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Summary

The primary goal of arandomized clinical trial is to make comparisons among two or more treatments.
For example, in a two-arm trial with continuous response, the focus may be on the difference in
treatment means; with more than two treatments, the comparison may be based on pairwise
differences. With binary outcomes, pairwise odds-ratios or log-odds ratios may be used. In general,
comparisons may be based on meaningful parameters in a relevant statistical model. Standard
analyses for estimation and testing in this context typically are based on the data collected on response
and treatment assignment only. In many trials, auxiliary baseline covariate information may also be
available, and it is of interest to exploit these data to improve the efficiency of inferences. Taking a
semiparametric theory perspective, we propose a broadly-applicable approach to adjustment for
auxiliary covariates to achieve more efficient estimators and tests for treatment parameters in the
analysis of randomized clinical trials. Simulations and applications demonstrate the performance of
the methods.
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1. Introduction

In randomized clinical trials, the primary objective is to compare two or more treatments on
the basis of an outcome of interest. Along with treatment assignment and outcome, baseline
auxiliary covariates may be recorded on each subject, including demographical and
physiological characteristics, prior medical history, and baseline measures of the outcome. For
example, the international Platelet Glycoprotein I1b/llla in Unstable Angina: Receptor
Suppression Using Integrilin Therapy (PURSUIT) study (Harrington, 1998) in subjects with
acute coronary syndromes compared the anti-coagulant Integrilin plus heparin and aspirin to
heparin and aspirin alone (control) on the basis of the binary endpoint death or myocardial
infarction at 30 days. Similarly, AIDS Clinical Trials Group (ACTG) 175 (Hammer et al.,
1996) randomized HIV-infected subjects to four antiretroviral regimens with equal
probabilities, and an objective was to compare measures of immunological status under the
three newer treatments to those under standard zidovudine (ZDV) monotherapy. In both
studies, in addition to the endpoint, substantial auxiliary baseline information was collected.
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Ordinarily, the primary analysis is based only on the data on outcome and treatment assignment.
However, if some of the auxiliary covariates are associated with outcome, precision may be
improved by “adjusting” for these relationships (e.g., Pocock et al., 2002), and there is an
extensive literature on such covariate adjustment (e.g., Senn, 1989; Hauck, Anderson, and
Marcus, 1998; Koch et al., 1998; Tangen and Koch, 1999; Lesaffre and Senn, 2003; Grouin,
Day, and Lewis, 2004). Much of this work focuses on inference on the difference of two means
and/or on adjustment via a regression model for mean outcome as a function of treatment
assignment and covariates. In the special case of the difference of two treatment means, Tsiatis
et al. (2007) proposed an adjustment method that follows from application of the theory of
semiparametrics (e.g., van der Laan and Robins, 2003; Tsiatis, 2006) by Leon, Tsiatis, and
Davidian (2003) to the related problem of “pretest-posttest” analysis, from which the form of
the “optimal” (most precise) estimator for the treatment mean difference, adjusting for
covariates, emerges readily. This approach separates estimation of the treatment difference
from the adjustment, which may lessen concerns over bias that could result under regression-
based adjustment because of the ability to inspect treatment effect estimates obtained
simultaneously with different combinations of covariates and “to focus on the covariate model
that best accentuates the estimate” (Pocock et al., 2002, p. 2925).

In this paper, we expand on this idea by developing a broad framework for covariate adjustment
in settings with two or more treatments and general outcome summary measures (e.g., log-
odds ratios) by appealing to the theory of semiparametrics. The resulting methods seek to use
the available data as efficiently as possible while making as few assumptions as possible. In
Section 2, we present a semiparametric model framework involving parameters relevant to
making general treatment comparisons. Using the theory of semiparametrics, we derive the
class of estimating functions for these parameters in Section 3 and in Section 4 demonstrate
how these results lead to practical estimators. This development suggests a general approach
to adjusting any test statistic for making treatment comparisons to increase efficiency,
described in Section 5. Performance of the proposed methods is evaluated in simulation studies
in Section 6 and is shown in representative applications in Section 7.

2. Semiparametric Model Framework

Denote the data from a k-arm randomized trial, k> 2, as (Yj, X;, Zj), i =1, ..., n, independent
and identically distributed (iid) across i, where, for subject i, Y; is outcome; X; is the vector of
all available auxiliary baseline covariates; and Z; = g indicates assignment to treatment group

k
g with known randomization probabilities P(Z=g) =75, g =1, ..., k, Zgzlﬂgzl.
Randomization ensures that Z_L X, where “1” means “independent of.”

Let S denote a vector of parameters involved in making treatment comparisons under a specified
statistical model. For example, in a two-arm trial, for a continuous real-valued response Y, a
natural basis for comparison is the difference in means for each treatment, E(Y | Z = 2) — E(Y
| Z=1), represented directly as S, in the model

E(Y|IZ)=pi+B:1 (Z=2), Bi=E(Y|Z=1), B=(Bi,B)". €

In a three-arm trial, we may consider the model
E(Y1Z) =B 1 (Z=1) +B2l (Z=2) +B31 (Z=3), B=(B1.B23)". @

In contrast to (1), we have parameterized (2) equivalently in terms of the three treatment means
rather than differences relative to a reference treatment, and treatment comparisons may be
based on pairwise contrasts among elements of 5. For binary outcome Y =0 or 1, where Y = 1
indicates the event of interest, we may consider for a k-arm trial

logit {E (Y|Z)} =logit {P (Y=1|2)} =B\ +Bol (Z=2) + - - - +BI (Z=k), 3)
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where logit(p) = log{p/(1 —p)}; #=(B1, . . ., A" ; and the log-odds ratio for treatment g
relative to treatment 1is B3, g =2, ..., k.

If Yj is a vector of continuous longitudinal responses Yjj, j=1, ..., m;j, attimes i, . . ., timi,
response-time profiles in a two-arm trial might be described by the simple linear mixed model

(4)

where = (81, 82)7, and S, is the difference in mean slope between the two treatments; extension
to k > 2 treatment groups is straightforward. Alternatively, instead of considering the fully
parametric model (4), one might make no assumption beyond

E(Y\Z)=a+ B+l (Z=D} iy, j=1,....m;, )
leaving remaining features of the distribution of Y given Z unspecified. For binary Yjj, the
marginal model logit{E(Yij | Zj)} = a + {1 + B21(Z;i = 2) }tjj might be adopted.

In all of (1)-(5), B (p % 1) is a parameter involved in making treatment comparisons in a model
describing aspects of the conditional distribution of Y given Z and is of central interest. In
addition to 8, models like (4) and (5) depend on a vector of parameters y, say; e.g., in (4),

T
7={(Y,03,Vech(D)T} ; and y = ain (5). In general, we define 8= (87, yT)T (r x 1), recognizing
that models like (1)-(3) do not involve an additional v, so that 6 = S.

For these and similar models, consistent, asymptotically normal estimators for 9, and hence
for £ and functions of its elements reflecting treatment comparisons, based on the data (Y;, Zj),
i=1,...,n,onlyand thus “unadjusted” for covariates, are readily available. Unadjusted, large-
sample tests of null hypotheses of “no treatment effects” are also well-established. The
difference of sample means is the obvious such estimator for f, in (1) and is efficient (i.e., has
smallest asymptotic variance) among estimators depending only on these data, and a test of
Ho : > = 0 may be based on the usual t statistic. Similarly, the maximum likelihood estimator
(MLE) for f, in (4) and associated tests may be obtained from standard mixed model software.
For k > 2, pairwise and global comparisons are possible; e.g., in (2), the sample means are
efficient estimators for each element of $, and a test of Hy : 1 = > = f3 may be based on the
corresponding two-degree-of-freedom Wald statistic.

As noted in Section 1, the standard approach in practice for covariate adjustment, thus using

all of (Yj, X, Zj),i=1,...,n,is based on regression models for mean outcome as a function
of Xand Z. E.g., for k=2 and continuous Y, a popular such estimator for 5 in (1) is the ordinary
least squares (OLS) estimator for ¢ in the analysis of covariance model

E (YIX,Z) =ap+al X+¢I (Z=2); ©)

extension to k > 2 treatments is immediate. See Tsiatis et al. (2007, Section 3) for discussion
of related estimators for f, in the particular case of (1). If (6) is the correct model for E(Y | X,
Z), then ¢ and f, in (1) coincide, and, moreover, the OLS estimator for ¢ in (6) is a consistent
estimator for S, that is generally more precise than the usual unadjusted estimator, even if (6)
is not correct (e.g., Yang and Tsiatis, 2001). For binary Y, covariate adjustment is often carried
out based on the logistic regression model

logit {E (Y|X,Z)} =logit {P (Y=1)| X,Z)} =ao+a! X+¢I (Z=2), -

where the MLE of ¢ is taken as the adjusted estimator for the log-odds ratio 8, in (3) with k =
2. In (7), ¢ is the log-odds ratio conditional on X, assuming this quantity is constant for all X.
This assumption may or may not be correct; even if it were, ¢ is generally different from g, in
(3). Tsiatis et al. (2007, Section 2) discuss this point in more detail.
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To derive alternative methods, we begin by describing our assumed semiparametric statistical
model for the full data (Y, X, Z), which is a characterization of the class of all joint densities
for (Y, X, Z) that could have generated the data. We seek methods that perform well over as
large a class as possible; thus, we assume that densities in this class involve no restrictions
beyond the facts that Z L X, guaranteed by randomization; that 7y =P(Z=9),9=1,...,k, are
known; and that 8 is defined through a specification on the conditional distribution of Y given
Z as in (1)-(5). We thus first describe the conditional density of Y given Z. Under (3) and (4),
this density is completely specified in terms of , while (5) describes only one aspect of the
conditional distribution, the mean, in terms of 6, and (1) and (2) make no restrictions on the
conditional distribution of Y given Z. To represent all such situations, we assume that this
conditional density may be written as py|z (Y|z; 6, n), where » is an additional nuisance
parameter possibly needed to describe the density fully. For (3) and (4), 7 is null, as the density
is already entirely characterized. For (1), (2), and (5), » is infinite-dimensional, as these
specifications do not impose any additional constraints on what the density might be, so any
density consistent with these models is possible.

Under the above conditions, we assume that all joint densities for (Y, X, Z) may be written, in
obvious notation, as py,x z(Y, X, Z; 6, 1, v, @) = py xz(¥, X | Z; 6, n, w)pz(z; =), where pz(z; ) is

completely specified, as 7 = (1, . . ., m)" is known, and satisfy the constraints
(1) fpy_)qz (Y7X|Z;9,’7sl//) dx:p)qz (J’|Z,9,77) ) (8)
(i) [Py OXz0.08) dy=p, (x). ©)

The joint density involves an additional, possibly infinite-dimensional nuisance parameter v,
needed to include in the class all joint densities satisfying (i) and (ii). Here, px(x) is any arbitrary
marginal density for the covariates, and (ii) follows because Z_1L X. In Web Appendix A, we
demonstrate that a rich class of joint distributions for (Y, X, Z) may be identified such that X
is correlated with Y and ZuX [condition (ii)] that also satisfy condition (i). Because the joint
density involves both finite (parametric) and infinite-dimensional components, it represents a
semiparametric statistical model (see Tsiatis, 2006, Section 1.2).

3. Estimating Functions for Treatment Parameters Using Auxiliary Covariates

We now derive consistent, asymptotically normal estimators for 9, and hence g, in a given
Py|z (YIz; 6, ) and using the iid data (Yj, X;, Z;),i=1..., n, under the semiparametric framework
satisfying (8) and (9). To do this, we identify the class of all estimating functions for 6 based
on (Y, X, Z) leading to all estimators for 4 that are consistent and asymptotically normal under
this framework. An estimating function is a function of a single observation and parameters
used to construct estimating equations yielding an estimator for the parameters.

When the data on auxiliary covariates X are not taken into account, estimating functions for
6 based only on (Y, Z) in models like those in (1)-(5) leading to consistent, asymptotically
normal estimators are well known. For example, the OLS estimator for 6 = § in the linear
regression model (1) may be obtained by considering the estimating function

m(Y,.Z:0) ={1I Z=2){ {Y - B1 — Bl (Z=2)}, 6=B=(B1,52)" . (10)

and solving the estimating equation Z,-:l’" (Yi.Zi:0) =0 in 6. The OLS estimator for 8, s0
obtained equals the usual difference in sample means. Likewise, with 8= 8= (1, ..., )"
and expit(u) = exp(u)/{1+exp(u)}, the usual logistic regression MLE for S in (3) is obtained

n
by solving Zi:lm (Yi.Zi:0) =0, where the estimating function m(Y, Z; 6) is equal to

(1,L1(Z=2),... ] (Z=k)\T [ Y — expit {B1+B2] (Z=2) + - - - +B] (Z=k)}]. a1
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The estimating functions (10) and (11) are unbiased; i.e., have mean zero assuming that (1)
and (3), respectively, are correct. Under regularity conditions, unbiased estimating functions
lead to consistent, asymptotically normal estimators (e.g., Carroll et al., 2006, Section A.6).

Our key result is that, given a semiparametric model py x z(Y, X, z; 6, 1, w, ) based on a specific
Pyz(ylz; 6, n) and satisfying (8) and (9), and given a fixed unbiased estimating function m(Y,
Z; 0) (rx 1) for 6, such as (10) or (11), members of the class of all unbiased estimating functions

for 6, and hence B, using all of (Y, X, Z) may be written as
k

m* (V. X.Z:60) =m (V.2:0) - > {I(Z=g) - m} ag (X),
g=1 (12)

where ag(X),g=1,..., k, arearbitrary r-dimensional functions of X. Because Z_L X, the second
term in (12) has mean zero; thus, (12) is an unbiased estimating function based on (Y, X, Z).
When ag(X) 0,g =1, ...,k (12) reduces to the original estimating function, which does not

n
take account of auxiliary covariates, and solving Zi:lm (Yi.Zi:0) =0 |eads to the unadjusted

—~ —m\T
estimator 6= (,ET J’T) to which it corresponds. Otherwise, (12) “augments” m(Y, Z; 6) by the
second term. With appropriate choice of the ag(X), the augmentation term exploits correlations

between Y and elements of X to yield an estimator for ¢ solving Zizlm* (Y1, Xi,Zi30) =0 that is

relatively more efficient than . The proof of (12) is based on applying principles of
semiparametric theory and is given in Web Appendix B.

Full advantage of this result may be taken by identifying the optimal estimating function within
class (12), that for which the elements of the corresponding estimator for § have smallest

asymptotic variance. This estimator for 4 thus yields the greatest efficiency gain over 3 among
all estimators with estimating functions in class (12) and hence more efficient inferences on
treatment comparisons. By standard arguments for M-estimators (e.g., Stefanski and Boos,
2002), an estimator for & corresponding to an estimating function of form (12) is consistent
and asymptotically normal with asymptotic covariance matrix

k ®2
m(Y.Z:600) - Y {1(Z=g) - mg} a, (X)

&=l

s

A'r(a™)', F:E[

(13)

where 0 is the true value of 0, u*?=uu”, and A=E {~0/06"m (v.Z:60)) lyg, . Thus, to find the
optimal estimating function, one need only consider I' in (13) and determine ag(X),g=1, ...,
k, leading to Fopy, say, such thatT — Ty is nonnegative definite. For given m(Y, Z; 6), itis shown
in Web Appendix C that I'qpt takes ag(X) = E{m(Y, Z; ) | X, Z=g},g=1,...,k Thus, in
general, the optimal estimator in class (12) is the solution to

k
m(¥iZi6) = ) \[(Zi=g) = mo) E Im(¥.2:6) IX;.Z=g)

g=1

n

2

i=1

=0.

(14)

In the case of $, in (1), (14) yields the optimal estimator in (16) of Tsiatis et al. (2007).

4. Implementation of Improved Estimators

The optimal estimator in class (12) solving (14) depends on the conditional expectations E{m
(Y, Z;0)| Xi, Z=9},g=1,...,k, the forms of which are of course unknown. Thus, to obtain
practical estimators, we first consider a general adaptive strategy based on postulating
regression models for these conditional expectations, which involves the following steps:

Biometrics. Author manuscript; available in PMC 2008 October 28.
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n
(1) Solve the original estimating equation Zi:lm (Y1.Zi:0) =010 obtain the unadjusted estimator
- For each subject i, obtain the values m(Y,-,g;@) foreachg=1,... k

(2) Note that the m (Yi,g;g) are (r x 1). For each treatment group g =1, . . ., k separately, based

on the r-variate “data” m (Yf,g;@) for i in group g, develop a parametric regression model
E {m (Y’gﬁ) |X,Z=g} U (X’gg) ':{qgl (Xaévgl) se e slgr (ngg/')}T, where évg:(gngs e s(gT,»)T; ie.,

such that ggy(X, {gu), u=1, ..., r, are regression models for each component ofm(Yf,g;a). We
recommend an approach analogous to that in Leon et al. (2003, Section 4) where the ggy(X,

{qu) are represented as {chu X )]Té“gu, ,u=1,...,r, and cg,(X) are vectors of basis functions
in X that may include polynomial terms in elements of X, interaction terms, splines, and so on.
This offers considerable latitude for achieving representations that can approximate the true

conditional expectations, and hence predictions derived from them, well. We also recommend

— . —~r\T
obtaining estimates é’g:@l, cee ,{g',-) via OLS separately foreachu=1,...,r,as, bya
generalization of the argument in Leon et al. (2003, Section 4), this will yield the most efficient
estimator for 0 in step (3) below when the qg(X, {g) are of this form. For each subjecti=1,.. .,

n, form predicted values 4= (X,Zg) foreachg=1,..., k. (3) Using the predicted values from
step (2), form the augmented estimating equation
n k

D m¥zio) = Y {1 Zi=g) ~ o) 4 (XiZe) | =0

i=1 g=1 (15)

and solve for & to obtain the final, adjusted estimator 4. We recommend substituting

e — n
Ry=n lzi:l[(z,.:g) for mg.g=1.....k in (15).

The foregoing three-step algorithm applies to very general m(Y, Z; 6). Often,
m(Y,Z:0) =A (Z,O){Y — [ (Z:0)} (16)

for some A(Z, 6) with r rows and some f(Z, ), as in (10) and (11). Here, a simpler, “direct”
implementation strategy is possible. Note that E{m(Y, Z; 8) | X, Z = g} = A(g, O){E(Y X, Z =
g) — f(g; 8)}; thus, foreachg =1, ..., k, based on the data (Y;, X;) for i in group g, we may
postulate parametric regression models E (Y1X,Z=g) =q, (X ’é’g) = {l,cg (X)} e, foravector of
basis functions c4(X), and obtain OLS estimators Z, g=1,...,k. Thenformforeachi=1,...,
n the corresponding predicted values for E{m(Y, Z; 6) | X, Z =g} as

dg (XiiZe:0) =A (2.9) {qa (X:e) - f(gﬁ)}, where we emphasize that, here, g (Xi-de.0), g =

1,...,k, are functions of 4. Substituting the 4 (Xffgﬁ) (and Te8=1,... ,k) in (15), solve the
resulting equation in @ directly to obtain .

Several observations follow from semiparametric theory. Although we advocate representing
E{m(Y,Z;0) | X,Z=g}orE(Y |X,Z=09),9=1,...,k, by parametric models, consistency and
asymptotic normality of 4 hold regardless of whether or not these models are correct
specifications of the true E{m(Y, Z; 6) | X, Z=g} or E(Y |X, Z = g). Thus, the proposed methods
are not parametric, as their validity does not depend on parametric assumptions. The theory
also shows that, in either implementation strategy, if the qq are specified and fitted via OLS as
described above, then, by an argument similar to that in Leon et al. (2003, Section 4), g is
guaranteed to be relatively more efficient than the corresponding unadjusted estimator.
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Moreover, under these conditions, although {yand 7, g = 1, . . ., k, are estimated, éwill have
the same properties asymptotically as the estimator that could be obtained if the limits in

probability of the Zj;, were known and substituted in (14) and if the true =y were substituted,
regardless of whether the qg are correct or not. In the direct strategy, if Y is discrete, it is natural

to instead posit the g, (Xé) as generalized linear models; e.g., logistic regression for binary
Y, and fit these using iteratively reweighted least squares (IRWLS). Although the previous
statements do not necessarily hold exactly, in our experience, they hold approximately.
Regardless of whether or not the qg are represented by parametric linear models and fitted by
OLS, if the representation chosen contains the true form of E{m(Y, Z; 9)|X, Z = g) or E(Y |X,

Z = g), respectively, then 4 is asymptotically equivalent to the optimal estimator solving (14).
In general, the closer the predictions from these models are to the true functions of X, the closer

g Will come to achieving the precision of the optimal estimator. Because 4 is contained in 6,
all of these results apply equally to lé

Because in either implementation strategy ¢ solving (15) is an M-estimator, the sandwich
method (e.g., Stefanski and Boos, 2002) may be used to obtain a sampling covariance matrix

for g, from which standard errors for functions of lé may be derived. This matrix is of form
(13), with expectations replaced by sample averages evaluated at the estimates and ag(X)
replaced by the predicted values using the qg, g =1, .. ., k.

The regression models qg in either implementation, which are the mechanism by which
covariate adjustment is incorporated, are determined separately by treatment group and are

developed independently of reference to the adjusted estimator Zg Thus, estimation of 4 could
be carried out by a generalization of the “principled” strategy proposed by Tsiatis et al.

(2007, Section 4) in the context of a two-arm trial and inference on 3, in (1), where development
of the models g would be undertaken by analysts different from those responsible for obtaining

g to lessen concerns over possible bias, as discussed in Section 1.

5. Improved Hypothesis Tests

The principles in Section 3 may be used to construct more powerful tests of null hypotheses
of no treatment effects by exploiting auxiliary covariates. The key is that, under a general null
hypothesis Hg involving s degrees of freedom, a usual test statistic T, say, based on the data
(Yi, Zy),i=1,...,n,only is asymptotically equivalent to a quadratic form; i.e.,

n T n
T, ~ {n‘l/ZZf(Yf,Zf)} ! {n‘/ lZZf(Y,',z,-)},
i=1 i=1

where £(Y.Z) is a (sx1) function of (Y, Z), discussed further below, such that £, {¢ (Y,2)} =0,
with E,, denoting expectation under Ho; and Z=E {f( Y,Z)®2}.

17

When the notion of “treatment effects” may be formulated in terms of 8 in a model like (1)-
(5), the null hypothesis is typically of the form Hg : CS =0, where C is a (sxp) contrast matrix.
E.g., in (2), Cis (2 x 3) with rows (1, —1, 0) and (1, 0, —1). When inference on Hg is based on

'l' . 71 3 _ . - - -
aWald test of the form Tn=(C,E) (n 12) CB, where g is unadjusted estimator corresponding
to an estimating function m(Y, Z; 6), and ,,-15 is an estimator for the covariance matrix of

Cﬁ,[(y,z) =CBm (Y,Z.6,)- Here, B is the (p x r) matrix equal to the first p rows of
-1

T .

[E”o {_6/‘39 ’”(Y"’Z"’H)} |0:00] . and 6y is the value of 6 Hy,.
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In other situations, the null hypothesis may not refer to a parameter like 4 in a given model.
For example, the null hypothesis for a k-arm trial may be Hg : S1(u) = - - - = Sx(u) = S(u), where
Sg(u) =1-P(Y<ulZ=g),and S(u) =1 —P(Y <u). A popular test in this setting is the Kruskal-

n
Wallis test, which reduces to the Wilcoxon rank sum test for k = 2. Letting "gzzi:ll(ZFg)
and feg be the average of the overall ranks for subjects in group g, the test statistic is

k - 2
Tnzlzzg:l”g{l‘)g = (ntl) /2} [ {n(n+1} By results in van der Vaart (1998, Section 12.2), it
may be shown that T, is asymptotically equivalent to a statistic of the form (17), where
t(Y,Z)is (k — 1 x 1) with gth element {I(Z = g) — mg}{S(Y) — 1/2}.

To motivate the proposed more powerful tests, we consider the behavior of Ty, in (17) under a
sequence of local alternatives Hy, converging to Hy at rate n~/2, Typically, under suitable

. . -12\ " .
regularity conditions, 72 v Zizlf(Y;,Zf) in (17) converges under the sequence Hq, to a
N (7.X) random vector for some 7, so that T, has asymptotically a noncentral X% distribution
with noncentrality parameter z' =1z, To obtain a more powerful test, then, we wish to construct
a test statistic with noncentrality parameter as large as possible. Based on the developments in
Section 3, we consider test statistics of the form

n T n
T;:{”_l/zzf* (Yi’XiaZi)} = {”_1/225* (Yi,Xi,Zi)} ,

i=1 i=1 (18)

k
CWX2)=Y2) - ) (1Z=0) - 7} a, (X),
=1 (19)

where '=E, {f*(Y,X,Z)®2}. The second term in (19) has mean zero by randomization under
Hg or any alternative. Accordingly, it follows under the sequence of alternatives Hq, that

-1/2 L . .. . * .
!/ ZH[ (Yi,Xi.Zi) converges in distribution to a NV (7.£) random vector, so that 7 in (18)
has an asymptotic y? distribution with noncentrality parameter z'="1z.

These results suggest that, to maximize the noncentrality parameter and thus power, we wish

* *—1

to find the particular £* , X, ,;, say, that makes X, — 1 non-negative definite for all £*,

which is equivalent to making £* - X;,,, non-negative definite for all £*. This corresponds to
finding the optimal choice of ag(X), g =1, ..., k, in (19). By an argument similar to that leading

to (14), the optimal choice is a, (X) =E {¢(Y,Z)|X,Z=g} for g=1,....k.
These developments suggest an implementation strategy analogous to that in Section 4:

(1) For the test statistic T,,, determine ¢ (Y.Z) and substitute sample quantities for any unknown

parameters to obtain ?(Y,-,Z,-) i=1,....n- E.g., for Hy: Cp =0 in model (2), with C (2 x 3) as
above, m(Y, Z, 0) ={I(Z=1), (Z=2), Z=3)}{Y-B11(Z=1) — pol(Z=2) — p31(Z=3)}, 6
= (B1, B2, B3)7. Under Hg, 6g = (u, 1, )7, say, so that m(Y, Z, o) = {I(Z=1), 1(Z=2), (Z =
3)}(Y-), and
—1 1) _ 1 :_i
(Y2 :( 7' 1(Z=1) - 15'1(Z=2)

a7\ (Z=1) - n;'1(Z=3) )(Y_“)‘

(20)
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i . i i . A —1 n
As u is unknown, ¢(v;,7;) is obtained by substituting 7 Zi:l Yi for u. We recommend
substituting 7, for 7y, g = 1, 2, 3, in (20), as above. Similarly, for the Kruskal-Wallis test,

(Y, Z:)= {I(Z:g) —ﬁg} {?(Y,-) - 1/2}, S (u) =n_IZLlI(Y,- > u)

(2) For each treatment group g =1, . .., k separately, treating the 7 (y;,z;) for subjects i in group
g as s-variate “data,” develop a regression model

s T
E {l’(Y,g) IX,Z=g) =qg (ngg) ={qg1 (X,é“gl) -+ sqgs (X,é“g.s-)} by representing each component
dgu(X, gu), U=1, ..., s, by the parametric “basis function” approach in Section 4; estimate

each (g, by OLS to obtain Zg,; and form predicted values 4¢ (X,zo) i=1,...,n

(3) Using the predicted values from step (2), form
k
(Vi XiZ) =C(YiZi) - Y (1Zi=g) - T} 4 (XiZe)
g=1 (21)

S 1N S
and substitute these values into (18). Estimate =* in (18) by = =7 ‘Zi:lf (Y;.X:,Z)*,

Compare the resulting test statistic 7 to the 2 distribution. As in Section 4, there is no effect
asymptotically of estimating {gand =g, g = 1, . . ., k, so that ?” will achieve the same power
asymptotically as if the limits in probability of Zg and the true g were substituted. Notably,

the test based on T\” will be asymptotically more powerful than the corresponding unadjusted
test against any sequence of alternatives.

The approach of Tangen and Koch (1999) to modifying the Wilcoxon test for two treatments
is in a similar spirit to this general approach.

6. Simulation Studies

6.1 Estimation

We report results of several simulations, each based on 5000 Monte Carlo data sets. Tsiatis et
al. (2007, Section 6) carried out extensive simulations in the particular case of (1); thus, we
focus here on estimation of quantities other than differences of treatment means.

In the first set of simulations, we considered k = 2, a binary response Y, and
logit{E (Y|Z2)} =pB1+B21 (Z=2), (22)

so that 3, is the log-odds ratio for treatment 2 relative to treatment 1, the parameter of interest;
and @ = = (f1, Bo)" . For each scenario, we generated Z as Bernoulli with P(Z = 1) = P(Z =
2) = 0.5 and covariates X = (X1, . . ., Xg)T such that X1, X3, Xg ~ N (0,1); X, and Xg were
Bernoulli with P(X4 =1) =0.3 and P(Xg = 1) = 0.5; and X, = 0.2X1 + 0.98U4, X5 = 0.1X; +
0.2X3 + 0.97Uy, and X7 = 0.1X3 + 0.99U3, where y, ~ N (0,1) £ = 1, 2, 3. We then generated

Y as Bernoulli according to logit {P (Y=1|Z=g,X)} :aog+agTX, g =1, 2, with agg and g chosen
to yield mild, moderate, and strong association between Y and X within each treatment, as

follows. Using the coefficient of determination RZ to measure the strength of association, R?
= (0.18, 0.16) for treatments (1,2) in the “mild” scenario, with (ag1, ag2) = (0.25, —0.8), a1 =
(0.8,0.5,0,0,0,0,0,0)T, and ay = (0.3,0.7,0.3,0.8,0, 0,0, 0)T ; R2 = (0.32, 0.33) in the

“moderate” scenario, with (ag1, ag2) = (0.38, —0.8), a1 = (1.2,1.0,0,0,0,0,0,0)T , and ap =
(0.5,1.3,0.5,1.5,0,0,0,0)" ; and R2 = (0.43, 0.41) in the “strong” scenario, with (a1, agy)
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=(0.8,-0.8), a1 = (1.5,1.8,0,0,0,0,0,0)" and a = (1.0, 1.3,0.8, 2.5, 0,0, 0, 0)T . Thus, in
all cases, Xq, . . ., X4 are covariates “important” for adjustment while Xs, . . ., Xg are

“unimportant.” For each data set, n = 600, and, we fitted (22) by IRWLS to (Y;, Zj),i=1, ...,
n, to obtain the unadjusted estimate of 5. We also estimated S by the proposed methods using

the direct implementation strategy, where the models (Xé“) foreachg=1, 2inthe
augmentation term were developed six ways:

Aug. 145 (X.2e) ={1.e! (30)' ey () ="true™, it by OLS

Aug. 2 45 (X.2e) ={1.e! (%) orce (¥) =X, fit by OLS

Aug. 3 logit (g} (X.2,)} ={1.ch (D) Zyuce (X)=""true,” it by IRWLS
Aug . 4logit (g} (X.2)} ={1.c 00} Zece (X=X, fit by IRWLS
Aug. 5 5 (X.e) ={1c? ()] ey (X) by OLS with forward selection

Aug. 6 logit {q; (X.Z,)} ={1.c} (X)}Té“g,cg (X) by IRWLS with forward selection

where “true” means that c4(X) contained only x, ¢=1,... 4, for which the corresponding
element of ag was not zero (i.e., using the “true important covariates” for each g); and in Aug.
5 and 6 forward selection from linear terms in Xy, . . ., Xg for linear or logistic regression was

used to determine each ¢ (X{) with entry criterion 0.05. Aug. 3, 4, and 6 demonstrate
performance when nonlinear models and methods other than OLS are used. We also estimated
o by estimating ¢ in (7) via IRWLS two ways: Usual 1, where only the “important” covariates
X1, ..., Xg were included in the model; and Usual 2, where the subset of X4, . . ., Xg to include
was identified via forward selection with entry criterion 0.05.

Table 1 shows modest to considerable gains in efficiency for the proposed estimators,
depending on the strength of the association. The estimators are unbiased, and associated
confidence intervals achieve the nominal level. In contrast, the usual adjustment based on (7)
leads to biased estimation of 5, considerable efficiency loss, and unreliable intervals. This is
a consequence of the fact that S, is an unconditional measure of treatment effect while ¢ is
defined conditional on X; this distinction does not matter when the model for Y is linear but is
important when it is nonlinear, as is (7) (see, e.g., Robinson et al., 1998).

In the second set of simulations, we again took k = 2 and focused on f,, the difference in
treatment slopes in the linear mixed model (4). In each scenario, we generated for each i =
1,...,n=200 zjas Bernoulli with P(Z = 1) = P(Z = 2) = 0.5; Xyj, X5j, X3j as above; and
subject-specific intercept Soi = 0.5 + 0.2X3; + 0.5X5; + bgj and slope

ﬁll‘:(l()g+(l’1gX%i+(lng2,‘+(l13X3,‘+b1,‘, where (0!01, 0602) = (101 13): (b(),',bl,')T i~ N(O,D)’ with
D11 =1,D42=0.2, and Dy, = 0.4, so that corr(bg;, by;) = 0.5. We generated m; =9, 10, 11 with
equal probabilities; took tjj = 2(j — 1) for j =1, ..., m;; and generated Yjj = fo; + faitij + &ij, |

=1,...,mj, where € “ N(O,U'3=16). Writing ag = (a1g, 02g, 0:3g), We took aq = (0.2, 0.2,
0)Tand o = (0.2, 0, 0.2)7, yielding R? values between subject-specific slopes and covariates
of (0.11, 0.14) in the two groups, for “mild” association; o = (0.13, 0.1, 0)T and a, = (0.13, 0,
0.15)T, R? = (0.24, 0.24), for “moderate” association; and a; = (0.28, 0.25, 0)T and a» = (0.28,
0,0.25)T, R? = (0.36, 0.36), for “strong” association. For each data set, we obtained the
unadjusted estimate for @ by fitting (4) using SAS proc mixed (SAS Institute, 2006). For (4),
m(Y, Z; 6) has components of form (16) for & and # and more complicated components quadratic
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in'Y for D and o2 For simplicity, because the estimators for (a, ) and (D,(Tf) are uncorrelated,

we fixed D and o2 at the unadjusted analysis estimates in the components of m(Y, Z; 6) for
(o, B), as asymptotically this will not impact precision of the estimators for («, £), and used the
direct implementation strategy based on the components for (a, £) only. We considered three

variants on the proposed methods, all with each element of (X,é“g) = {16' (X)}é“g fitted by

T
OLS: Aug 1., taking ¢g (X) =(1,Xf,Xz,X3) , corresponding to the form of the true relationship;
Aug 2., with cg(X) = (1, Xq, X, X3)T, so not exploiting the quadratic relationship in Xy; and

T
Aug 3., with ¢g (X) =(1,X12,X2,X3) . including an unneeded linear effect of X;. Writing now
Xi = (X1, Xoi, X3i) , we also estimated S, by the estimate of ¢ from fitting via proc mixed the

linear mixed model Yij=coo+ag, Xi+ ((110+(11T1Xi+¢zi) tij+boitbyitij+e;;, denoted as Usual;
such a model, with linear covariate effects only, might be prespecified in a trial protocol (e.g.,
Grouin et al., 2004). Table 2 shows that the proposed methods lead to relatively more efficient

estimators when quadratic terms in Xy are included in the ¢, (X,{g).

We carried out simulations based on 10,000 Monte Carlo data sets involving k = 3 and the
Kruskal-Wallis test. For each data set, we generated for each of n = 200 or 400 subjects Z with
P(z=9g)=1/3,9=1, 2, 3,and (Y, X) with joint distribution of (Y, X) given Z bivariate normal
with mean {$11(Z = 1) + ,I(Z = 2), 0}" and covariance matrix vech(1, p, 1), where p = 0.25,
0.50, 0.75 corresponds to mild, moderate, and strong association between covariate and
response. Under the null hypothesis, we set 1 = 2 = 0; simulations under the alternative
involved 1 = 0.25, f, = 0.4. For each data set, we calculated the unadjusted Kruskal-Wallis

test statistic T, and the proposed statistic T,, using the strategy in Section 5, with each
component of the s = 2-dimensional models qg(X, {g) in (21) represented as

T T
Ggu (X,{gu) ={1,C§u (X)} Lugut=1,2,cqu (X) =(X ,Xz) . Each statistic was compared to the 0.95

quantile of the X% distribution. Table 3 shows that the proposed procedure yields greater power
than the unadjusted test while achieving the nominal level, where the extent of improvement
depends on the strength of the association between Y and X, as expected.

7. Applications
7.1 PURSUIT Clinical Trial

We consider data from 5,710 patients in the PURSUIT ftrial introduced in Section 1 and focus
on the log-odds ratio for Integrilin relative to control. The 35 baseline auxiliary covariates are
listed in Web Appendix D.

The unadjusted estimate of the log-odds ratio based on (22), 3,, is —0.174 with standard error
0.073. To calculate the augmented estimator based on (22), we used the direct implementation

. T T
strategy and took ¢ (X§) ={1,C§ (X)] & 9=1, 2, with cy(X) including main effects of all

35 covariates, and fitted the models by OLS. The resulting estimate g,= — 0.163, with standard
error 0.071. For these data, the relative efficiency of the proposed estimator to the unadjusted,
computed as the square of the ratio of the estimated standard errors, is 1.06. For binary response,
substantial increases in efficiency via covariate adjustment are not likely; thus, this admittedly
modest improvement is encouraging.
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7.2 AIDS Clinical Trials Group Protocol 175

We consider data on 2139 subjects from ACTG 175, discussed in Section 1, where the k =4
treatments were zidovudine (ZDV) monotherapy (g = 1), ZDV+didanosine (ddl, g = 2), ZDV
+zalcitabine (g = 3), and ddl monotherapy (g = 4). The continuous response is CD4 count
(cells/mm3, Y ) at 20+5 weeks, and we focus on the four treatment means, with the same 12
auxiliary covariates considered by Tsiatis et al. (2007, Section 5).

We consider the extension of model (2) to k = 4 treatments, so that 8 = = (81, . . ., fa)", By
=E(Y|Z=g),9=1,...,4. The standard unadjusted estimator for /5 is the vector of sample
averages; these are (336.14, 403.17, 372.04, 374.32)" for g = (1, 2, 3, 4), with standard errors
(5.68, 6.84, 5.90, 6.22)T . Using the direct implementation strategy with each element of

qg (X,§g) represented using cg(X) containing all linear terms in the 12 covariates, the proposed

methods yield [3 = (333.85, 403.83, 370.43, 376.45)T , with standard errors obtained via the
sandwich method as (4.61,5.93,4.89,5.11) T . This is of course one realization of data; however,
it is noteworthy that the standard errors for the proposed estimator correspond to relative
efficiencies of 1.51, 1.33, 1.46 and 1.48, respectively.

We also carried out the standard unadjusted three-degree-of-freedom Wald test for Hy : 1 =
P2 = f3 = p4 and Kruskal-Wallis test for Hg : Sq(u) = - - = S4(u) = S(u), as well as their adjusted
counterparts using cqy(X) containing linear and quadratic terms in the continuous components
of X and linear terms in the binary elements. The unadjusted and adjusted Wald statistics are
59.40 and 109.58, respectively; the unadjusted and adjusted Kruskal-Wallis statistics are 49.04

and 100.53; and all are to be compared to x3 critical values. Again, although the evidence
against the null hypotheses is overwhelming even without adjustment, the proposed test
statistics are considerably larger.

See Web Appendix D for further results for these data.

8. Discussion

We have proposed a general approach to using auxiliary baseline covariates to improve the
precision of estimators and tests for general measures of treatment effect and general null
hypotheses in the analysis of randomized clinical trials by using semiparametric theory.

We identify the optimal estimating function involving covariates within the class of such
estimating functions based on a given m(Y, Z; 6). For differences of treatment means or
measures of treatment effect for binary outcomes, this estimating function in fact leads to the
efficient estimator for the treatment effect. In more complicated models, e.g., repeated
measures models, we do not identify the optimal estimating function among all possible. Our
experience in other problems suggests that gains over the methods here would be modest.

The use of model selection techniques, such as forward selection in our simulations, to
determine covariates to include in the augmentation term models should have no effect
asymptotically on the properties of the estimators for 6. However, such effects may be evident
in smaller samples, requiring a “correction” to account for failure of the asymptotic theory to
represent faithfully the uncertainty due to model selection. Investigation of how approaches to
inference after model selection (e.g., Hjort and Claeskens, 2003; Shen, Huang and Ye, 2004)
may be adapted to this setting would be a fruitful area for future research.
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