Skip to main content
. Author manuscript; available in PMC: 2008 Oct 29.
Published in final edited form as: Biometrics. 2007 Oct 25;64(2):567–576. doi: 10.1111/j.1541-0420.2007.00928.x

Table 4.

Simulation results for the SNP approach based on 1000 Monte Carlo data sets when the true model is the AFT model with baseline density f0(t) and multiple covariates under right censoring. Entries are as in Table 1. The True β column gives the true values of the elements of β. Entries with an asterisk (*) at the sample size indicate results for the first 300 Monte Carlo data sets, for which both delta method and nonparametric bootstrap standard errors were used, where SEboot and CPboot denote the average of bootstrap standard error and Monte Carlo coverage probability expressed as a percent, of 95% Wald confidence intervals using the bootstrap standard errors, respectively. For each scenario, NK and EK, K = 0, 1, 2, indicate the number of times the configuration of normal (N) or exponential (E) base density with the indicated K was chosen by HQ.

f0(t) n Cens. rate True β Mean SD SE CP SEboot CPboot
lognormal 200 25% 2.5 2.51 0.27 0.26 94.8
0.5 0.49 0.15 0.15 93.5
−0.8 −0.81 0.30 0.29 94.6
(N0 = 853, N1 = 64, N2 = 19, E0 = 8, E1 = 38, E2 = 18)
gamma 200 25% 2.5 2.50 0.16 0.11 93.3
0.5 0.50 0.06 0.06 92.3
−0.8 −0.80 0.12 0.11 92.1
(N0 = 50, N1 = 16, N2 = 60, E0 = 594, E1 = 237, E2 = 43)
200* 25% 2.5 2.50 0.11 0.11 93.3 0.13 96.0
0.5 0.51 0.07 0.06 92.7 0.07 95.0
−0.8 −0.79 0.12 0.11 91.3 0.13 96.3
500 25% 2.5 2.50 0.07 0.07 93.7
0.5 0.50 0.04 0.04 93.1
−0.8 −0.80 0.07 0.07 93.8
(N0 = 0, N1 = 3, N2 = 68, E0 = 418, E1 = 464, E2 = 47)
log-mixture 200 25% 2.5 2.49 0.10 0.09 94.1
0.5 0.50 0.06 0.05 92.8
−0.8 −0.80 0.11 0.10 91.8
(N0 = 0, N1 = 197, N2 = 803, E0 = 0, E1 = 0, E2 = 0)
200* 25% 2.5 2.49 0.09 0.09 95.3 0.10 96.7
0.5 0.50 0.06 0.05 93.0 0.06 94.0
−0.8 −0.80 0.11 0.10 91.7 0.11 93.0
500 25% 2.5 2.49 0.06 0.06 94.7
0.5 0.50 0.03 0.03 94.7
−0.8 −0.80 0.07 0.06 94.5
(N0 = 0, N1 = 16, N2 = 984, E0 = 0, E1 = 0, E2 = 0)