Skip to main content
. Author manuscript; available in PMC: 2008 Oct 29.
Published in final edited form as: Biometrics. 2007 Oct 25;64(2):567–576. doi: 10.1111/j.1541-0420.2007.00928.x

Table 2.

Simulation results based on 1000 Monte Carlo data sets when the true model is the AFT model with baseline density f0(t). For right-censored data, SNP, BJ, Gehan, and LR indicate fitting using the SNP approach with K and the base density chosen via HQ, the Buckley-James method, and the rank-based method of Jin et al. (2003) using Gehan-type and log-rank weight functions, respectively. All other entries are as in Table 1. For interval-censored data, only SNP was used. True value of β = 2.0 in all cases.

f0(t) n Cens. rate Method Mean SD SE CP AFT PH PO Correct
Right-censored data
lognormal 200 25% SNP 2.02 0.27 0.26 94.4 80.2 8.0 12.3 80.2
BJ 2.02 0.27 0.26 94.2
Gehan 2.02 0.27 0.28 95.3
logrank 2.01 0.29 0.29 94.7
200 50% SNP 2.02 0.30 0.30 93.3
Weibull 200 25% SNP 2.00 0.14 0.15 95.9 71.0 88.7 1.1 98.9
BJ 2.00 0.18 0.19 96.3
Gehan 2.00 0.17 0.17 95.7
logrank 2.00 0.14 0.15 96.1
200 50% SNP 2.01 0.20 0.20 94.8
gamma 200 25% SNP 2.00 0.20 0.19 94.0 65.0 66.4 11.4 65.0
BJ 2.00 0.22 0.23 96.0
Gehan 2.00 0.21 0.22 95.4
logrank 2.00 0.20 0.21 95.4
200 50% SNP 2.00 0.26 0.24 92.9
500 25% SNP 2.00 0.06 0.06 94.0 98.8 1.2 0.0 98.8
log-mixture 200 25% SNP 1.99 0.19 0.18 91.9 100.0 0.0 0.0 100.0
BJ 1.99 0.42 0.28 80.5
Gehan 1.99 0.29 0.29 95.6
logrank 2.00 0.41 0.43 96.5
200 50% SNP 1.98 0.23 0.22 91.5
500 25% SNP 2.00 0.05 0.05 94.8
500 50% SNP 2.00 0.06 0.06 93.5
Interval-censored data
gamma 200 20% right, 80% interval SNP 2.01 0.22 0.21 92.2
gamma 500 16% right, 84% interval SNP 2.00 0.06 0.06 94.7
log-mixture 200 17% right, 83% interval SNP 2.05 0.27 0.23 90.3
log-mixture 500 17% right, 83% interval SNP 2.00 0.07 0.06 94.0