the C-terminal “tetramerization domain”.
Biochemical and genetics studies of C-terminal mutants of E. coli MutS, while not unequivocal
suggested that the tetrameric form might not be essential for MMR (Manelyte et al., 2006). A
confounding factor in the analyses was the fact that C-terminal truncations could not only
abolish tetramerization but could also destablize dimers. Structural, biochemical, and genetic
characterization of two C-terminal mutants of E. coli MutS, D835R, and R840E, each of which
disrupts tetramerization but not dimer formation, revealed that MMR requires stable dimers,
but not tetramers of MutS (Mendillo et al., 2007).
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Our understanding of mismatch recognition by MutS proteins is incomplete. Since
discrimination between mismatched DNA and perfectly paired DNA is not large, most
commonly no more than two orders of magnitude (reviewed in Jiricny, 2006; Kunkel and Erie,
2005; Schofield and Hsieh, 2003), the issue of finding a mismatch is not trivial. Total internal
reflection fluorescence microscopy of yMSH2-MSH6 reveals that the protein travels along
undamaged DNA duplexes via ID diffusion (Gorman et al., 2007). Tethering of MMR proteins
to the replication machinery via interactions with the β clamp or PCNA replication processivity
factors in E. coli and eukaryotes, respectively, may also help mediate an efficient search for
errors in newly replicated DNA (reviewed in Kunkel and Erie, 2005). Despite co-crystal
structures of both bacterial and human MutS proteins bound to a variety of mismatched DNAs,
we still do not understand how MutS proteins discriminate between mismatches and perfectly
paired DNAs. To date, all the solved structures bear a great resemblance to each other with
very similar interactions between the Phe-X-Glu motif of only one subunit and the mismatch,
DNA kinking, and nonspecific contacts between the protein and sugar-phosphate backbone of
flanking DNA regions. This may reflect a universal recognition mechanism, but may also be
a consequence of the requirements for crystallization that preclude obtaining high-resolution
structures of more dynamic conformations. Recent evidence suggests that the preference for
base-base mismatches as opposed to IDLs resides exclusively at the mismatch binding domain
of yMsh3 and yMsh6 as a chimeric protein bearing the Msh3 mispair-binding domain grafted
in place of the corresponding Msh6 structure targets IDLs like Msh3, but otherwise, behaves
like Msh6 (Shell et al., 2007a).

Any mechanism for mismatch recognition by MutS proteins must take into account the inverse
correlation between the efficiency of repair for any given mismatch and its propensity to
introduce distortion in the DNA helix (G:T mismatches are well repaired and induce relatively
little distortion whereas C:C mismatches are poorly or not at all repaired and are the most
destabilizing mismatch). Atomic force microscopy studies of MutS-mismatched DNA
complexes unexpectedly revealed the existence of a population of “unbent” DNA complexes
apparent only when MutS is specifically bound at a mismatch (Wang et al., 2003). These
findings and others suggest that simple kinking of the mismatched DNA by MutS is insufficient
to confer specificity on the MMR reaction and that the recognition process is likely to involve
multiple conformational changes in both protein and mismatched DNA (see discussion in
Kunkel and Erie, 2005). Whatever the precise mechanism, alterations in base stacking
interactions at DNA lesions are likely to play an important role (Yang, 2006).

Finally, the efficiency of MMR in vivo is not uniform across the genome with some loci being
well repaired while others are rather poorly repaired in S. cerevisiae (Hawk et al., 2005). This
could reflect local sequence context effects on mismatch recognition as has been described for
MutS proteins (see, e.g. Marsischky and Kolodner, 1999) as well as longer range chromatin
structure effects on mismatch recognition or other steps of MMR.

1.1.2. MutL—”reach out and touch someone”—The function of MutL has long been
enigmatic. It is a weak ATPase and binds nonspecifically to DNA. It has been deemed a
“matchmaker” as it interacts with and, in some cases stimulates the activity of, a large number
of proteins. In E. coli, this includes MutS, MutH, UvrD helicase, and the β clamp (reviewed
in Kunkel and Erie, 2005; Modrich, 2006). Recently, Cannavo et al. (2007) have reported the
results of a proteomics approach to defining the interactome of hMLH1, hPMS1, and hPMS2
MutL homologues. In addition to identifying the “usual suspects” such as the MutS and MutL
homologues, EXO1, and PCNA, the study points to potential new players in MMR, and
implicates MutL homologues in a diverse range of processes including intracellular transport,
cell signalling, and cell morphology.
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MutLα, MLH1-PMS1 in budding yeast and MLH1-PMS2 in mammals, plays the major role
in post-replication repair. Other MutL homologues, MutLβ (MLH1/PMS1) and MutLγ
(MLH1/MLH3), are surmised to participate in the repair of some base-base mispairs and IDLs
and may be partially redundant with MutLα (see (Cannavo et al., 2005).

Crystal structures of large fragments of MutL and their eukaryotic counterparts reveal a very
dynamic molecule composed of two protein subunits. MutL homologues belong to a
superfamily of ATPases typified by HSP90, type II DNA topoisomerases, and histidine kinases
known as the GHKL superfamily. The structure of a 40 kDa N-terminal ATPase domain of E.
coli MutL reveals that binding of AMPPNP, but not ADP, induces ordering of peptide loops
and dimerization leading to the formation of two complete ATPase active sites characteristic
of the GHKL superfamily of ATPases (reviewed in Kunkel and Erie, 2005; Modrich, 2006).
Opening and closing of the N-terminal ATPase domain involving a movable “lid” is regulated
by nucleotide binding and hydrolysis with the ATP-bound form being closed and hydrolysis
resulting in opening. In contrast to E. coli MutL, the N-terminal fragment of hPMS2 remains
a monomer in the crystal structure, even in the presence of ATP, and the monomeric fragment
is capable of ATP hydrolysis (Guarne et al., 2001). A crystal structure of a C-terminal
dimerization domain of E. coli MutL reveals a V-shaped dimer that plays critical roles in the
activation of UvrD by MutL and in DNA binding by MutL (Guarne et al., 2004). The DNA
binding activity of MutL has been shown to be essential for methyl-directed MMR in E. coli
(Robertson et al., 2006a). The N-terminal ATPase domain and the C-terminal dimerization
domain are connected to each other via a flexible peptide linker with the elbow of the
dimerization domain at one end and the lid of the ATPase domain at the other.

Like MutS proteins, the MutL proteins possess two asymmetric nucleotide binding sites that
regulate many if not all aspects of MutL function and interaction. MLH1 has a high affinity
ATP binding site whereas PMS1/PMS2 has a lower affinity site (Hall et al., 2002). Recent
atomic force microscopy (AFM) studies of full-length yeast and human MutLα reveal four
different conformations: a Y-shaped extended conformation, an asymmetrical one-armed
conformation, a semi-condensed state with two equal masses, and a condensed, globular
conformation (Sacho et al., 2008). These different conformations reflect large-scale
movements of the N-terminal ATPase domains with respect to the C-terminal dimerization
domains, and relative occupancies of these four states are modulated by nucleotide cofactor
binding. The picture that emerges from a very large body of evidence is that of MutL as a
dynamic ATP-activated clamp with a central channel that can capture DNA. Thus, in a very
qualitative sense, MutL mirrors the complexities presented by MutS. The task at hand is to
understand how nucleotide cofactor-induced conformational changes dictate function for these
dynamic MMR proteins particularly in the context of large, multi-protein-DNA complexes.

1.1.3. A ternary complex: MutS-MutL-mismatch—A large number of studies have been
directed at understanding how nucleotide binding and hydrolysis modulate the activity of MutS
proteins including its interaction with DNA and with MutL (see Kunkel and Erie, 2005). The
formation of a ternary complex involving MutS, MutL, and a mismatched DNA has been
examined using a variety of techniques, but our understanding of what this complex looks like,
how it is modulated by nucleotide occupancy, in fact, how it functions in MMR is woefully
primitive despite atomic resolution structures of MutS and MutL proteins and their
homologues.

Several confounding factors have made studies of a ternary complex difficult. A complex
containing MutS and MutL has a total of four distinct, but interdependent ATP binding sites,
and MutS by itself can assume, in principle, nine different nucleotide occupancy states (Sixma,
2001)! Both MutS and MutL bind nonspecifically to DNA, and MutS has an appreciable
affinity for DNA ends (Acharya et al., 2003; Plotz et al., 2006, 2002; Wang et al., 2003). While
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an intact ATPase site in MutLα is not required for its interaction with MutS(α) (Acharya et al.,
2003; Selmane et al., 2003), the requirement for ATP binding or hydrolysis by MutS(α) in
forming a ternary complex with MutL(α) has been extensively studied, but with no definitive
results yet (see Iyer et al., 2006). In addition, DNasel footprinting studies reveal that whereas
MutS protects approximately one turn of the DNA helix to either side of the mismatch
consistent with the crystal structures, the MutS-MutL interaction in the presence of ATP yields
a very large DNasel footprint indicative of multiple proteins bound to the DNA (Grilley et al.,
1989; Selmane et al., 2003). Formation of a ternary complex involving either the E. coli or
human MMR proteins also requires DNA heteroduplexes in excess of 60 bp reflecting multiple
binding events in vitro (Blackwell et al., 2001; Plotz et al., 2002; Schofield et al., 2001b).
Whether this is an artefact of in vitro conditions or reflects multiple loadings of MMR proteins,
either multiple loading of diffusing clamps or cooperative binding of a protein filament, is not
definitively established. Characterization of the MutS-MutL interaction remains an important
goal.

Any proposed model must explain how information is propagated from the mismatch site to
the excision start site located some distance away, and this has led to two general classes of
models in which MutS and MutL and their homologues communicate with downstream players
in cis or in trans (see recent discussions in Kolodner et al., 2007; Kunkel and Erie, 2005;
Modrich, 2006). In a trans activation model, communication occurs between MutS-MutL
complexes at a mismatch and proteins that operate downstream like MutH by protein-protein
interactions accompanied by DNA bending. This proposal was based in part on the ability to
activate MutH for cleavage “in trans”, i.e. when the mismatch signal and the dGATC
hemimethylated site resided on two different DNA duplexes or were separated by a physical
barrier such as a four-way DNA junction (Junop et al., 2001; Schofield et al., 2001 b). In
addition, E. coli MutS and MutL were observed to form a stable complex at a mismatch in the
presence of ATP (Selmane et al., 2003). In these studies, the activation of MutH was
measurable, but modest, and nonspecific DNA binding was a potentially confounding issue.
Stronger support came from the observation that in vitro MMR reactions using HeLa cell
extracts were not substantially inhibited by the presence of a physical barrier such as a DNA
hairpin between the mismatch and the initiating nick (Wang and Hays, 2003, 2004).

In a cis activation model, MutS-MutL complexes utilize the DNA helix and travel as a series
of sliding clamps or possibly polymerize to form a protein filament until they encounter a
signal, i.e. a strand break possibly in the context of other auxiliary proteins such as PCNA and/
or RFC in eukaryotic cells at which time they activate the excision step and/or the endonuclease
activity of MutLα (see Iyer et al., 2006; Kolodner et al., 2007).

In vitro experiments using mismatched DNA duplexes with blocked ends have firmly
established that in the presence of ATP, MutS and its homologues behave as sliding clamps
(reviewed in Iyer et al., 2006). While movement of the clamp was originally proposed to occur
via an ATP-hydrolysis driven model or a diffusion-driven model, subsequent work supports
the latter. ATP-induced dissociation of yMsh2-Msh6 from a mismatch occurs preferentially
from DNA ends though direct dissociation from the DNA is also observed (Mazur et al.,
2006; Mendillo et al., 2005). Finally, although MutS and MutL (and their eukaryotic
homologues) have been observed to form quasi-stable complexes at sites of mismatches in
vitro (Blackwell et al., 2001; Räschle et al., 2002; Schofield et al., 2001 b), yeast and human
complexes have also been observed to move along the DNA contour in the presence of ATP
in surface plasmon resonance experiments (Blackwell et al., 2001; Mendillo et al., 2005).

Recently, Pluciennik and Modrich (2007) have demonstrated that a block to movement along
the DNA in the form of a tight-binding EcoRI variant significantly reduced MMR by E. coli
MutS and MutL consistent with a “cis” model. However, physical barriers separating a mispair
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from a 5′ strand break did not seem to inhibit MMR in human cell extracts (Wang and Hays,
2004). These differences may be attributable to multiple pathways or possibly more than one
distinct “activation” step (see discussion in Kolodner et al., 2007; Wang and Hays, 2007). A
definitive experiment is hard to come by in this system, but the weigh of the evidence thus far
argues for some type of cis model in which information is communicated along the DNA helix.
The possibility of protein-protein interactions through space has not been ruled out, however.
Unravelling the mechanism MMR utilizes for signalling over long distances remains a big
challenge.

1.1.4. Excision and gap filling—The excision step of MMR in eukaryotes has been studied
in vitro using purified proteins or nuclear extracts (for a comprehensive discussion, see Kunkel
and Erie, 2005). Essentially, we know that excision is mismatch-provoked, initiates at a
preexisting nick or gap, is capable of bidirectionality, generally proceeds along the shortest
path to the mismatch, and terminates about 150 nucleotides beyond the mismatch. In a 5′-
directed reconstituted MMR reaction, MutSα activates 5′-3′ excision by EXO1 conferring high
processivity on the exonuclease (Genschel and Modrich, 2003). A model for the termination
of excision involves the inhibition of EXO1 activity by MutSα and MutLα once the mismatch
has been removed and displacement from DNA of EXO1 by RPA. Consistent with these
observations, MutSα and MutLα can inhibit EXO1 activity in the absence of a mismatch, but
not in its presence (Nielsen et al., 2004).

A long-standing conundrum in the field is how strand specificity of excision repair is assured
in eukaryotes and prokaryotes other than E. coli and closely related Gram-negative bacteria
since there is no comparable MutH homologues and DNA methylation system to target excision
to the nascent strand. A second puzzle is the absence of a requirement for a 3′-5′ exonuclease
in reconstituted 3′-nick-directed MMR reactions and a surprising requirement for EXO1, a
5′-3′ exonuclease, in the 3′-directed reaction (Genschel et al., 2002; Dzantiev et al., 2004). How
is the excision step being carried out in this case? Based on an examination of repair products
in Xenopus egg extracts, Varlet et al. (1996) proposed the existence of a mismatch-activated,
strand-specific endonuclease operating in MMR. Recently, a cryptic endonuclease activity in
the eukaryotic PMS2 subunit of MutLα has been identified (Kadyrov et al., 2006,2007). A
conserved metal-binding motif in PMS2 (or yPMS1) DQHA(X)2-E(X)4E constitutes part of
the active site for the endonuclease activity in both PMS2 and MLH3. Not only is the
endonuclease function of MutLα required for MMR, it is also required for other functions of
MutLα including suppression of homologous recombination and DNA damage signalling
(Deschenes et al., 2007; Erdeniz et al., 2007). The requirement for only a single 5′-3′
exonuclease in MMR can now be reconciled with the discovery of the endonuclease activity
of MutLα although it is still possible that other exonucleases including those with a 3′-5′
polarity also participate.

A notable feature of the PMS2/PMS1 endonuclease activity is its potentiation in the presence
of both RFC and PCNA to function as a strand-specific nicking enzyme in which the break is
directed to the strand containing a pre-existing nick. In this way, interactions between
MutLα and PCNA loaded on DNA may direct the excision step of MMR to newly synthesized
strands containing single strand breaks in the case of leading strands and Okazaki fragments
in the case of lagging strands. This provides an explanation for how strand discrimination is
achieved in cells lacking a MutH-like system though the exact mechanism remains to be worked
out.

Exo1−/− mice have a slightly increased incidence of lymphoma at advanced age and modestly
reduced survival which stands in sharp contrast to the corresponding phenotypes of Msh2−/−

mice (Wei et al., 2003). EXO1-deficient cells are deficient for MMR activity in vitro and exhibit
elevated MSI at some markers. This suggests that there may be redundant exonuclease
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functions for MMR in eukaryotes as is the case for E. coli. Genetic studies in yeast have
implicated exonucleases with a 3′-5′ polarity including DNA polymerase δ and/or DNA
polymerase ε (Tran et al., 1999a,b); and the 3′-5′ exonuclease activity of hMRE1 1 may also
play a role (Vo et al., 2005). Alternatively, in some cases, the combined activities of MutLα
and EXO1 may be sufficient to confer bidirectional MMR in cells lacking the MutH-directed
pathway. Kadyrov et al. (2006) has shown that nicking by MutLα precedes excision of the
nascent strand by EXO1.

EXO1 may also have multiple roles in MMR as genetic evidence supports a structural or
chaperone role for EXO1 in the formation and/or stabilization of MMR protein complexes in
addition to its catalytic role as an exonuclease (Amin et al., 2001; Nielsen et al., 2004; Tishkoff
et al., 1997; Tran et al., 2007). Recent studies of EXO1 function in telomerase dysfunctional
mTerc−/− mice reveal that the exonuclease domain of EXO1 has important roles in inducing
DNA damage signalling, cell cycle arrest, and apoptosis in telomere-dysfunctional mice
presumably due to the formation of ssDNA (Schaetzlein et al., 2007). EXO1 contributes to the
formation of chromosomal fusions leading eventually to chromosome instability and increased
cancer risk (see additional discussion below).

A critical player in MMR is the ubiquitous replication processivity factor, PCNA (Tsurimoto,
1999). PCNA, with the help of a clamp loader, RFC, loads onto the 3′-end of Okazaki fragments
or the 3′-end of the leading strand. Its three identical protein subunits form a tripartite clamp
with two nonequivalent faces, one of which can interact with a bewildering array of protein
partners. PCNA not only associates with replicative polymerases, but also functions in
processing Okazaki fragments as well as participates in several DNA repair pathways. While
a role for PCNA in the gap filling step of MMR catalysed by polδ was expected, early studies
revealed a surprising role for PCNA in MMR prior to gap synthesis (Umar et al., 1996).
Conserved PIP boxes at the N-termini of both MSH3 and MSH6 (Qxxhxxaa, where x is any
residue, h is hydrophobic and a is aromatic) mediate the interaction of MutSα and MutSβ with
PCNA; mutation of the PIP site diminishes MMR in vivo (Bowers et al., 2001; Clark et al.,
2000; Flores-Rozas et al., 2000; Gu et al., 1998; Johnson et al., 1996; Kleczkowska et al.,
2001). The interaction between MMR proteins and clamp proteins is also observed in
prokaryotes. Colocalization studies in Bacillus subtilis place MutS and MutL at replication
foci (Smith et al., 2001), and E. coli MutS and MutL interact with the β clamp (Lopez de Saro
and O′Donnell, 2001; Lopez de Saro et al., 2006).

PCNA by virtue of its multiple interactions with proteins involved in MMR and replication,
may act to coordinate activities at sites of newly replicated DNA. Small-angle-X-ray scattering
studies of the N-terminal region of yMsh6 by itself or bound to PCNA revealed that it is an
unstructured “tether” to PCNA (Shell et al., 2007b). This flexible tether may aid MutSα in its
interaction with PCNA by providing some breathing space for what is likely to be a very
crowded environment given the number of different partners that interact with PCNA. Aside
from its role in DNA resynthesis, biochemical studies suggest that PCNA bound to newly
replicated DNA may serve to deliver Msh2-Msh6 to mismatches thereby increasing the
efficiency of the mismatch search (Lau and Kolodner, 2003). Interestingly, studies in yeast
have demonstrated preferential MMR on the lagging strand compared to the leading strand
(Pavlov et al., 2003). One interpretation is that the higher density of PCNA rings on lagging
strands facilitates recruitment of MMR proteins. A weak interaction between yeast and human
MutLα and PCNA has been reported and mutation of the putative PIP motif in MLH1 confers
a mutator phenotype (Lee and Alani, 2006; Dzantiev et al., 2004; Umar et al., 1996). PCNA
also interacts with EXO1 and has important functions in the excision step of MMR (Dzantiev
et al., 2004; Nielsen et al., 2004). Understanding how the various proteins involved in MMR
gain orderly access to newly replicated DNA remains an important goal.
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An area that has not received extensive attention is the nuclear import of MMR proteins.
Knudsen et al. (2007) have identified a nonpartitite nuclear localization signal (NLS) in
hEXO1 418KRPR421 that localizes to a region also required for the interaction of EXO1 with
hMLH1. Nuclear import of EXO1 most likely involves the formation of functional complexes
with other MMR proteins and utilizes the importin αs 1, 3, and 7. Perhaps not surprisingly,
nuclear import of hMLH1 and hPMS2 requires dimerization to form MutLα mediated by the
C-terminus of each protein (Wu et al, 2003b). Mutations in putative NLS motifs in hMLH1,
K471, and R472, and hPMS2, K577, and R578, resulted in impaired nuclear import though no
functional studies of these mutant proteins were carried out (Brieger et al., 2005).

1.2. MMR and DNA damage signalling
The MutS proteins not only recognize mismatches arising from replication errors but also
recognize mismatches involving damaged or modified bases that result from exposure of cells
to certain DNA damaging agents (reviewed in Jiricny, 2006). These include O6methylguanine
(O 6meG) resulting from modification by SN1 alkylators, 8-oxoguanine, halogenated
pyrimidines such as 5-fluorouracil (FdU), adducts from environmental carcinogens like benzo
[c]phenanthrene dihydrodiol epoxide (Wu et al., 2003a), UV photoproducts (Wang et al.,
2006), and cisplatin adducts. In several cases, the loss of MMR activity renders cells less
sensitive to cell killing by DNA damaging agents reflecting the role(s) of the MMR system in
DNA damage signalling that triggers cell cycle checkpoints, arrest, and apoptosis.

Tolerance to the cytotoxic effects of SN1 alkylators such as N-methyl-N′-nitro-N-
nitrosoguanidine (MNNG) was first observed in MMR-deficient strains of E. coli and
subsequently shown to occur in MMR-deficient animal cell lines (reviewed in Karran, 2001).
Alkylation damage signalling and the induction of apoptosis require the MMR proteins
MutSα and MutLα and result in the activation of a large number of downstream targets
including p53, Chk1, Chk2, SMC1, and CDC25A. During replication, O 6-meG templates
incorporation of C or more commonly, T. These might serve as targets for MMR. In vitro
studies reveal O 6-meG mispairs are recognized by MutSα and activate its ATPase activity
(Berardini et al., 2000; Duckett et al., 1996).

The cell cycle arrest induced by treatment of cells with low doses of MNNG requires the ataxia
telangiectasia and Rad3-related (ATR) kinase, whose downstream target is the checkpoint
kinase Chk1 (Jiricny, 2006). Interestingly, cell cycle arrest only ensues in the second cell cycle
after exposure to MNNG (Kaina, 2004; Stojic et al., 2004).

So how does alkylation damage kill cells in a MMR-dependent manner? A longstanding
explanation is that since O 6-meG resides in the parental strand, it is not excised by the MMR
system that targets only the nascent strand. Repeated rounds of excision by MMR or “futile
cycles” eventually result in lethal DSBs. In vitro studies of MMR using mammalian proteins
are consistent with iterative rounds of excision repair providing support for this scheme (York
and Modrich, 2006). In E. coli, homologous recombination is required for resistance to
methylating agents that give rise to MMR-dependent DSBs. In dam recB(Ts) ada ogt cells
exposed to MNNG, a subset of these DSBs are replication-dependent, and likely to be the
primary contributor to cytotoxicity (Nowosielska and Marinus, 2008). Rapidly dividing cells
were more sensitive to killing by MNNG than slowly growing cells consistent with a futile
cycling model.

A second possibility based in part on studies in budding yeast is that MMR in MNNG-treated
cells is thwarted in some way leaving toxic repair intermediates that block replication or yield
a DSB in the second round of replication (Cejka et al., 2005). In this scheme, homologous
recombination performs a vital rescue function. The Jiricny lab has recently reported that
treatment of mammalian cells with MNNG gives rise to MMR-dependent single-stranded gaps
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in newly replicated DNA (Mojas et al., 2007). These findings lend support for a “processing
model” whereby MMR targets O 6-meG mismatches but fails to complete excision repair
leaving single-strand gaps that persist unrepaired into the second cell cycle where they cause
replication fork collapse. In addition, deletion of Exo1 in the mouse conferred partial resistance
of ear fibroblasts to 6-thioguanine (6-TG) (Schaetzlein et al., 2007). 6-TG is a purine analogue
that gives rise to cytotoxic S6meG adducts that are recognized by the MMR system (Karran,
2007). EXO1 is therefore required to elicit an apoptotic response to DNA damaging agents
consistent with a processing model for ATR activation. Genetic interaction studies in S.
cerevisiae point to a structural or scaffolding role for Exo1 in the formation of MMR complexes
distinct from its nuclease activity (Amin et al., 2001). It remains to be determined whether this
structural function of Exo1 plays any role in damage signalling.

A third possibility is one in which MMR proteins function as direct sensors of DNA damage
and recruit either directly or indirectly the ATR-ATRIP complex to sites of damage. In support
of this idea, two separation of function alleles in murine Msh2G674A and Msh6T1217D were
identified in which MMR function is lost but the apoptotic response to DNA damaging agents
like MNNG is intact (Lin et al., 2004; Yang et al., 2004a). The knock-in mice die from cancer
and cells are MSI+ and fail to support an in vitro MMR reaction. Nevertheless, MEFs from
the knock-in exhibit the same sensitivity to cell killing by MNNG and cisplatin as do MEFs
from wild-type mice. These results suggest that MMR and damage signalling involve
overlapping but distinct pathways and argue against a futile cycle model. Recently, we
demonstrated that ATR-ATRIP preferentially localizes to O 6-meG/T mismatches in vitro, but
only when MMR proteins are present (Yoshioka et al., 2006). Similarly, phosphorylation of
Chk1 in vitro by ATR is observed only in the presence of O 6-meG/T and also requires
MutSα and MutLα. These results support the direct recognition of O 6-meG/T mismatches by
MMR and subsequent activation of ATR. However, they do not address to what extent MMR
processes O 6-meG/T mismatches leading up to ATR activation.

The question of how ATR is activated in response to DNA damage remains to be determined,
e.g. does it involve ssDNA-RPA as has been posited for replication arrest (Zou and Elledge,
2003)? Recent findings alluded to above would seem to support this idea, however, alternative
pathways may exist. Mutant human and Xenopus ATRIP proteins lacking an N-terminal region
required for interaction with RPA and stable DNA binding nevertheless support ATR-mediated
phosphorylation of Chk1 in response to DNA damage (Ball et al., 2005; Kim et al., 2005), and
TopBP1 has been postulated to be a direct activator of ATR via specific protein-protein
interactions (Kumagai et al., 2006). Understanding why O6-meG poses a block to gap repair
in the MMR pathway is an important unanswered question as it does not appear to pose a block
to replication per se (Mojas et al., 2007).

MMR has been implicated in cell killing by the fluoropyrimidine antimetabolite 5-fluoro-2′-
uridine (FU) though the mechanism of cell killing is unclear. FU is widely used as an adjuvant
therapy for advanced colorectal cancer and has pleiotropic effects on cell metabolism. It is
incorporated into both RNA and DNA, and FdUMP inhibits thymidylate synthase (TS), the
enzyme that utilizes dUMP as substrate in the sole biosynthetic pathway leading to the creation
of dTMP. Correspondingly, cells treated with FU exhibit elevated dUTP levels and
deoxynucleoside triphosphate precursor pool imbalances.

The MMR system has been implicated in cell killing by fluoropyrimidines (FPs) as MMR-
deficient cells exhibit increased survival after treatment with FdU (Meyers et al., 2004). Arrest
in G2 is observed within the first cell cycle in MMR-proficient cells, but not in MMR-deficient
cells (Carethers et al., 1999; Meyers et al., 2003, 2005). Inhibition of TS without FU treatment
elicits a G2 arrest regardless of MMR status suggesting that the contribution of MMR to DNA
damage signalling is via incorporation of FPs into DNA as opposed to the inhibition of TS and
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the resulting imbalance in nucleotide pools. MutSα recognizes FdU mispairs in vitro and is a
substrate for in vitro MMR assays (Fischer et al., 2007; York and Modrich, 2006). In the clinic,
resistance to FU treatment occurs frequently. Since 15% of colorectal tumours exhibit
microsatellite instability (MSI) and are presumed to be MMR-deficient, there is concern that
this subset of patients might be resistant to FU. Clinical data to test this possibility are equivocal
due to several confounding factors including the fact that MSI+ individuals have a better
prognosis than MSI− individuals independent of FU treatment.

The role of MMR proteins in DNA damage signalling presents additional interesting problems
related to the convergence of multiple DNA repair pathways on a single class of DNA damage.
Since DNA damaging agents like the alkylating agent temozolomide, cisplatin, and
fluoropyrimidines are widely used in chemotherapy often times with the development of drug
resistance in patients, understanding how these various repair pathways intersect, enhance, or
inhibit each other has important practical implications (see Kovtun and McMurray, 2007). For
example, Pani et al. (2007) have shown that the MMR pathway contributes to the cytoxicity
of cisplatin in human cells; however, other pathways are also critical in mediating the response
to cisplatin particularly homologous recombination. In the case of FdU, widely used as an
adjuvant therapy in advanced colorectal cancer, MMR-mediated apoptosis (Meyers et al.,
2005) may be one of several contributors to the overall cytotoxicity of FdU as base excision
repair (BER) enzymes also target FdU (Meyers et al., 2004). The BER enzyme SMUG1
removes FdU from DNA and confers protection from cell killing (An et al., 2007). MED1
(MBD4), a BER N-glycosylase also targets halogenated pyrimidines, and by analogy to MMR,
loss of MED1 confers resistance to FdU (Bellacosa et al., 1999). Interestingly, MED1 was
isolated in a two-hybrid screen using MLH1 as bait (Cortellino et al., 2003). Finally, in addition
to SMUG1 and MED1, two other BER enzymes have been implicated in the processing of
FdU, thymine-DNA glycosylase (TDG) and uracil-DNA glycosylase (UNG) (Fischer et al.,
2007). Clearly the interactions between MMR and BER pathways are critical in modulating
the DNA damage response (Kovtun and McMurray, 2007).

Cross-talk between MMR and NER, the predominant pathway for the repair of UV damage,
may also operate. Msh2−/− mice exhibit an increased predisposition to skin cancer in response
to UVB exposure that is enhanced when mice are additionally defective for the NER Xpc gene
(Meira et al., 2002). Interactions between scMsh2 and the NER proteins Rad2, Rad10, and
Rad14 have been observed in co-immunoprecipitation experiments (Bertrand et al., 1998), and
loss of MMR in human cells leads to a deficiency in transcription-coupled NER (Mellon et al.,
1996). These and other studies point to a still poorly defined interaction between elements of
these two excision repair pathways.

Wang and colleagues have described a p73-dependent, p53-independent apoptotic pathway
utilized in an MLH1-dependent damage response to cisplatin (Gong et al., 1999; Shimodaira
et al., 2003). Exposure of cells to cisplatin results in an increase in p73 levels that requires both
MLH1 and PMS2 and induces a physical interaction between PMS2 and p73 that appears to
stabilize the latter.

In conclusion, MMR functions as a damage sensor recognizing a variety of structurally diverse
DNA lesions and triggering DNA damage signalling involving multiple cellular signalling
pathways. A number of interactions between MMR proteins and DNA damage signalling
proteins have been reported including interactions between MSH2 and ATR, Chk1 and Chk2
(Wang and Qin, 2003; Yoshioka et al., 2006); MLH1 and ATM (Adamson et al., 2005; Brown
et al., 2003); PMS2 and p73 (Shimodaira et al., 2003); the three MutL homologues, MLH1,
PMS2, and PMS1 with a large number of proteins involved in cell cycle/signalling/apoptosis
functions (Cannavo et al., 2007). The challenge is to determine the functional significance of
these interactions and the biological context in which they operate.
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1.3. Other functions of MMR
MMR proteins participate in a number of other cellular processes including recombination
processes that have been most extensively studied in fungi. Mismatches are present in
heteroduplex DNA formed during homologous recombination between closely related but not
identical sequences derived from the genetic exchange between two parental chromosomes.
The repair of these mismatches can, depending on which DNA strand is targeted, result in
restoration of the parental genotypes (so-called 2:2 Mendelian ratio of alleles), or can yield a
non-Mendelian segregation (6:2 or 2:6 segregation) commonly known as a gene conversion
event. If the mismatch is not repaired, an aberrant 5:3 segregation of alleles known as post-
meiotic segregation (PMS) occurs, so called because the two strands of the heteroduplex
separate in the first mitotic division after meiosis. In MMR-deficient cells, PMS is greatly
elevated at the expense of gene conversion events. MMR proteins also influence homologous
recombination events in mammalian cells; for example, MutSα has been observed to reduce
recombination at DSBs possibly via an interaction with the BLM helicase so as to suppress
inappropriate recombination (Smith et al., 2007; Yang et al., 2004b).

A second function of MMR in recombination is its “antirecombination” role in which
recombination between related but distinct sequences (known as homologous recombination)
is inhibited by the MMR system. In prokaryotes, the antirecombination function of MMR is
thought to be a critical barrier to the creation of new species by blocking the transfer of large
amounts of genetic material between two divergent cells. Although, the molecular mechanism
by which MMR proteins inhibit homologous recombination is unclear, recent studies in S.
cerevisiae examining the Msh6-PCNA interaction reinforce an earlier proposal that MMR-
mediated antirecombination may involve two steps, an early fidelity check perhaps involving
the RecQ. helicase Sgs1 that is largely independent of Msh6-PCNA interactions and a more
canonical spellchecker step operating on recombination intermediates containing newly
synthesized DNA (see, Stone et al. (2008) and references cited therein). A practical
consequence of MMR-mediated antirecombination is the now widespread use of isogenic
targeting constructs in the production of gene-targeted mice (te Riele et al., 1992). By reducing
the density of potential mismatches formed between the targeting vector and the endogenous
chromosomal locus, the efficiency of targeting via a homologous recombination mechanism
is greatly enhanced. In a related scenario, unconstrained recombination between repeated
sequences that share homology would give rise to potentially deleterious chromosomal
rearrangements. That these are relatively rare is, in part, attributable to the antirecombination
activity of MMR. For example, loss of MMR in human cells increases the rate of gene
duplication 50–100-fold and may predispose these cells to cancer (Chen et al., 2001).

A third function of MMR in recombination involves two MutS homologues, MSH2 and MSH3.
MSH2-MSH3 acts in concert with Rad 1 –Rad 10 endonuclease to trim nonhomologous DNA
ends from a recombination pairing intermediate formed by annealing at a DSB between directly
repeated sequences (reviewed in Schofield and Hsieh, 2003).

MMR proteins also figure prominently in meiosis where they play essential roles in mismatch
correction of heteroduplex DNA intermediates of meiotic recombination and the formation of
crossovers required for the proper pairing or synapsis of homologous chromosomes and their
subsequent separation in the first reductional division (reviewed in Cohen et al., 2006; Harfe
and Jinks Robertson, 2000; Hoffmann and Borts, 2004). In fungi and in mice, the loss of MMR
proteins that function in meiosis results in arrested or aberrant meiosis and, in many cases,
sterility. MSH4 and MSH5 function as a heterodimer that binds Holliday junctions in vitro
though not in a mismatch-specific fashion as these meiosis-specific MutS homologues are
missing the N-terminal mismatch binding motif (Snowden et al., 2004,2008). MLH1–MLH3,
MutLγ, is required for stable crossovers and chiasmata formation and for normal meiotic
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progression (see Kan et al., 2008). Despite their central importance in meiosis, much remains
to be learned concerning their function and mode of action.

MSH2–MSH3 also plays an important role in trinucleotide repeat expansion, the process that
underlies several hereditary and progressive neurodegenerative diseases such as Huntington
disease, myotonic dystrophy, and fragile-X syndrome (Cummings and Zoghbi, 2000). In the
mouse, somatic and germline expansions of the CAG-CTG repeat within the Huntington’s
gene requires MSH2 (Kovtun and McMurray, 2001; Manley et al., 1999; Wheeler et al.,
2003). Repeat instability is reduced in MSH3-null mice but elevated in MSH6-null mice
pointing to a role for MSH3 in promoting repeat instability (van den Broek et al., 2002). MSH2–
MSH3 has been shown in vitro to target CAG-hairpin DNA and to be modulated by an A-A
mismatch in the hairpin stem (Owen et al., 2005).

MMR is involved in the generation of immunoglobulin diversity. Antibody diversity requires
V(D)J recombination, class isotype switching, and somatic hypermutation in regions encoding
the variable regions of immunoglobulin genes in B lymphocytes. Inactivation of MSH2, MSH6,
PMS2, MLH1, or EXO1 reduces the recovery of somatic mutations that occur specifically at
A-T base pairs at immunoglobulin loci. A two-stage model has been invoked in which
deamination of cytosines at G-C base pairs by activation-induced cystidine deaminse (AID)
leads to G-U mispairs (reviewed in Di Noia and Neuberger, 2007). These are targets for base
excision repair (BER). However, they are also potential targets for the MSH2–MSH6 MMR
protein, and errors at A-T base pairs in the ensuing excision and resynthesis steps of MMR
result in the observed mutation spectrum. Inactivation of polη also reduces mutations at A-T
base pairs implicating it in somatic hypermutation. Interestingly, MSH2–MSH6 stimulates the
catalytic activity of polη in vitro and associates with polriη in cell extracts (Wilson et al.,
2005). Unexpectedly, Mlh3−/− mice exhibited an increased frequency of mutations in Ig
variable regions suggesting that MLH3 normally inhibits the accumulation of mutations in this
region (Li et al., 2006).

1.4. MMR defects and human cancer
Each year approximately 150,000 people in the United States and half a million worldwide are
diagnosed with colon cancer. Of these, approximately 3–4% occur in familial cancer
syndromes of which Hereditary Nonpolyposis Colorectal Cancer (HNPCC) or Lynch
Syndrome is the most common (Lynch et al., 1985). HNPCC is characterized by an increased
risk of colorectal cancer and other cancers. It is a common, autosomal dominant syndrome
characterized by early onset (average age <45 years), and the occurrence of neoplastic lesions
in a variety of tissues including endometrial, skin, ovarian, gastric, and renal. In the HNPCC
population (up to 70 years of age), the cancer risks are 80% in colon, 20–60% in endometrium,
11–19% in stomach, and 9–11% in ovary, while, in the general population, the risks are 5.5%
in colon, 2.7% in endometrium, <1% in stomach, and 1.6% in ovary (Kohlmann and Gruber,
2006; Watson et al., 2001). The diagnosis of HNPCC can be determined using the Amsterdam
Criteria I, II (Vasen et al., 1999) and then by molecular genetic testing for germline mutations
in mismatch repair genes. Bethesda guidelines can be used for identification of those patients
who should undergo more detailed laboratory investigation (Silva et al., 2005).

A hallmark of HNPCC tumour cells is MSI. Microsatellites are repetitive DNA sequence of
1–4 base nucleotides that are particularly susceptible to DNA replication errors when the MMR
system is absent. Five markers (BAT26, BAT25, D5S346, D2S123, and D17S250) are
recommended by the National Cancer Institute to assess microsatellite instability. A tumour is
classified as MSI-high if two or more of the five markers show instability, as MSI-low if 1 of
the markers shows instability, or as MS-stable if no marker does (Boland et al., 1998). In
HNPCC tumours, more than 90% exhibit MSI (Soreide, 2007). Early attempts at identifying
the genetic basis for HNPCC revealed frequent insertions and deletions at di- and trinucleotide
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repeats or microsatellite regions at a putative HNPCC locus on human chromosome 2 as well
as throughout the genome (see Li, 2003). These mutations were called replication error positive
(RER+).

Work on DNA repair in bacteria and fungi had already revealed that loss of MMR conferred
a mutator phenotype in which base substitutions as well as frameshift mutations were greatly
elevated. Petes and colleagues tested the stability of poly(dGT) tracts in S. cerevisiae cells
harbouring single and double mutations in MMR genes MSH2, MLH1, and PMS1 (Strand et
al., 1993). Loss of any one MMR gene was sufficient to elevate the frequency of tract instability
two orders of magnitude.

Using degenerate PCR primers homologous to highly conserved regions of bacterial mutS and
fungal MSH2 genes, two groups independently cloned the human MSH2 gene and located it
on chromosome 2 (Fishel et al., 1993; Leach et al., 1993). Germline mutations in the MSH2
gene were identified in HNPCC families. In another approach, tumour cells from HNPCC and
sporadic tumours with MSI were tested in in vitro MMR assays and found to be deficient
(Parsons et al., 1993; Umar et al., 1994). In 1994, the human MLH1 gene was identified by a
search of expressed sequence tags or a degenerate PCR method. The human MLH1 gene resides
on chromosome 3p21, close to markers previously linked to cancer susceptibility in HNPCC
kindreds. Mutations of MLH1 were identified in such kindreds (Bronner et al., 1994;
Papadopoulos et al., 1994). To date, the bulk of germline HNPCC mutations, roughly 90%,
reside in two MMR genes, MSH2 and MLH1, with mutations in MSH6 (7–10%) associated
with atypical HNPCC and PMS2 mutations being quite rare (Peltomaki, 2001).

Biochemical studies led to the restoration of MMR in nuclear extracts derived from colorectal
tumour cell lines by the addition of purified hMLH1/hPMS2 or hMSH2/hMSH6 (Drummond
et al., 1995; Li and Modrich, 1995). In another line of experimentation, chromosome or gene
transfer experiments in MMR-deficient tumour cells demonstrated that restoration of MMR
also rescued the MSI phenotype. Thus, Boland and colleagues restored MMR to an hMLH1 -
deficient colorectal tumour cell line by the transfer of chromosome 3 harbouring a wild type
copy of hMLH1 (Koi et al., 1994). Similar experiments were carried out for tumour cell lines
deficient in MSH6, PMS2, and MLH1 (reviewed in Li, 2003).

The defects by HNPCC mutations (http://www.insight-group.org/) in MutSα can
hypothetically fall into at least six classes: interference with DNA binding, loss of ATPase
activity, loss of allosteric communication between DNA and ATP binding sites, loss of protein-
protein interactions with downstream effectors, loss of MSH2–MSH6 interaction, and general
loss of protein stability. HNPCC mutations have been mapped onto the three-dimensional
structure of hMutSα (Fig. 3; Warren et al., 2007). Clearly, mutations are located throughout
the protein structure; the challenge is to identify informative mutations that can shed light on
molecular mechanism.

Approximately, 15% of spontaneous colorectal cancers are MSI+; the vast majority of these
are caused by epigenetic silencing of MLH1 (Jenkins et al., 2007; Samowitz et al., 2001a).
That hypermethylation is likely a common mechanism for MMR inactivation in tumour cells
was demonstrated in several sporadic colon tumours and cell lines that are free of any mutations
in MLH1 (Kane et al., 1997).

Microsatellite instability (MSI) and chromosomal instability (CIN) are two major pathways in
the formation of colorectal cancers (Soreide, 2007). tumours with CIN have mutations in p53
and APC, including chromosomal abnormalities. In contrast, tumours with MSI have
frameshift mutations in specific target genes such as β-catenin and TGFβRII genes (Kim et al.,
2003), and fewer mutations are found in K-Ras and p53 (Samowitz et al., 2001 b). Actually,
frameshift mutations of the microsatellite repeats in the TGFβRII coding region were found in
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~90% of HNPCC tumours (Markowitz et al., 1995). It is important that MSI can mutate specific
genes, probably forming multi-step carcinogenesis. Additionally, it is also possible that MSI
and CIN pathways interact with each other. Recently, BRCA1 is shown to regulate an MMR-
induced G2/M checkpoint, which is critical for inhibition of CIN (Yamane et al., 2007). The
observation of alterations of key growth regulatory genes in MMR-deficient cells such as NF1,
APC, p53, K-Ras may suggest that even in the presence of MSI, tumour progression is mainly
driven by a process of natural selection (Bertholon et al., 2006). MSI+ colorectal carcinoma
has been associated with a more favourable clinical outcome (Chung and Rustgi, 2003) that
has confounded clinical studies assessing drug efficacy among colorectal cancer patients.
Compared with MMR-proficient tumours, MMR-deficient tumours (MSI+) tend to be proximal
to splenic flexure, poorly differentiated, mucinous, characterized by marked lymphocyte
infiltration, and frequently large in size (Wheeler et al., 2000). MSI+ was also strongly
associated with a decreased likelihood of lymph node and distant organ metastases (Malesci
et al., 2007).

1.5. Animal models of MMR deficiency
Animal models for MMR deficiency in which each MMR gene has been knocked out confirm
that loss of MMR confers a mutator phenotype (MSI+), increased incidence of cancer and
decreased lifespan (see Table 2; reviewed in Edelmann and Edelmann, 2004). Surprisingly,
however, these mice do not develop colorectal cancer, but have an array of other tumours,
particularly lymphoma. Gene disruption experiments indicate that some MMR proteins
including MSH2 appear to be tumour suppressors though their role is in mutation avoidance.
While mice-deficient in MSH2 appear normal at birth and are fertile, they develop T cell
lymphoma, gastrointestinal, skin, or other tumours (de Wind et al., 1995,1998;Reitmair et al.,
1995). Mice lacking MSH2 show an inability of G-T mismatch binding in cell lysates, a mutator
phenotype, and resistance to a mismatch-inducing reagent in isolated cells. Half of the
MSH2−/− mice die by 6 months of age, and all of them succumb by 12 months.

MSH3−/− mice do not have a significant phenotype, although a small subset develop
gastrointestinal tumours (de Wind et al., 1999; Edelmann et al, 2000). This correlates with the
fact that MSH3 mutations are very rare in human HNPCC, and to the fact that the MSH2–
MSH6 complex is partially redundant for repair of a single base insertion. MSH6−/− mice have
reduced survival (50% survival at 11 months) with a tumour spectrum similar to that of
MSH2−/−. In agreement with their substrate specificity (primarily base-base mispairs and +1
IDLs), mutations in human MSH6 are associated with MSI-low tumours. The cancers in
families with MSH6 mutations are late onset, and endometrial cancer is commonly associated
with these mutations (Berends et al., 2002; Wu et al., 1999).

Slightly lower risks for colon cancer and higher risks for endometrial cancer have been reported
in families with MSH6 alterations. It should be noted that double-mutant MSH3−/− MSH6−/−

mice have phenotypes very similar to those of MSH2−/− (de Wind et al., 1999; Edelmann et
al., 2000). This reflects the fact that MSH2 is a common subunit for both MutSα and MutSβ,
the two MutS homologues that carry out MMR on base-base and insertion-deletion
mismatches, respectively. An MSH6 missense mutation (Thr 1217 to Asp) in mice causes loss
of MMR function, and shows increased mutation rates and cancer susceptibility, while having
no effect on the apoptotic response to DNA damaging agents (Yang et al., 2004a).

MLH1−/− mice (Baker et al., 1996; Edelmann et al., 1996) have similar lifespans to MSH2−/−

mice (50% survival at 6 months; all succumb by 12 months) and a similar tumour spectrum
including T cell lymphoma, gastrointestinal or skin tumours. MLH1−/− fibroblaste also are
MSI-high and deficient in MMR. In contrast to the MSH2−/− mice, MLH1−/− males and females
are sterile (Edelmann et al., 1996; Woods et al., 1999). Germ line cells in MLH1−/− male mice
enter meiotic prophase, arrest at pachytene phase, and undergo apoptosis. PMS2−/− mice
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develop lymphomas and sarcomas but not gastrointestinal tumours, and display 50% survival
at 9–10 month ages. PMS2−/− males are sterile possibly due to abnormal chromosomal pairing
in pachytene phase while PMS2−/− females are fertile.

Gene disruption of EXO1 in mice results in MMR defects, increased cancer susceptibility, and
male and female sterility (Wei et al., 2003). The repair defect in EXO1−/−cells also caused
elevated microsatellite instability at a mononucleotide repeat marker and a significant increase
in mutation rate. EXO1−/− mice displayed reduced survival, increased susceptibility to
lymphomas and meiotic defects.

The mouse models have confirmed that defects in MMR are the underlying cause of HNPCC
and give rise to a mutator phenotype, cancer predisposition, and in some cases, sterility
reflecting the role of some MMR proteins, like MLH1, in meiosis. They also support the idea
articulated by Loeb (2001) that cancers exhibit a mutator phenotype early in their evolution
(see discussion in Yang et al., 2004a). The mouse studies have yielded some unexpected
differences from HNPCC. HNPCC patients are heterozygous for the germline mutation
whereas mice heterozygous for the null allele are healthy. In addition, the tumour spectrum of
the knock-out mice differs from their human counterparts.

The link between MMR-deficiency, a mutator phenotype, and the development of cancer has
been firmly established. Work proceeds now to understand how a mutator phenotype gives rise
to cancer, to mine mechanistic information from HNPCC alleles, and to develop better
diagnostic tools in the clinic and more effective treatments. With respect to clinical outcomes,
continuous treatment with nitric-oxide-donating aspirin derivatives suppresses MSI in MMR-
deficient and HNPCC cancer cells (Mcllhatton et al., 2007). These compounds appear to
enhance acquisition of a microsatellite-stable phenotype by an as yet undefined genetic
selection process and may offer promise in the future as a chemopreventive for HNPCC
carriesrs.

1.6. MMR and ageing
Since the accumulation of DNA damage and resulting genomic instability is thought to be an
important initiating event in ageing as in cancer, which is itself an age-associated human
disease, much attention has been directed at elucidating the role of DNA repair DNA damage
signalling pathways in the ageing process (see this issue). Several mechanisms of age-
dependent genome instability have been proposed including the accumulation of oxidative
DNA damage, mitochondrial dysfunction that contributes to oxidative stress, and defects in
genome maintenance pathways including DNA repair, replication, checkpoint signalling, and
telomere maintenance. Defects in several genes encoding proteins involved in DNA repair or
damage signalling, e.g. members of the RecQ. helicase family, give rise to human segmental
progeroid syndromes characterized by short telomeres and premature ageing or early onset of
age-related disease such as cancer (reviewed in Blasco, 2007; Brosh and Bohr, 2007; Hanada
and Hickson, 2007).

The role of the MMR pathway in ageing is less clearly discernible. HNPCC patients do not
possess characteristics of premature ageing, and MEFs from PMS2−/− mice have normal
telomeres (Siegl-Cachedenier et al., 2007b). Attempts to monitor the effects of caloric
restriction, known to prolong lifespan in rodents, on cancer incidence and survival in MMR-
deficient Mlh1−/− mice reveal only modest effects (Tsao et al., 2002). However, as the authors
note, the marked inherent carcinogenic potential of the mutator phenotype in these MMR-
deficient mice may mask effects of caloric restriction. Several studies suggest that the capacity
for MMR as judged by MSI or mismatch levels is diminished as a function of ageing possibly
due to the loss of key MMR proteins (see, e.g. Annett et al., 2005; Ben Yehuda et al., 2000;
Krichevsky et al., 2004; Neri et al., 2005). Although we do not know whether correlations
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between ageing and loss of MMR reflect a direct role for MMR in preventing ageing or are
indirect consequences of the ageing process, these studies raise intriguing possibilities. Finally,
oxidative damage of DNA has been correlated with the ageing process. MutSα can target 8-
oxo-guanine mispairs for repair (Mazurek et al., 2002; Ni et al., 1999), and treatment of HEL
cells with H2O2 is associated with a reduction in MMR and with decreased levels of some
MMR proteins (see, e.g. Chang et al., 2002). Although BER remains the primary repair
pathway for oxidative DNA damage (Wilson and Bohr, 2007), the possible link between MMR
and oxidative damage and ageing remains a fertile area of investigation.

A landmark finding is the observation in budding yeast that loss of MMR function promotes
cell proliferation in cells missing telomerase (Rizki and Lundblad, 2001). In S. cerevisiae, an
est-2Δ strain missing the catalytic subunit of telomerase exhibits healthy growth initially, but
subsequently undergoes a rapid decline in colony formation. The est-2Δ msh2Δ strain, on the
other hand, exhibits improved growth and increased cell proliferation. Mutations in MLH1 or
PMS1 confer a similar improvement in growth. The enhanced growth phenotype is dependent
on RAD52 implicating homologous recombination. In the absence of telomerase, telomeres
can undergo recombination-based alternative elongation of telomeres, or ALT mechanisms
(Blasco, 2005). Given the antirecombination function of MMR, the logical conclusion is that
the loss of MMR is rescuing telomere function by allowing homologous recombination
between sister telomeres. In support of this notion, HCT 15 human colon cancer cells that are
MSHG −/− and expressing a dominant-negative hTERT exhibit telomere lengthening via an
ALT-like mechanism (Bechter et al., 2004).

Recently, Siegl-Cachedenier et al. (2007a) have reported that loss of MMR prolongs the mean
lifespan and median survival of Terc−/− mice. Interestingly, the Terc−/− PMS2−/− mouse exhibit
a progressive reduction in the number of tumours normally seen in PMS2−/−mice consistent
with a tumour suppressor function for short telomeres in the absence of MMR. Further analyses
reveal that the increased survival conferred by loss of MMR function in telomerase-deficient
mice or cells derived from these mice is not due to an amelioration of telomerase dysfunction
or apoptosis; nor is it attributable to increased recombination between sister telomeres. Instead,
the loss of MMR stimulates the proliferative capacity of cells through an attenuation of p21, a
cyclin-dependent kinase inhibitor that is a downstream effector of p53-mediated G1/S
checkpoints; p21 also interacts with PCNA causing inactivation of PCNA-mediated DNA
replication (reviewed in Ju et al, 2007). In fact, the Terc−/− PMS2−/− mouse phenocopies in
several important aspects a Terc−/− p21−/− mouse in which loss of p21 confers improves cell
proliferation and organ maintenance in telomere-dysfunctional mice (Choudhury et al.,
2007). These findings point to a surprising new role for PMS2 in signalling cell cycle arrest in
response to telomere dysfunction. Loss of EXO1, the exonuclease that functions in MMR,
rescues organ maintenance and lifespan in telomerase-dysfunctional Terc−/− mice (Schaetzlein
et al., 2007). Whether EXO1 and PMS2 function under conditions of telomere shortening in
the same p21 repression pathway remains to be determined as does the molecular pathway by
which PMS2 regulates cell proliferation via p21.

2. Summary
Studies of MMR continue to yield unexpected findings and intriguing connections to many
essential biological processes. Although the broad outlines of MMR function have been
identified, issues regarding DNA target accessibility, spatial and temporal regulation of MMR
protein activity, and interactions with proteins that clearly operate in pathways quite distinct
from DNA repair remain ill defined. Given the seemingly ubiquitous presence of MMR
proteins in a diverse array of important cellular functions, we can be confident that many
important and challenging problems remain to be solved.
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Fig. 1.
Cartoon scheme for 3′-directed eukaryotic MMR. Recognition of a mismatch by MutSα
(MSH2-MSH6) or MutSβ (MSH2-MSH3, not shown) and MutLα (MLH1-PMS2) results in
the formation of a ternary complex whose protein-protein and protein-DNA interactions are
modulated by ATP/ADP cofactors bound by MutSα and MutLα (indicated by red *). PCNA
may play an important role in the recruitment of MMR proteins to the vicinity of the replication
fork via a PIP motif on MSH6 and MSH3. Nicking by the endonuclease function of PMS2
stimulated by ATP, PCNA, and RFC and relevant protein-protein interactions (indicated by
green arrow) may establish strand discrimination targeting repair to the newly synthesized
strand. MMR is bidirectional and can be 5′-directed as well; this is not shown. HMGB1, a
nonhistone chromatin protein that bends DNA also facilitates MMR in vitro at or before the
excision step (not shown). Excision by EXO1 and possibly other as yet unidentified
exonucleases leads to the formation of an RPA-coated single-strand gap. Resynthesis by
replicative polδ and ligation restore the integrity of the duplex. See text for details.
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Fig. 2.
Structural model for T. aquaticus MutS bound to a mismatched DNA. The two protein
monomers containing a deletion of the C-terminal 43 amino acids are shown in yellow and
blue. The mismatched DNA containing a single unpaired T is shown in pink and red. Domains
I and IV constitute the mismatch binding site. Two composite nucleotide binding sites reside
in domain V. The H-U-H helix-u-turn-helix motif is essential for subunit dimerization.
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Fig. 3.
Structural model for human MutSα with HNPCC mutations. Four views of MutSα related by
90° rotations as indicated, with positions of HNPCC missense mutations indicated by spheres.
Hypothetical functional classification of mutations is indicated by sphere colour (see legend).
MSH2 and MSH6 are shown as light and dark grey Cα chain traces, respectively, and the DNA
is coloured orange. Three clusters of surface mutations, which may correspond to sites of
protein-protein interactions are indicated with dashed ovals. Reproduced with permission
(Warren et al., 2007).
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Table 1
Identity and functions of E. coli and eukaryotic proteins involved in MMR of replication errors

E. coli protein Function Homologues Function

MutS Binds mismatches MSH2-MSH6 (MutSα) Repairs single base-base and 1 –2 base IDL
mismatches

MSH2-MSH3 (MutSβ) Repair of some single base IDLs and IDLs ≥2
bases
Partially redundant with Msh2-Msh6

MutL Matchmaker that coordinates
multiple steps in MMR

MLH1-PMS2 (yPMS1)
(MutLα)
MLH1-MLH2 (hPMS1)
(MutLβ)
MLH1-MLH3 (MutLγ)

Matchmaker for coordinating events from
mismatch binding by MutS homologues to
DNA repair synthesis Endonuclease (PMS2)
Function of human heterodimer unknown
Suppresses some IDL mutagenesis in yeast
Suppresses some IDL mutagenesis Participates
in meiosis

MutH Nicks nascent unmethylated strand
at hemimethylated CATC sites

None

γ-δ complex Loads β-clamp onto DNA RFC complex Loads PCNA, modulates excision polarity
β-Clamp Interacts with MutS and may

recruit it to mismatches and/or the
replication fork

PCNA Interacts with MutS and MutL homologues

Enhances processivity of DNA pol
III

Recruits MMR proteins to mismatches
Increases MM binding specificity of Msh2–
Msh6 Participates in excision and probably in
signalling Participates in DNA repair synthesis
Participates in DNA re-synthesis

Helicase II Loaded onto DNA at nick by MutS
and MutL

None

Unwinds DNA to allow excision of
ssDNA

ExoI, ExoX Perform 3′ –5′ excision of ssDNA EXOI(Rth1) Excision of dsDNA
RecJ Perform 5′ –3′ excision of ssDNA

(also 3′-5′ excision by ExoVII)
3′ exo of polδ Excision of ssDNA

ExoVII 3′ exo of polε Synergistic mutator with Exo1 mutant
DNA pol III Accurate re-synthesis of DNA DNA polδ Accurate repair synthesis
SSB Participates in excision and DNA

synthesis
RPA Participates in excision and in DNA synthesis

DNA ligase Seals nicks after completion of
DNA synthesis

DNA ligase Seals nicks after completion of DNA synthesis

Adapted from Kunkel and Erie (2005) with permission.
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