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Abstract
Discovering statistical correlation between causal genetic variation and clinical traits through
association studies is an important method for identifying the genetic basis of human diseases.
Since fully resequencing a cohort is prohibitively costly, genetic association studies take
advantage of local correlation structure (or linkage disequilibrium) between single nucleotide
polymorphisms (SNPs) by selecting a subset of SNPs to be genotyped (tag SNPs). While many
current association studies are performed using commercially available high-throughput
genotyping products that define a set of tag SNPs, choosing tag SNPs remains an important
problem for both custom follow-up studies as well as designing the high-throughput genotyping
products themselves. The most widely used tag SNP selection method optimizes over the
correlation between SNPs (r2). However, tag SNPs chosen based on an r2 criterion do not
necessarily maximize the statistical power of an association study. We propose a study design
framework that chooses SNPs to maximize power and efficiently measures the power through
empirical simulation. Empirical results based on the HapMap data show that our method gains
considerable power over a widely used r2-based method, or equivalently reduces the number of
tag SNPs required to attain the desired power of a study. Our power-optimized 100k whole
genome tag set provides equivalent power to the Affymetrix 500k chip for the CEU population.
For the design of custom follow-up studies, our method provides up to twice the power increase
using the same number of tag SNPs as r2-based methods. Our method is publicly available via
web server at http://design.cs.ucla.edu.
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Introduction
Discovering statistical correlation between causal genetic variation and clinical traits
through association studies is an important method for identifying the genetic basis of
human disease. (Balding, 2006; Carlson et al., 2004a). Typically, a genetic association study
gathers case/control individuals, collects genetic variation information such as genotypes at
single nucleotide polymorphisms (SNPs), and tests the significance of association for each
SNP using a statistical test such as a χ2 test. Since fully resequencing a cohort is
prohibitively costly, a set of representative SNPs (called tags or tag SNPs) are chosen as
proxies for nearby SNPs, utilizing the local correlation structure of SNPs (or linkage
disequilibrium) to find associations (Pritchard & Przeworski, 2001). While many current
association studies are performed using commercially available high-throughput genotyping
products that define a set of tag SNPs, selection of these SNPs remains an important
problem for both custom follow-up studies as well as designing the high-throughput
genotyping products themselves (Stram, 2004, 2005; de Bakker et al., 2005; Cousin et al.,
2003, 2006; Halperin et al., 2005; Lin & Altman, 2004; Pardi et al., 2005; Qin et al., 2006;
Saccone et al., 2006; Carlson et al., 2004b).

In the context of association studies, maximizing statistical power is the most relevant goal
of tag SNP selection. Since the actual causal SNP is not known, the statistical power of an
association study is defined as the average power over all possible causal SNPs. Recent
availability of reference data sets such as the HapMap (Hinds et al., 2005; HapMap, 2003,
2005) allows us to empirically measure power of an association study design (de Bakker et
al., 2005; Pe’er et al., 2006; Kruglyak, 2005). A standard method for picking tags is greedily
choosing the smallest number of SNPs with a minimum cut-off of correlation (r2) between
tag SNPs and uncollected SNPs (de Bakker et al., 2005; Carlson et al., 2004b; HapMap,
2003, 2005). However, choosing tag SNPs based on r2 alone does not necessarily maximize
power, because r2 does not take into account minor allele frequency (MAF) which also
inuences power.

In this paper, we present a exible study design framework that chooses tag SNPs to
maximize the statistical power of an association study.

The underlying intuition is that we quickly find the “key tag SNPs” that contribute a
considerable amount of power. The power a tag SNP contributes depends on (1) the
coverage of a tag SNP (the number of putative causal SNPs a tag SNP can cover), (2) the
correlation (the r2 between a tag SNP and each causal SNP it covers), and (3) the MAF of
each causal SNP. We observe that r2-based methods do not consider (3) and maximize (1)
by setting (2) to a fixed threshold. Instead, we use a greedy procedure that evaluates each
candidate tag SNP’s possible average power increase, and selects the best SNP as a tag SNP
at each step. By evaluating the average power increase, we take into account all three
aspects of a tag SNP. By not fixing a minimum value of r2, we allow more exibility in
selecting a tag SNP of maximum power. For example, if a tag SNP has a low r2 to causal
SNPs but covers many common SNPs (bad at (2) but good at (1) and (3)), we can select the
SNP based on the power increase unlike the r2-based methods.

Empirical simulations based on the HapMap ENCODE regions show that our power-
optimized method requires 21% fewer tag SNPs on average than widely used r2-based
methods, to achieve equivalent power. When applied to whole genome association mapping,
our power-optimized tag sets consistently outperform the r2-based tag sets across all
populations. We compare our designs to the commercial products as well. Our 100k tag set
provides equivalent power to the Affymetrix 500k chip for European and Asian populations.
In addition, our 300k tag set outperforms the Illumina 550k chip across all three HapMap
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populations. We apply our method to the custom follow-up study design problem where the
goal is to select tag SNPs in addition to those already present on a commercial product to
maximize the statistical power within a region of interest. Our method provides up to twice
the power increase using the same number of additional tag SNPs compared to the widely
used r2-based methods.

Since study parameters such as relative risk are generally unknown, a possible pitfall of
using statistical power instead of a study-independent measure such as r2 is “fitting” the
design to an incorrect parameter. We show that when the parameters are correct our method
performs optimally, and when the parameters are incorrect our method still out-performs or
performs similarly to the widely used r2-based methods, within a wide range of parameters.

During the course of design, our procedure requires us to evaluate the power of candidate
tag sets numerous times, thus the use of empirical simulation for measuring power (de
Bakker et al., 2005) is computationally impractical. We combine the use of an analytical
approximation for the power in our tag selection method with an efficient empirical
simulation that can accurately measure the power of a tag set. The efficiency of our method
allows us to design an association study in one ENCODE region in 3 seconds and a genome
wide study in 1.5 CPU hours. The empirical simulation for accurately measuring power is
based on a standard technique described in de Bakker et al. (2005). To the best of our
knowledge, no one has analyzed this standard simulation procedure with respect to its
accuracy. We improve the efficiency of this simulation and scale it to the whole genome
using a sampling procedure, for which we derive the corresponding confidence intervals.
This allows us to determine the number of sampling iterations required for a given level of
accuracy. The key insight in this sampling procedure is that the variance of the estimate of
the power is independent of the shape of the distribution of the true power over the causal
SNPs.

Previous works in tag SNP selection include haplotype-based methods (Johnson et al., 2001;
Stram, 2004, 2005; Lin & Altman, 2004; Halperin et al., 2005), correlation-based methods
(Carlson et al., 2004b; Qin et al., 2006; HapMap, 2005; de Bakker et al., 2005), and power-
based methods (Byng et al., 2003; Pardi et al., 2005; Cousin et al., 2003, 2006; Saccone et
al., 2006). The correlation-based methods are power-based methods in that r2 is closely
related to power (Pritchard & Przeworski, 2001), but here we group power-based methods
separately based on whether MAF is taken into account. Among the power-based methods,
Byng et al. (2003); Pardi et al. (2005) use the generalized linear model to test the association
between the region of interest and the disease. Their approach is different from ours which
considers single SNP association for each SNP in order to detect and locate the association.
Cousin et al. (2003, 2006) maximizes average power over all possible parameters,
specifically over a relative penetrance from 0 to 1 which corresponds to the relative risk
from 1 to ∞. Since such a high relative risk is often of little interest in the current
association studies, and since sometimes the relative risk can be approximated from the
previous studies, our method can be more suitable for those cases by allowing a exible
choice of parameter values or ranges. Saccone et al. (2006) focus on the observation that the
power is affected by the phase of the correlation, whether a tag SNP and the causal SNP are
correlated positively or negatively. However, if we use r2 as a correlation measure instead of
D′ they use (Devlin & Risch, 1995), the power is approximately independent of the phase of
correlation (Pritchard & Przeworski, 2001). Thus, selecting tag SNPs based on the phase
may not maximize power.

The implementation of our method is publicly available via web server at
http://design.cs.ucla.edu. On this web site, we provide power analysis for all popular
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commercial products as well as candidate gene study designs for every gene in the human
genome.

Results
Performance

We evaluate the performance of our power-optimized method by comparing it to those of
widely used r2-based methods. Pairwise r2 tagging (Carlson et al., 2004b; de Bakker et al.,
2005; HapMap, 2005) is the most common r2-based method. It greedily selects tags until
every SNP is covered with a given minimum r2 threshold. Best-N r2 is another r2-based
method (de Bakker et al., 2005). It greedily selects a fixed number of tags to cover as many
SNPs as possible with a given minimum r2 threshold. We use the HapMap ENCODE
regions which consist of ten 500kb regions that have been widely used to evaluate design
methodologies due to their complete ascertainment of common SNPs (MAF ≥5%). In this
experiment and throughout this paper, we assume a multiplicative disease model with fixed
relative risk of 1.2 and disease prevalence of 0.01. We assume a uniform distribution of
causal SNPs over all common SNPs defined by a 5% MAF threshold, and use a 5% region-
wide significance level (α) for statistical tests. We note that other studies often assume a
varying relative risk depending on MAF. For example, Marchini et al. (2007) and de Bakker
et al. (2005) set a relative risk so that a single SNP can have a 95% of nominal power at a
nominal significance level of 1% (ignoring multiple hypothesis testing). This corresponds to
a relative risk of 1.21 for a SNP of 50% MAF and a relative risk of 1.48 for a SNP of 5%
MAF when 4,000 cases and 4,000 controls are used. In this paper, we assume a uniform
relative risk of 1.2, to evaluate the worst case power over all disease models with relative
risk of 1.2 or above. This model is often more realistic than the varying relative risk model
for the case that the relative risk is estimated from previous studies. These assumptions are
used in both analytically designing tag sets and empirically measuring their power.

First, we consider the ENr232 ENCODE region containing 533(CEU), 596(CHB),
573(JPT), and 740(YRI) common SNPs. The full set of common SNPs achieves the
maximum possible power. We will call this the full-SNP-set power. For each population,
assuming 4,000 cases and 4,000 controls (= 8,000/8,000 chromosomes), we use our power-
optimized method to construct 100 different tag sets of increasing size. The number of tags
in each tag set is increased by 1% of total common SNPs.

For comparison, we construct another 100 tag sets of similar size using pairwise r2 tagging.
Since we can only vary the r2 threshold in pairwise r2 tagging, we use binary-search over
the r2 threshold with a precision of 0.001, to find a tag set having the desired size as closely
as possible. Then we construct another 100 tag sets using best-N r2. We use a widely used
threshold of r2 = 0.8 for best-N r2. We will use this threshold for every experiment using
best-N r2.

For each tag set, we use the standard empirical simulation for estimating power (de Bakker
et al., 2005). We create 100,000 null panels for multiple hypothesis correction and 100,000
alternate panels for estimating power, which gives a 95% confidence interval for a <0.6%
error in power. We will use the same number of panels whenever we measure the power of a
tag set through the paper.

Figure 1 shows the results of the CEU population. The results of the other populations are
shown in Supplementary Figure 11. The power-optimized method reaches the full-SNP-set
power (dashed horizontal line) faster than both r2-based methods. The range of the number
of tag SNPs (x-axis) is shown from zero up to the required number of tag SNPs for best-N r2

to cover every SNP. Thus, at the end of the graph, pairwise r2 tagging and best-N r2 become
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an equivalent procedure, where the threshold of pairwise r2 tagging happens to be 0.8, and
best-N r2 happens to cover every SNP with r2 = 0.8. To achieve 95% of full-SNP-set power,
our power-optimized method requires 37, 71, 57, and 207 SNPs while pairwise r2 tagging
requires 85, 124, 120, and 259 SNPs and best-N r2 requires 37, 89, 80, and 310 SNPs in the
CEU, CHB, JPT, and YRI populations respectively. Pairwise r2 tagging shows low power
with a small number of tags since the r2 has to be very low to cover every SNP. It has been
already reported that overly lowering r2 threshold of pairwise r2 tagging may result in a
performance not better than a random tags (de Bakker et al., 2005). Best-N r2 shows a good
performance with a small number of tags, although not better than our power-optimized
method, and often shows a worse performance than pairwise r2 tagging with a large number
of tags, as shown in Figure 1.

Next, we consider all ten ENCODE regions and obtain similar results (Supplementary
Figure 11). We report the fraction of SNPs required to achieve 95% of full-SNP-set power
in each region (Supplementary Figure 12). The power-optimized method reduces the
required number of tag SNPs by 60.0% compared to pairwise r2 tagging and 20.9%
compared to best-N r2 on average over all populations and regions.

r2 and power distribution
We examine the underlying reasons our power-optimized method achieves equivalent power
using fewer tag SNPs than the r2-based methods. From the previous experiment in the
ENr232 ENCODE region of the CEU population, we select three tag sets designed by each
of power-optimized method, pairwise r2 tagging, and best-N r2. For each method, we select
the smallest tag set which achieves the same 99% of the full-SNP-set power. These are 85
tag SNPs designed by power-optimized method, 123 tag SNPs designed by pairwise r2

tagging, and 138 tag SNPs designed by best-N r2. They have the almost same power of
86.2%, 86.3%, and 86.4% respectively. Pairwise r2 tagging is designed with r2 = 0.703.

In order to analyze the performance of each tag set, we measure the tag set’s maximum r2 to
each putative causal SNP and the tag set’s power to detect each putative causal SNP (per-
causal-SNP power). We group the causal SNPs into three groups based on their MAF:
infrequent (5–10%), semi-frequent (10–25%), frequent (25–50%), which contain 74, 150,
299 SNPs respectively. We plot the r2 and per-causal-SNP power distribution in Figure 2. In
the infrequent group, the r2 distribution of our power-optimized method is not very
concentrated on the high level compared to the r2-based methods. In this group, the average
r2 of our power-optimized method is 0.75 while those of pairwise r2 tagging and best-N r2

are very high as 0.98 and 0.99 respectively. However, compared to the r2 difference, the
average power of our method is 36% which is not much lower than the 40% of the two r2-
based methods. In the semi-frequent group, the average r2 of power-optimized method is
0.94 which is slightly lower than 0.95 of the two r2-based methods, but the average power is
88% which slightly higher than 87% of the r2-based methods. In the frequent group, the
average r2 of our method, pairwise r2 tagging, and best-N r2 are 0.93, 0.91, and 0.94, and
the average power estimates are 98%, 97%, and 98% respectively.

The reason that in the infrequent or semi-frequent group our method achieves comparable or
higher power with lower average r2 is because our method takes into account MAF in
selecting tag SNPs. If a causal SNP has a high MAF, the SNP is worth to cover with high r2

because the power will significantly increase. If a causal SNP has a low MAF, the SNP
might not be worth to cover with high r2 because the power will still be low. In that case, we
can allow the SNP to be covered with low r2 without much power loss. Within a MAF
group, our method strategically covers the SNPs of relatively high MAF with high r2, thus
having high power with low average r2. This strategy is applied across MAF groups as well.
Often, it can be possible to gain more power by spending a tag SNP to cover the SNPs in the
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frequent group than the SNPs in the infrequent group. Although our method has lower
power than r2-based methods in the infrequent group, our method successfully covers SNPs
in the semi-frequent and frequent groups with high r2. Consequently, our method achieves
the same average power with much fewer tag SNPs than pairwise r2 tagging and best-N r2,
reducing the tag set size by 31% and 38% compared to those methods respectively.

We note that covering SNPs of high MAF with high r2 is not the only behaviour of our
method. If the per-causal-SNP power is saturated to 100%, then it can be possible to cover
the causal SNP with moderate r2 and still have 100% or very high power. In that case, our
method strategically loosens the r2 for that SNP so that it can spend the tag SNP for other
SNPs which would increase power with high r2. All these decisions are automatically made
based on the average power increase.

Robustness
Our power-optimized tag SNP sets depend on the choice of study parameters such as
relative risk and number of individuals. One concern with this approach is the potential for a
performance drop due to using incorrect parameters. If the true relative risk is higher than
expected, then some tag SNPs are wasted on common SNPs that already have very high
power. If the true relative risk is lower than expected, then some tag SNPs are wasted on
rare SNPs that are too difficult to capture even with higher r2. We evaluate this performance
drop with two experiments, and show that our method still performs better than or similarly
to the r2-based methods in most cases. Both experiments are performed in the ENr232
ENCODE region of the CEU population.

In the first experiment, we design three different tag sets assuming relative risks of 1.1, 1.2,
1.4, and measure their power based on the assumption of a relative risk of 1.2. For each
relative risk, we select 100 tag SNPs assuming 4,000 cases and 4,000 controls. For
comparison, we design tag sets of the same size using pairwise r2 tagging and best-N r2. As
shown in Figure 1, the two r2-based methods have similar power at this number of tag SNPs.
Figure 3 shows the results. As expected, the tag set based on a correct relative risk (1.2)
works better than the tag sets based on incorrect relative risks (1.1 and 1.4) at the number of
individuals assumed in the design (4,000 cases and 4,000 controls). As the number of
individuals decreases, the tag set based on a lower relative risk (1.1) shows the highest
power amongst the tag sets. This is because lowering the number of individuals has the same
effect on the test statistic as lowering the relative risk. For the same reason, as the number of
individuals increases, the tag set based on a higher relative risk (1.4) obtains the highest
power amongst the tag sets.

At the number of individuals assumed in the design, even though r2 is incorrectly assumed
in the design, our method works similarly to the r2-based methods. If r2 is correctly assumed
in the design (line with diamond), even though the number of individuals varies, our method
works similarly to the r2-based methods. Our method works comparably to the r2-based
methods for a wide range of parameters, except for the extreme case that the bias of two
parameters affect the statistic in the same direction, for example a smaller relative risk (1.1)
is assumed in the design and a large number of individuals (8,000 cases and 8,000 controls)
are used.

In the second experiment, we use the tag set based on a relative risk of 1.2 and the tag sets
designed by r2-based methods from the previous experiment. We measure the power of the
tag sets assuming 20 different relative risks from 1.0 to 1.5, and 160 different study sizes
from 0 cases and 0 controls to 8,000 cases and 8,000 controls. Figure 4 shows the power
difference between our method and r2-based methods over the two-dimensional parameter
space (total 3,200 points). As expected, an optimal power gain is obtained when the

HAN et al. Page 6

Ann Hum Genet. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



parameters that the design is based on (=1.2 and 4,000 cases and 4,000 controls) or
equivalent designs are applied (diagonal red curve). In this experiment, our method performs
better than pairwise r2 tagging when the actual effect size is smaller than assumed (lower
left plane), and better than best-N r2 when the actual effect size is larger than assumed
(upper right plane). For both comparisons, our design works better than or similarly to the
r2-based methods within a wide range of parameters.

Varying study parameters such as relative risk, sample size, disease prevalence, and
significance level can all be interpreted as varying the effect size, which can be thought of
intuitively as the difference in the test statistic between the null and alternative hypothesis.
Thus, the results of our experiments on varying the two major factors affecting the effect
size (relative risk and sample size) can be straightforwardly generalized to the other
parameters as well. Since the performance drop by using incorrect parameters exists, a
study-independent method such as r2-based methods can be an appropriate design choice if
the study parameters are completely unknown. But even when only the expected ranges of
parameters are known, which we believe to be the case in current association studies, our
method can provides robust performance.

Custom follow-up study design
After finding a putative association, a follow-up study verifies the association by replicating
the result with independent samples. In many cases in follow-up studies, the samples are
already in hand and have already been processed with a commercial product. A practical
way to increase power is adding more tag SNPs to a commercial product by designing a
custom SNP set.

We simulate a custom follow-up study by adding tag SNPs to the Affymetrix 500k chip in
the ten ENCODE regions. For each region, assuming 4,000 cases and 4,000 controls, we
incrementally add 5 tag SNPs to the tag set, and construct 100 different tag sets of increasing
size. For comparison, we construct another 100 tag sets of similar size using pairwise r2

tagging and best-N r2.

Figure 5 shows the power increase as we add more SNPs to the Affymetrix 500k chip in the
ENr232 region of the YRI population. Adding tag SNPs in this region increases substantial
power because the large number of SNPs (1,075) are not relatively well captured by the tag
SNPs in the Affymetrix 500k chip (52 tag SNPs). Among the three methods, our method
increases the most power. The results of the other populations and regions are similar and
shown in Supplementary Figure 13. In the ENr232 region, by adding 1 SNP per 25kb (20
SNPs), our method improves power 6%, 10%, 10%, and 9% in the CEU, CHB, JPT, and
YRI populations respectively, while pairwise r2 tagging improves power 2%, 4%, 4%, and
3% and best-N r2 tagging improves power 5%, 8%, 5%, and 6% in the same populations.
The power gain by adding more tag SNPs varies between the regions depending on the
coverage of the chip. For example, by adding 50 SNPs in the same YRI population, we get a
6% and 7% power increase in the ENm013 and ENm014 regions, while we get a 17% and
15% power increase in the ENm010 and ENr232 regions. Therefore, it is important to
examine the coverage of the commercial chip for the region of interest, to see if we will get
sufficient power by adding more SNPs. Since our design framework provides efficient
empirical simulation for measuring power as well as an efficient tag SNP selection method,
we can accurately evaluate power before and after adding tag SNPs, and decide which SNPs
to add. Our method can provide optimal performance in custom follow-up study designs
because the value of the relative risk can be estimated from the result of original study.
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High-throughput genotyping product design
Since our power-optimized tagging method can scale to the whole genome, we can apply the
method to design a whole genome high throughput genotyping product. For each of the
HapMap populations, we design 500k, 300k, 100k whole genome tag sets using our power-
optimized method assuming 8,000 cases and 8,000 controls. We also design the same size of
tag sets using pairwise r2 tagging and best-N r2. Figure 6 (CEU) and Supplementary Figure
14 (all populations) show that our tag sets outperform the r2-based tag sets.

We also compare our tag sets to commercial products. Figure 7 (CEU) and Supplementary
Figure 15 (all populations) show that our tag sets work better than the commercial products
of the same size. Our 100k tag set performs similarly to the Affymetrix 500k chip in the
CEU and JPT+CHB populations, but performs worse in the YRI population, because 100k
tag set is not large enough to capture the variations in the YRI population. Our 100k tag set
also performs similarly to the Illumina 300k chip, except in the CEU population for which
Illumina 300k chip seems to be optimized. Our 300k tag set performs better than or
comparable to any commercial product evaluated including the Illumina 550k chip, and our
500k tag set outperforms all products in all populations. For the same 80% genome-wide
power level, our 500k tag set requires 26%, 29%, and 33% fewer individuals than the
Affymetrix 500k chip and 7%, 11%, and 23% fewer individuals than the Illumina 550k chip
in each of the CEU, JPT+CHB, YRI populations.

Efficient power estimation
The analytical approximation for power that we use in design is efficient enough to estimate
the whole genome power of a 500k tag set in 3 minutes. This efficiency allows us to design
on one ENCODE region in 3 seconds and on the whole genome in 1.5 CPU hours using the
adjusted greedy algorithm (See Methods). An underlying reason we use an analytical
approximation instead of more accurate empirical simulation, other than the computational
feasibility, is that we only need a rough estimate of the power to select tag SNPs. The
analytical approximation always underestimates power yet in the vast majority of cases
preserves the relative ordering of candidate tag sets with respect to their power. However, an
analytical approximation is overly inaccurate for the final estimate of the power of a design,
because it applies two assumptions which ignore the correlation structure between SNPs.
The Bonferroni assumption ignores the correlation structure between tags by assuming they
are independent for multiple-hypothesis correction. The best-tag assumption ignores the
correlation structure between a causal SNP and multiple tags by assuming a causal SNP is
detected only by its best tags, disregarding the possibility that other tags can also detect the
causal SNP. We measure the effects of these assumptions on power. Given a fixed tag set
defined as the common SNPs in the Illumina 550k chip, we perform empirical simulations
for measuring power with all four combinations of the two assumptions (Bonferroni and
best-tag) and compare the results to the analytical approximation. Details of how we
incorporate these assumptions into the simulations are described in Methods.

Figure 8 (ENr232, CEU) and Supplementary Figure 16 (other regions) show that we can
underestimate the power by up to 15% using both assumptions. The effect of the best-tag
assumption is shown to be more critical than the effect of the Bonferroni assumption in our
results. The difference between the effects of two assumptions is most significant in the YRI
population. The small effect of the Bonferroni assumption implies that the tag SNPs are
nearly independent due to the short LD in the YRI population. The significant effect of the
best-tag assumption implies that there are many ungenotyped SNPs which are correlated to
multiple tag SNPs with moderate r2. (If a SNP is directly genotyped or highly correlated to a
tag SNP, then the effect of the best-tag assumption is small.) From the same reasoning, we
can expect that as we collect more and more tag SNPs, the effect of the Bonferroni
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assumption will increase and the effect of the best-tag assumption will decrease (but not
disappear entirely). The empirical simulation with both assumptions (red circles) is almost
equivalent to the analytical approximation (black small diamonds) showing that the
significant difference in power between the empirical simulation and the analytical
approximation is directly due to the assumptions and not the stochastic nature of simulation.

After design, we run empirical simulations for measuring power to avoid the inaccuracy of
the analytical approximation. This resampling approach using reference data set is originally
described by de Bakker et al. (2005). We improve the efficiency of this procedure and scale
it to the whole genome using a random sampling procedure. If we directly apply the
standard simulation to the whole genome to measure the power of the Affymetrix 500k chip
for 4,000 cases and 4,000 controls in the CEU population, it takes 4,000 CPU hours to
construct null and alternate panels. Using our improved simulation procedure, it takes less
than 10 CPU hours for the same construction.

Discussion
We introduced a design framework which provides an efficient tag SNP selection method
based on power and a quick empirical simulation procedure that can accurately measure the
power of a tag set. The tag SNP selection and the empirical simulation can efficiently scale
to the whole genome. Our framework efficiently finds the “key” tag SNPs contributing to
power thus providing superior performance to the widely used r2-based methods in both
custom follow-up study design and whole genome tag set design.

We assumed a fixed relative risk of 1.2 for all causal SNPs, since the fixed relative risk
assumption is often more realistic than the varying relative risk when we can approximate
the relative risk before the study. Our method can maximize power under the varying
relative risk assumption as well. We assumed a multiplicative disease model, but the same
tag SNP selection technique based on other disease inheritance models can be
straightforwardly developed. Furthermore, our method can be optimized over multiple
parameters.

For example, if we want to design a study optimized for both relative risks of 1.2 and 1.4,
we can select tags to maximize the average power over these two disease models. This
approach will expand the robustness of our method over a wider range of parameters, at the
expense of the peak performance at the single disease model and parameters used in the
design. If the study parameters are completely unknown, a study-independent measure such
as r2 can be a suitable choice. However, since many current association studies have at least
an expectation of the ranges of parameters, in that case, our method can provide superior
performance over the r2-based methods. A good example is a custom follow-up study,
where the relative risk is estimated from the original study.

The results show that our whole genome tag set works significantly better than the
commercial products. This comparison is unfair because we designed a tag set for each
population while the commercial products are designed for multiple populations. Howie et
al. (2006) propose an r2-based tag SNP selection method for multiple populations. Our
method can also select tag SNPs for multiple populations, by maximizing the sum of the
power over multiple populations (Σpi where pi is the power for population i). However, this
might bias against populations that have low power such as the YRI population. We can
avoid this problem by heuristically adding second-order terms to penalize the bias toward a
specific population (Σpi +Σpipj). We found that tag sets designed for multiple populations in
this way have similar power in each of the populations to a tag set designed for a single
population (data not shown).
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The computational core of our tagging method is an efficient procedure for selecting tag
SNPs given a fixed number of individuals and a fixed number of tags. Since this core
procedure is very efficient we can answer many design questions by repeatedly searching
with this core procedure and by using our efficient empirical simulation for accurately
measuring power. For example, our method can answer questions such as “How many
additional tags do we need to achieve 80% power given a sample size in addition to the
Affymetrix 500k chip for a candidate region?”, “If we use the individual genotyping for a
small region of interest, what is the optimal cost point between the number of individuals
and number of tags given a desired power of 80%?” (Pardi et al., 2005) or “How many
individuals should we collect for 70% genome-wide power when using the Illumina 550k
chip?”.

Our experiments for custom follow-up study design are performed in the context of
replication analysis of a genomic region of interest without prior knowledge. In addition, our
method can leverage the results from previous studies by either explicitly including
prioritized tag SNPs or by applying a weighted prior of causal SNPs obtained from previous
studies (Yu et al., 2007; Eskin, 2008). Our method can also be extended to maximize the
power of joint analysis combining the original and the replicated data sets (Skol et al.,
2006). Furthermore, our method can be easily modified to maximize the minimum power
over all causal SNPs instead of the average power.

A recent methodological development in statistical genetics allows us to estimate the
probability distribution of ungenotyped SNPs given a tag set and directly compute the test
statistic from the distribution. This is called imputation or multi-marker analysis (Zaitlen et
al., 2007; Marchini et al., 2007). Since the test statistic is based on estimated information
which also has an uncertainty (variance), the multiple hypothesis correction is more subtle.
To the best of our knowledge, there is no established tag SNP selection method for this
analysis. Our method can be applied to this multi-marker analysis in two different ways.
First, we can select tag SNPs to maximize the imputed power at each step. The
computational cost of this procedure will be very high. Second, we can design a tag set
assuming a single marker analysis, and then apply multi-marker analysis to the resulting tag
set. We assume that this latter approach will work reasonably well, since we expect that if a
tag set has a good power in a single marker analysis, in most cases it will also have a good
power in a multi-marker analysis. We expect that tag SNP selection for imputation analysis
will be an active area of research in the future.

In summary, we present an efficient and accurate power-optimized design framework which
also provides exibility and robustness. The utility of our method ranges from custom follow-
up study designs to whole genome high-throughput product design. Our method is publicly
available for research purposes via web server at http://design.cs.ucla.edu.

Materials and Methods
Power-optimized tag SNP selection

Our power-optimized tag SNP selection method is a stepwise greedy procedure to maximize
power. We assume that we can estimate the relative risk (γ). We determine the MAF
threshold and the significance level α. Then, we fix at least one degree among the three
degrees of freedom in design which are (1) the number of individuals, (2) number of tags,
and (3) desired power. If we fix two of them, our method will give one design. If we fix one
of them, our method will iterate and give many designs to choose among. The computational
core of this procedure is selecting tags to maximize power given the fixed numbers of
individuals and tags. Since this core procedure is very efficient, our method can quickly
iterate to find the solution for any choice of fixed parameters. For example, if we fix the
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desired power, our method will use binary-search over the number of individuals by
repeating the core procedure until the resulting tag set meets the desired power. It will iterate
this whole process for every number of tags.

For simplicity, we will only consider the core tagging procedure where both the numbers of
individuals (N) and the number of tags (nt) are fixed. Let S be the set of all SNPs in the
region. Let C ⊆S be the set of (common) putative causal SNPs defined by the MAF
threshold. Let I ⊆ S and E ⊆ S be the sets of SNPs that we want to include into or exclude
from the tag set. Then our tagging procedure is as follows.

1. Initialize the tag set as T ← I

2. For every candidate tag SNP x ∈ S − (T ∼ E), analytically estimate per-causal-SNP
power for every causal SNP c ∈ C using the tag set T ∼ {x}, to get the average
power P(T∼{x}).

3. Select the best candidate tag SNP x′ which maximizes P(T∼{x′}).

4. T ← T ∼{x}

5. Repeat from step 2 while [T]< nt

A more detailed pseudo-code is shown in Supplementary Figure 9. How we analytically
estimate the per-causal-SNP power given a tag set at step 2 will be described below. During
the procedure, we measure the average power of a tag set for O(ncnt) times where nc and nt
are the number of causal SNPs and tag SNPs respectively. Since empirically measuring
power through simulation for this number of times is computationally impractical, we use an
analytical approximation for power.

For genome-wide design, we assume the maximum distance of LD to be 250kb and use the
adjusted greedy algorithm (Supplementary Figure 10) to reduce the computational burden.
250kb is not long enough to capture long range LDs, but enough for selecting tag SNPs
based on power. We will assume a longer range of maximum LD (10Mb) when we estimate
the power of a design using empirical simulation. The adjusted greedy algorithm picks k
“independent” SNPs at each round, from the top of the candidate tag SNP list sorted by their
power increase. We define two SNPs to be independent if the distance between them is
greater than the twice the length of maximum distance of LD. We set k to be 1% of the total
number of SNPs. We consider the power between a tag SNP and a causal SNP only if the r2

between them is ≥0.1.

We now describe how to analytically estimate the per-causal-SNP power of a tag set at step
2 of the tagging procedure. We use the framework of Pritchard & Przeworski (2001);
Jorgenson & Witte (2006); Klein (2007); Eskin (2008). Given an association study which
collects genotypes in N+=2 case and N−=2 control individuals (equivalently N+ and N−

chromosomes), we assume that a marker A with population minor allele frequency pA affects
the disease with relative risk γ. Let F be the disease prevalence. The case and control allele
frequencies are then

respectively. We denote the observed case and control frequencies in the collected sample as
 and . The association statistic at marker A,
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approximately follows a normal distribution with variance 1 and mean (non-centrality
parameter)

If we genotype a marker B correlated with A with a correlation coefficient of rAB, the power
that the marker B will be detected as significant is analytically approximated as

with respect to the significance threshold α, where Φ(x) is the c.d.f. of the standard normal
distribution.

Now we can estimate the single marker power between the causal SNP A and the tag SNP
B. To extend this single marker power to multiple markers, we apply two simplifying
assumptions. A best-tag assumption assumes that each causal SNP is only detected by its
best tag, that is, the most correlated tag SNP with the highest r2. A Bonferroni assumption
assumes that every SNP is independent allowing us to use α=nt as a significance level for a
single test where α is the region-wide significance level and nt is the number of tags (the
Bonferroni correction). With these two assumptions, the per-causal-SNP power for each
causal SNP is efficiently computed as the single marker power that the best tag SNP will be
detected as significant. Thus, the average power can be analytically estimated by averaging
the per-causal-SNP power over every causal SNP.

r2-based tag SNP selection
Pairwise r2 tagging (de Bakker et al., 2005; Carlson et al., 2004b; HapMap, 2003, 2005) is a
widely used r2-based tag SNP selection method that greedily chooses the smallest number of
tag SNPs with a minimum r2 threshold between tag SNPs and uncollected SNPs. The
procedure starts with a SNP pool containing every SNP of interest, which is defined by
MAF ≥5% in our experiments. At each step, the procedure selects a tag SNP which covers
the most SNPs in the pool with the r2 threshold, and removes the tag SNP and the SNPs it
covers from the pool. Then the procedure is repeated until the pool becomes empty. Since
the only parameter we can vary in pairwise r2 tagging is the r2 threshold, we use binary-
search over the threshold when we want to design a specific tag set size, with the precision
of 0.001. For the follow-up study design which adds SNPs to a pre-defined tag set, we first
remove from the pool the pre-defined tag SNPs and the SNPs they cover, and then resume
the normal procedure. For the genome-wide study design, as in our power-optimized
method, we assume 250kb as the maximum distance of LD and use the adjusted greedy
algorithm. The algorithm picks k “independent” SNPs at each round, from the top of the
candidate tag SNP list sorted by the number of SNPs they cover. We define two SNPs to be
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independent if the distance between them is greater than the twice the length of maximum
distance of LD. We set k to be 1% of the total number of SNPs.

Best-N r2 (de Bakker et al., 2005) is another r2-based method. The procedure is the same as
pairwise r2 tagging except that the tag SNPs are selected until the desired tag set size is
obtained, not until the SNP pool becomes empty. Thus, the tag set size can be controlled
without varying the r2 threshold. We use a fixed r2 threshold of 0.8 in our experiments. For
genome-wide design, we use the same assumption of maximum distance of LD and the
adjusted greedy algorithm as for pairwise r2 tagging.

Empirical simulation for power
We empirically measure the final estimate of the power of a tag set after design. Our
empirical simulation is based on the standard simulation procedure described by de Bakker
et al. (2005). This procedure resembles the “bootstrapping” statistical procedure which
samples from the data set with replacement to estimate the sampling distribution of an
estimator (Wasserman, 2004; Efron, 1979). The major difference is that a typical
bootstrapping procedure draws the same number of samples as the data set, while de Bakker
et al. (2005)’ s simulation amplifies the number of samples based on a small reference data
set, which is the HapMap. This procedure assumes that although the currently available
reference data set is small, the correlation structure between SNPs will be mostly conserved
independent of the size of the data set. Since this procedure does not require the
conservative assumptions used in the analytical approximation, it is a standard method for
measuring power (de Bakker et al., 2005; Marchini et al., 2007).

The procedure consists of creating null panels and alternate panels. Random chromosomes
are drawn from the reference data set to create many case/control panels without any causal
association (null panels). For each null panel, the best χ2 statistic among all tag SNPs is
obtained. Given a region-wide significance level α, the maximum χ2 value exceeded in α of
null panels is chosen as the threshold to declare a positive result. Next, based on the
assumption of a causal SNP which defines the expected allele frequencies in cases and
controls, random chromosomes are drawn from the reference data set to create many case/
control panels (alternate panel). For each alternate panel, a positive result is recorded if the
best χ2 statistic among all tag SNPs exceeds the χ2 threshold obtained in the null panels. The
power is estimated as the proportion of the positive findings among alternate panels.
Previous studies (de Bakker et al., 2005; Pe’er et al., 2006; Zaitlen et al., 2007) assume a
uniform distribution for the causal SNP, and construct an even number of panels per every
putative causal SNP.

This standard simulation is not based on the best-tag or Bonferroni assumption, but we can
incorporate these assumptions into the simulation for the purpose of comparison (Figure 8
and Supplementary Figure 16). The Bonferroni assumption is incorporated by using the
Bonferroni correction instead of null panels to assess the per-marker threshold. The best-tag
assumption is incorporated by declaring a positive result in an alternate panel only when the
causal SNP’s most correlated tag shows significance, regardless of other tags.

The computation cost of empirical simulation is a major bottleneck of optimal design of
association studies. We improved the efficiency of empirical simulations by taking
advantage of having small reference samples. Instead of drawing each simulated cases and
controls from the reference samples, we count how many times each chromosome in
reference samples are drawn in cases and controls. Since the number of reference samples
are typically much smaller than the number of individuals in the simulation, such an
implementation improves the efficiency of simulation studies in orders of magnitudes than
the straightforward implementation. With r simulation panels, N individuals and t tags, the
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computational complexity is reduced from O(rNt) to O(r(N+t)) assuming the number of
reference panel is a constant smaller than N.

To the best of our knowledge, no one has applied this standard simulation to the whole
genome. We introduce two ideas to efficiently scale it to the whole genome. First, we
observe that the SNPs very far away from the causal SNP have the same distribution as null
panels. Thus, positive results found on those SNPs are likely to be false positives. We use
this insight to set a maximum distance L between a casual SNP and a tag SNP, to avoid
having to generate alternate panels consisting of entire chromosome. We conservatively
choose L=10Mb not to miss any long range correlation. This idea reduces the computational
load of alternate panel construction by more than 5-fold. Second, we introduce a sampling
procedure. The standard strategy of creating an even number (k) of panels per every putative
causal SNP (even-k strategy) is impractical for the whole genome even when k = 1. Instead,
we sample the causal SNP from the uniform distribution, and create a number of panels per
each sampled causal SNP (sample-k strategy). We analyze the variance of the power
estimate in this strategy to determine the number of sampling iterations. Using the sampling
strategy, the variance of the average power estimate is approximately given as 3p(1−p)=m
where p is the true average power and m is the number of samplings (See Supplementary
Materials). Thus, the number of samplings can be estimated given a desired accuracy. The
idea of sampling reduces the computational load by more than 20-fold compared to a naive
even-k strategy which constructs one panel per causal SNP.

These two ideas for efficient genome-wide simulation increase the efficiency of alternate
panel construction but do not help the null panel construction where a causal SNP is not
defined. We can reduce the computational load in the null panel construction by adjusting
the number of individuals to an appropriate level, based on the fact that the adjusted χ2

threshold is independent of the number of individuals when the number of individuals is
large (Conneely & Boehnke, 2007). This fact allows us to construct null panels once and use
it for many different numbers of individuals. We construct null panels of 1,000 cases and
1,000 controls when we measure the power of designs in our experiments.

Genotype data
We downloaded the HapMap genotype data (build 36) for the whole genome and ENCODE
regions from the HapMap project web site (HapMap, 2005). The project collected SNP
information from 30 trios in each of the African (YRI) and the European (CEU) populations,
and 45 unrelated individuals in each of the Japanese (JPT) and Chinese (CHB) populations.
The data includes 2,605,595, 2,471,887, and 2,926,893 polymorphic SNPs in each of the
CEU, JPT+CHB, and YRI populations. We phased the data into haplotypes using the
HAP(Zaitlen et al., 2005) software.
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Figure 1.
Power comparison between our power-optimized tag SNP selection method and a widely
used r2-based methods, pairwise r2 tagging and best-N r2, in the ENr232 ENCODE region
of the CEU population. We use a 5% region-wide significance level, a 5% MAF threshold
for causal SNPs, and assume relative risk of 1.2, disease prevalence of 0.01, and 4,000 cases
and 4,000 controls. We use the r2 threshold of 0.8 for best-N r2. The x-axis ranges up to the
number of tags obtained by best-N r2 to cover every SNP with r2 = 0.8. The purple
horizontal dashed line indicates the full-SNP-set power achievable by genotyping the full set
of SNPs.
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Figure 2.
Maximum r2 and per-causal-SNP power distribution over all 533 causal SNPs in the ENr232
ENCODE region of the CEU population. We divide the causal SNPs into three groups by
their MAF: infrequent (5%–10%), semi-frequent (10%–25%), frequent (25%– 50%), which
contains 74, 150, 299 SNPs respectively. Each bar of different colors represent the power-
optimized tagging method (85 tag SNPs), pairwise r2 tagging method (123 tag SNPs), and
best-N r2 tagging method (138 tag SNPs). The three tag sets achieves the same 99% of full-
SNP-set power.
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Figure 3.
Robustness of our power-optimized method to errors of parameter selection. We use our
power-optimized method to design three different tag sets of size 100 assuming different
relative risks of 1.1, 1.2, 1.4 in the ENr232 ENCODE region of the CEU population. We
also design two more tag sets of the same size using pairwise r2 tagging and best-N r2. We
then measure the power of each tag set based on the assumption of a true relative risk of 1.2.
We use a 5% region-wide significance level, a 5% MAF threshold for causal SNPs, and
assume a disease prevalence of 0.01 and 4,000 cases and 4,000 controls when designing the
tag sets.

HAN et al. Page 19

Ann Hum Genet. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Distribution of power gain of our power-optimized method compared to r2-based methods
over a parameter space. We design a tag set of size 100 assuming relative risk of 1.2 and
4,000 cases and 4,000 controls in the ENr232 ENCODE region of the CEU population. We
also design tag sets of the same size using pairwise r2 tagging and best-N r2. We measure
the three tag sets assuming many different parameters, varying the relative risk from 1.0 to
1.5 and the sample size from 0 case and 0 control to 8,000 cases and 8,000 controls. Then
we plot the power difference (a) between our power-optimized method and pairwise r2

tagging and (b) between our power-optimized method and best-N r2, over the space of these
various parameters. We use a 5% region-wide significance level, a 5% MAF threshold for
causal SNPs, and assume disease prevalence of 0.01.
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Figure 5.
Power comparison between our power-optimized method and r2-based methods with respect
to the number of tag SNPs added to a commercial chip. To simulate a custom follow-up
study, we use each of our power-optimized method, pairwise r2 tagging, and best-N r2, to
add tag SNPs to the tag set defined by the Affymetrix 500k chip in the ENr232 ENCODE
region of the YRI population. We use a 5% region-wide significance level, a 5% MAF
threshold for causal SNPs, and assume relative risk of 1.2, disease prevalence of 0.01, and
4,000 cases and 4,000 controls.
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Figure 6.
Genome-wide power comparison between whole genome tag sets designed by our power-
optimized method, pairwise r2 tagging, and best-N r2 in the CEU population. We measure
the power assuming relative risk of 1.2, disease prevalence of 0.01, a 5% genome-wide
significance level, and a 5% MAF threshold for causal SNPs. We use 8,000 cases and 8,000
controls when designing the tag sets.
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Figure 7.
Genome-wide power comparison between whole genome tag sets designed by our power-
optimized method and the commercial products in the CEU population. We measure the
power assuming relative risk of 1.2, disease prevalence of 0.01, a 5% genome-wide
significance level, and a 5% MAF threshold for causal SNPs. We use 8,000 cases and 8,000
controls when designing the tag sets.
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Figure 8.
Comparison between four different empirical estimates of power and the analytical
approximation in the ENr232 ENCODE region of the CEU population. Given a tag set
consisting of the common SNPs in the Illumina 550k chip, we perform empirical
simulations with all four combinations of the best-tag and Bonferroni assumptions, and
compare to the analytical approximation. Details of how we incorporate these assumptions
into our simulations are described in the Methods. We use a 5% region-wide significance
level, a 5% MAF threshold for causal SNPs, and assume relative risk of 1.2 and disease
prevalence of 0.01.
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