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Abstract

A common problem in statistical modelling is to distinguish between finite mixture distribution and
a homogeneous non-mixture distribution. Finite mixture models are widely used in practice and often
mixtures of normal densities are indistinguishable from homogenous non-normal densities. This
paper illustrates what happens when the EM algorithm for normal mixtures is applied to a distribution
that is a homogeneous non-mixture distribution. In particular, a population-based EM algorithm for
finite mixtures is introduced and applied directly to density functions instead of sample data. The
population-based EM algorithm is used to find finite mixture approximations to common
homogeneous distributions. An example regarding the nature of a placebo response in drug treated
depressed subjects is used to illustrate ideas.
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1 Introduction

A guiding principle in statistical modelling is Occam’s Razor, attributed to William of Ockham
(1285-1349), which states that “if two theories explain the facts equally well then the simpler
theory is to be preferred.” Figure 1 shows a histogram of the change in the Hamilton Depression
scale (HAM-D) from baseline (week 0) to week 1 for depressed individuals treated with Prozac.
The differences are mostly positive indicating that most of the subjects have experienced some
improvement in mood after only one week on Prozac. However it is generally believed that it
takes more than a week before to benefit from the chemical component of the drug. Thus, much
of the improvement seen in Figure 1 is likely due to an initial placebo response. Overlaid on
the histogram are two density curves: the dashed curve is a density of a mixture with k = 2
normal components (see e.g. Titterington et al., 1985) and the solid curve is a skew-normal
density (e.g Azzalini and Capitanio, 1999). Both densities in Figure 1 are very similar to each
other and they fit the data quite well. The skew normal density requires three parameters while
the 2-component normal mixture requires 5 parameters. According to William of Ockham’s
principle, we should prefer the simpler skew-normal model over the more complicated the
finite mixture model.

On the other hand, Murphy claims that “... simplicity is a dangerous ideal” (Murphy, 1964,
page 320). Perhaps the guiding principle to statistical modelling should be to employ the model
closest to the truth. Thus a more complicated model may be preferred over a simpler model if
it is provides a better representation of the truth and can be adequately estimated. However,
the truth is infinitely complex and consequently, as George Box pointed out, “all models are
wrong, some are useful.” The true model underlying Figure 1 is unknown. The skew normal
and the finite mixture models both fit the data well but they offer two competing but different
approximations to the truth. If there exist two distinct groups (e.g. those who do and do not
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experience a placebo response) then the finite mixture model is appropriate. If selection of
treatment for depression depends on group membership, then the mixture model can be used
to ascertain the group membership. On the other hand, perhaps the placebo effect skews the
distribution towards improvement and everyone experiences a placebo response, the degree of
which varies over a continuum. If this is the case, then distinct groups do not exist and a
treatment program predicated on the existence of distinct groups may be inappropriate. By the
way, if the finite mixture model interpretation is correct with one group not experiencing a
placebo response in the Prozac example, then one of the mixture component means in the
Prozac example should be zero.

The motivation for this paper came from work on distinguishing a placebo response from a
drug response in depression studies. Determining the most appropriate statistical analysis of
the data depends on whether or not there exist well-defined mixture components (e.g. those
who do and do not exhibit a placebo response). In some finite mixture applications, there do
exist well-defined mixture components (e.g. males and females). However, in many other
examples (such as the Prozac example above), the existence of well-defined mixture
components is speculative. The problem, highlighted in this paper, is that in many cases mixture
distributions and homogeneous non-normal distributions will be virtually identical to one
another. Discerning a finite mixture from some other homogeneous non-normal distribution is
an old problem. Pearson (1895) states “The question may be raised, how are we to discriminate
between a true curve of skew type and a compound curve,” where by compound he means
mixture. Murphy (1964) lists several examples from hypertension to eye and hair color where
the existence of distinct groups is unclear and says, “It is one thing to argue from mechanisms
to expected outcomes; it is very much more difficult and hazardous to argue from observations
back to mechcanisms” (page 312) meaning that it is dangerous to posit the existence of a
mixture simply from observed data. Murphy (1964) as well as Titterington et al. 1985 each
give an example where a finite normal mixture with k =2 components can be well approximated
by a lognormal distribution and they note that it “can be very difficult to identify the ‘correct’
model. More recently Bauer and Curran (2003) demonstrate that a growth mixture model may
appear optimal even in cases where the true distribution is not a mixture.

Bauer and Curran (2003) also note that finite mixture models serve two distinctly different
purposes: (i) the mixture components can represent distinct subgroups in the population or (ii)
the mixture model may provide an approximation to a non-normal but homogeneous
population. In the latter case, interpreting the mixture components as genuine subgroups is
erroneous.

Closely related to finite mixture models is clustering (discussed in Section 5). The k-means
algorithm (e.g. Forgy, 1965; Hartigan and Wong, 1979; MacQueen, 1967) is frequently used
to discover distinct clusters in a data set. If the data is from a homogeneous distribution, the
k-means algorithm will nonetheless converge to a set of well-defined cluster means which are
called self-consistent points (Flury, 1993) of the empirical distribution and are estimators of
the principal points of the underlying distribution (Flury, 1990). This paper deals with the
related problem of determining mixture component means when the EM algorithm is applied
to a non-mixture.

In order to determine what the EM algorithm is estimating when applied to a non-mixture, a
population-based EM algorithm is proposed in Section 2 whereby the EM algorithm is run,
not on sample data, but run directly on the underlying density of the distribution. The
population-based EM algorithm is illustrated on some common non-normal but homogeneous
distributions in Section 3. The population-based EM algorithm is applied to nonparametric
density estimators in Section 4. The issue of estimating clusters and mixture components is
revisited in Section 5. The paper is concluded in Section 6. The computational results
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throughout the paper were obtained using the R-software package (R Development Core Team,
2003).

2 A Population-Based EM Algorithm

The density for a k component finite mixture model is defined as

k
J=) 7,10,
J=1 (2.1)

where the prior probabilities zj’s add to one and the fj’s are the densities of the mixture
components. In many applications, the mixture component densities are assumed to be
muIti\_/ariate normal where fi(y) = N (y; #;j, '¥;) is a p-variate normal density with mean g; and
covariance '¥;j.

Given a sample yy, ..., Y, one seeks the values of the parameters that maximize the log-
likelihood

()= log(f(yis6),
i=1 (2.2)

where @ are the mixture model parameters. The EM algorithm (Dempster et al., 1977) is often
used to determine maximum likelihood estimates of the parameters of a finite mixture. The
idea is to introduce a multinomial latent indicator variable x that indicates group membership.
The “E”-step in the EM algorithm replaces the complete data log-likelihood in terms of (x;,
yi) by its conditional expectation given the observed data. For finite normal mixtures, the
complete log-likelihood is linear in x and thus, the “E”-step in the EM algorithm replaces the
unobserved x by its conditional expectation given y which produces (2.3) below. The “M”-step
of the EM algorithm then determines the parameter values that maximizes the expected log-
likelihood. For the finite mixture of normals, the EM algorithm iterates between the following
two steps:

Finite Mixture EM Algorithm for Sample Data

1. (E-step) Set

LTS

e (2.3)
2. (M-step): Set

1 n '
ﬂj:;;ﬂji, JZI, e ,k.

(2.4)
1 n )
ﬂj:_-zﬂ-ﬁyi’ j=1,...,k.
N (2.5)
1 n ,
Tj:TZ”ji(Yi = )i = 1))
L e (2.6)

The question of interest is what happens when the EM algorithm for a finite mixture is applied
to data that is not from a finite mixture. To answer this question, we consider a population-
based version of the EM algorithm. The population version of the log-likelihood in (2.2) is
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[7:0og(f(v:0))dy. @7

Now, suppose the true underlying density is g(y) which differs from f(y; #) on a set of positive
measure. Then the misspecified population-based version of the log-likelihood becomes

Jelog(f(v:0))dy. (2.8)
The idea is to maximize this misspecified population-based log-likelihood with respect to

using a population-based version of the EM algorithm. This maximization can be accomplished
using population-based versions of (2.3)-(2.6):

Misspecified Population-Based EM Algorithm

1. (E-step) Define the following posterior probability functions forh =1, ..., k:

T fi(y)

()=
Siamifio) (2.9)

1. (M-Step): Set

ﬂ/;ng(Y)ﬂ/z(Y)dy
.U/nyg()’)ﬂh (J’)d)’
W= [ (v = ) = n) g0 ()dy.

The M-step equations come from maximizing the complete misspecified population-based
expected log-likelihood for the finite mixture model with respect to the mixture parameters:

k

[8)mu)[log(my)+og(fu(y))]dy.
1 (2.10)

h=
Typically numerical integration techniques will be necessary to evaluate the integrals in the
M-step above and we have used numerical integration in the examples in this paper. In
particular, we have used the integrate function in R (R Development Core Team, 2003) which
is an adaptive quadrature method based on Quadpack routines (Piessens et al., 1983). In higher
dimensions, one can perform repeated one-dimensional integrals but this approach requires an
exponentially increasing number of function evaluations as the dimension increases.
Alternatively one can use Monte Carlo integration methods (e.g. Swartz and Evans, 2000) or
number theoretic methods (Fang and Wang, 1994). The examples that follow require one and
two dimensional integrations.

Beginning with initial parameter values for the finite mixture and iterating the population-based
EM algorithm between steps (1) and (2) above will then determine a finite mixture density that
approximates a given density g(y). (2.10) is maximized at the “M”-step of the EM algorithm
and consequently, the misspecified population-based log-likelihood monotonically increases
as the EM algorithm iterates (e.g. see McLachlan and Krishnan, 1997, p. 83).

Replacing the misspecified mixture density f(y) in the logarithm in (2.8) by the correct density
g(y) gives the negative of the entropy:

Entropy: — [g(y)log(g())dy.

Using the following inequality (e.g. Topsge, 2001, p. 166)
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xlog (f) =— xlog(X) >x-y,
y X

it follows that
[slog(f()dy < [g(log(g(y)dy.

That is, the misspecified population-based log-likelihood for the finite mixture model is less
than or equal to the true population-based log-likelihood. As the population-based EM
algorithm iterates, the difference between the misspecified population-based log-likelihood
and the true population-based log-likelihood diminishes.

In general one can choose any continuous density g(y) to use in the misspecified population-
based EM algorithm described above. The next section demonstrates the algorithm for some
well-known densities (gamma, beta, skew-normal). Given a data set that is clearly non-normal,
one can chose a density g(y) from a parametric family that provides a good fit to the data, such
as the skew normal density in Figure 1. Alternatively, one can set g(y) equal to a nonparametric
density estimate, see Section 4. The population-based EM algorithm can then be applied to the
density g(y) to determine if a finite mixture model is also a plausible model for the data.

3 Examples

In this section we apply the population-based EM algorithm to some well-known distributions.
We defined convergence of the algorithm to be when the squared difference between the
misspecified log-likelihood (2.8) on successive iterations was less than 10715, In the following
examples, we did not put a limit on the number of iterations for the EM algorithm. Instead we
allowed the algorithm to iterate until the convergence criterion was met.

3.1 The Normal Distribution

The population-based EM algorithm does not converge when applied to a single normal
distribution because the parameters are not identifiable. For example, for k = 2 mixture
components, one can obtain identical solutions for any combination of prior probabilities 1
and m, that sum to one. When the population-based EM algorithm is applied to a normal density,
it iterates indefinitely.

3.2 The Beta Distribution

The beta distribution with parameters a and b produces a very wide variety of density shapes.
Figure 2 shows three distinct beta density curves (solid curves) with parametersa=b =1
(uniform distribution) in the top panel; a =2, b = 4 in the middle panel and a =5, b =5 in the
bottom panel. In each case, the misspecified population-based EM algorithm was run on these
beta distributions for k = 2 mixture components.

The top panel shows a uniform density (solid line) which is quite distinct from the population-
based EM algorithm derived k = 2 component normal mixture (dashed curve). Even though
the uniform distribution deviates strongly from a k = 2 component normal mixture, the
misspecified population-based EM algorithm converges very quickly with no trouble.

The middle panel shows a strongly skewed-right beta density (solid curve) and the k = 2
component normal mixture density curve (dashed curve) obtained from the population-based
EM algorithm. A slight bi-modality is evident in the k = 2 normal mixture density, but
otherwise, it approximates the beta density very well.
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The bottom panel shows a beta density that is similar to the bell-shaped normal density curve.
The best fitting k = 2 normal mixture density is essentially indistinguishable from the beta
density. The misspecified population-based EM algorithm for the bottom panel took a long
time to converge compared to the top and middle panels.

Each panel of Figure 2 shows the k = 2 mixture component means on the x-axis. These points
illustrate what the EM algorithm for a k = 2 component normal mixture is estimating when
misapplied to data from a beta distribution. Because the beta distribution is homogeneous, these
mixture component means do not have the usual interpretation as means of well-defined sub-
populations.

In the next two subsections, the densities under consideration will be compared to the
misspecified mixture density using the following similarity measured introduced by Scott and
Szewczyk (2001):

[/ f(x)dx
\/ f flz(x)dx f fzz(x)dx

sim(f1,/2)=
(3.1)

One can regard (3.1) as a correlation between densities f; and f, and it follows that

0 < sim(f1, /) < 1.

and that the similarity is equal to 1 if and only if f; = f, almost surely.

3.3 Gamma Distribution

The population-based EM algorithm for fitting a 2 and 3 component normal mixture was
applied to a family of gamma distributions with scale parameter set to 1 and shape parameter
x ranging from 1 to 20. The misapplied EM algorithm had no trouble converging for k = 2. If
initial values were not chosen well, the EM algorithm for k = 3 components would sometimes
veer off towards a k = 2 component solution with one of the prior probabilities going to zero.
Otherwise, the algorithm would converge to a k = 3 component normal mixture solution.

Figure 3 shows the gamma density function (solid curve) for x = 10 as well as the fitted
misspecified k = 2 component normal mixture density (dashed curve). The two points on the
x-axis in Figure 3 are the k = 2 mixture component means. As Figure 3 demonstrates, this
gamma distribution and the k = 2 component mixture are very similar to one another.

Figure 4 shows the similarities (3.1) between gamma densities and the k = 2 and 3 component
normal mixtures obtained from the population-based EM algorithm for shape parameters
values ranging from x = 1 to 20 in increments of 0.25. For small values of x near 1, there is
some discrepancy between the k = 2 and 3 component normal mixture and the gamma
distributions, but that discrepancy disappears as x increases and eventually the gamma
distribution and the normal mixtures are indistinguishable. The k = 3 component normal
mixture has a higher similarity with the gamma distributions than the k = 2 component mixture
as expected. Plotting the ratio of the misspecified population-based log-likelihood (2.8) to the
true population-based log-likelihood produces a figure very similar to Figure 4.

3.4 The Skew Normal Distribution

A useful model for skewed distributions is the skew normal distribution (e.g. Azzalini and
Capitanio, 1999). In this section we apply the population-based EM algorithm to the skew
normal density. The density for a p-dimensional skew normal distribution is
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20(z;Q)D(a’2),

where ¢ is a multivariate normal density with mean zero and correlation matrix Q, @ is a
univariate standard normal distribution function, and « is a p-dimensional “shape” parameter
that controls the degree and direction of skewness. When a = 0, the skew normal density
becomes simply a normal density.

Figure 5 shows a one-dimensional skew normal density with shape parameter « = 2 (solid
curves). Overlayed is a 2-component mixture in the left panel and a 3-component mixture in
the right panel each found using the population-based EM algorithm. The points on the x-axis
in left and right panels are the mixture component means. In the left panel of Figure 5, there
is very little discrepancy between the skew normal and the 2-component mixture and in the
right panel, the density of the skew normal is essentially indistinguishable from the 3-
component mixture.

Figure 6 shows the similarity between 2 and 3-component mixtures with the univariate skew
normal distribution for values of the shape parameter varying from « = 1 to 5. The values of
the similarities are very high (ranging from 0.995 to essentially 1). The similarity between the
skew normal and the mixtures deteriorates as the shape parameter increases. For instance,
eventually, the best fitting 3-component mixture exhibits distinct modes even though the skew
normal remains unimodal.

The population-based EM algorithm was also applied to the bivariate skew normal distribution.
This required numerical evaluation of double integrals which slowed down the EM algorithm
substantially and lead to greater numerical error in evaluating the integrals.

Figure 7 shows contours of equal density for a bivariate skew normal distribution with shape
vector @ = (2, 0)' and identity correlation matrix, drawn using the skew normal package “sn”
package in R (Azzalini, 2006). The population-based EM algorithm was run for k = 4
components and Figure 7 shows two distinctly different solutions in the left and right panels.
Reflecting the 4-point pattern in the left panel about the x-axis will produce another 4-
component solution as well. Two-dimensional plots of cross-sections of the bivariate skew
normal density and the k = 4 component normal mixtures (not shown) show that the conditional
mixture densities and the skew-normal densities at these cross-sections are almost identical.
Thus, not only can the bivariate skew normal distribution be approximated by ak =4 component
normal mixture, but there exist at least three distinct solutions. In order to compare the two
solutions illustrated in Figure 7, the misspecified log-likelihood (2.8) was computed for each
solution and surprisingly, the log-likelihoods come out almost identical: —2.465 for the four
point pattern in the left panel of Figure 7 and —2.474 for the line pattern in the right panel.
Thus, the solution in the left panel leads to a slightly larger misspecified log-likelihood than
the line pattern in the right panel. In order to check that the likelihood surface does not form a
ridge between these two solutions in the parameter space, the misspecified log-likelihood was
evaluated on a set of 10 equally spaced points on the line connecting the two solutions and the
misspecified log-likelihood dips in value between these two local maximal solutions.
Therefore, the log-likelihood surface does not form a ridge between these two solutions.

The fact that the EM algorithm for a finite mixture can converge to different solutions for the
bivariate skew normal distributions mirrors the same phenomenon that occurs with clustering.
For instance, for the bivariate normal distribution, there exist many distinct sets of k self-

consistent points which are theoretical cluster means for distributions (e.g. see Tarpey, 1998).

Finally, we note that a true mixture model with k components can be misspecified by another
mixture model with a different number of components. In fact, determining the number of
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mixture components is one of the toughest problems in finite mixture modelling. To highlight
the problem, Figure 8 shows a k = 3 component normal mixture density (solid curve) and a k
= 2 component mixture was fit to this density using the population-based EM algorithm which
yielded the dashed density curve in Figure 8. As one can see, there is very little distinction
between the k = 2 and k = 3 component mixture densities. The k = 3 mixture component means
are plotted with an “x” symbol and the k = 2 component means are plotted with the solid circle
on the x-axis.

This section has illustrated that the EM algorithm for a mixture model will often converge with
no problems even if the true distribution is not a mixture (or not a correctly specified mixture
in terms of the number of components). Thus, in practice, just because the EM algorithm
converges and fits the sample data well, this is not necessarily evidence that the data is from a
mixture.

4 Nonparametric Density Estimation Via the Misspecified EM Algorithm

In the previous sections, the EM algorithm for normal mixtures was applied directly to a given
density instead of being applied to a data set. Given a set of data, one can estimate a
nonparametric density function and then apply the population-based EM algorithm directly to
the nonparametric density estimate. Recall that a kernel density estimate is the form

where K is a kernel function (e.g. a normal density). Thus, a kernel density estimate is actually
an example of a mixture where a mixture component is placed at each data point.

Scott and Szewczyk (2001) propose a procedure for fitting a mixture model by starting with a
nonparametric density estimate and then collapsing component densities that are most similar
in terms of the similarity index (3.1). Using the population-based EM algorithm, one can
proceed in the opposite direction. That is, fit a non-parametric density to the data and then fit
a k = 2 component normal mixture using the population-based EM algorithm applied directly
to the nonparametric density function. Then, increase the number of components until the
similarity between the nonparametric density estimate and the estimated mixture density
reaches a specified threshold.

Figure 9 shows the same HAM-D difference histogram as in Figure 1. The solid curve is a
nonparametric density estimate. The misspecified population-based EM algorithm for k = 2
components was applied to the nonparametric density and the resulting two component density
curve is also plotted (dotted curve). Finally, a two component normal mixture was fit to the
raw data using the EM algorithm which produces the dashed density curve in Figure 9. The
figure shows that the results of the misspecified population-based EM algorithm coincides very
closely to the nonparametric density estimate. However, the fitted mixture from the raw data
deviates more substantially from the nonparametric density fit.

5 Clusters or Mixtures?

Consider the problem of defining an illness (e.g. hypertension or depression) in terms of
measured variables. Diagnoses are often defined by dividing lines for the variables between
illness and no-illness (or different grades of illness). Murphy (1964) states that “There is a
fashion which cannot be too strongly condemned of lopping off the end of a distribution curve,
endowing it with some pretentious name beginning with ‘hyper-" and ending with “-emia’ or
‘-osis’ and then devoting much effort to seeking the ‘cause’ of it. Well, it is surely a truism
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that every continuous distribution must have an upper 5 per cent, and by pursuing this idea, as
soon as we have defined any measurement we can invent a corresponding disease (page 321).”
If the population does indeed consist of distinct groups (e.g. tumor versus no tumor) then
“seeking the cause of it” seems reasonable and a mixture model is appropriate. However, in
many cases, distinct mixture components may not exist and illness severity will vary along a
continuum with respect to measured variables with no clear groupings. Often one can
distinguish between individuals at opposite extremes of the continuum. Analogously, a teacher
can easily distinguish between an A student and an F student, but the difference between a low
A and a high B grade can often be difficult. Nonetheless, a dividing line is needed to assign
grades. In medical applications, dividing lines are also often needed in order to make a diagnosis
and decide upon a threshold at which a treatment is recommended.

Ak-means clustering approach is well-suited for determining dividing lines since the algorithm
chops up the distribution into non-overlapping groups. A mixture model on the other hand
allows for different groups to overlap provided there exist real distinct groups. If distinct groups
do not exist, then cluster means for theoretical homogeneous distributions will nonetheless
exist. Flury (1990, 1993) coined the term principal points for cluster means of a theoretical
distribution: the points &1, ..., & are k principal points of a random vector Y if

Elmin | ¥ - EilF1 < Elmin || ¥ -yl

where yy, ..., Yk is any collection of k points. Tarpey et al. 2003 apply a principal point solution
to functional data (quadratic curves) to determine unique response profiles for responders, non-
responders, placebo responders, and a mixture of drug/placebo responders in an antidepressant
study.

The k-means algorithm provides nonparametric estimators for the k principal points of a
distribution. A population-based version of the k-means algorithm can be easily implemented
for one-dimensional distributions using the following algorithm: Let Y be a random variable
with density function f(y).

Population-Based k-Means Algorithm

1. Begin with initial cluster mean values ys, ..., Yk.
2. Determine cut-points mj = (yj +Yj+1)/2, forj=1, ..., k = 1. Set mg = —o0 and m = oo.

3. Update the cluster means by computing the conditional expectation of Y between
successive cut-points:
™ yf(dy

mj—

Y= - .

[ f00dy

1. Iterate between steps (1) and (2) until successive changes in cluster means are under
some threshold.

This procedure will determine the k principal points of a univariate distribution with a precision
depending on the accuracy of the numerical integration used to update the cluster means. We
implemented the population k-means algorithm for k = 2 in several of the examples in Section
3 and the algorithm usually converged very quickly, much more so than the population-based
EM algorithm. In addition, the k = 2 principal points found from the population-based k-means
algorithm were often quite close in value to the mixture component means found from the
population-based EM algorithm.
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The regions of integration formed by the cluster means in 1-dimension are simply intervals
(mj, mj+1). It would be very difficult to implement the population-based k-means algorithm in
higher dimensions because the convex regions needed for the integration formed by the cluster
means can take complicated shapes. In higher dimensions there can exist multiple solutions
(Tarpey, 1998) for the population-based k-means algorithm, known as self-consistent points
(Flury, 1993). Similarly, Figure 7 demonstrates the existence of multiple mixture model
solutions for a two dimensional distribution using the population-based EM algorithm. In 1-
dimension, there will often be a unique set of k self-consistent points (Trushkin, 1982; Li and
Flury, 1995; Tarpey, 1994; Mease and Nair, 2006), for instance if the density is log-concave.
It would be interesting to determine if conditions exist that guarantee the existence of a unique
set of (non-degenerate) solutions for the population-based EM algorithm.

If the distribution is homogeneous (or even normal), the principal points are well-defined and
the k-means algorithm can be used to estimate the principal points of the distribution. However,
for homogeneous distributions, the mixture component means found from fitting a finite
mixture model are (no pun intended) meaningless.

On the other hand, if the distribution is really a finite mixture, then the EM algorithm produces
approximately unbiased estimates via maximum likelihood of the mixture model parameters.
The k-means algorithm will still converge to consistent estimators of principal points but the
principal points and the mixture component means do not coincide. For instance, for a
univariate k = 2 normal mixture with component means x4, equal prior probabilities and
variance o2 in each component, the two principal points will be equal to

2 20 2
U [2606/0) — o+ \/;O.eo /e,

which differs from the true mixture component means. Hartigan (1978) proposes a test of
normality versus a k = 2 component normal mixture based on the fact that the cluster means
from the k-means algorithm are biased for the true mixture component means. Note that as the
mixture component means move apart (i.e. as J increases), the k = 2 principal points converge
to the true mixture component means.

6 Discussion

It is well known that any given continuous distribution can be approximated by a mixture
model. We have demonstrated through the population-based EM algorithm that mixture models
with as few as two or three mixture components can provide a very good approximation to
some well-known non-normal homogeneous distributions. We have not attempted the reverse,
i.e., to determine if there exists a parametric family of non-normal homogeneous distributions
that can approximate arbitrarily well a given mixture density.

Everitt (1981) writes, “...it may be more appropriate for workers in this area (depression) to
consider fitting mixtures to their data in their attempts to gain evidence for or against the
existence of two types of depression (page 338).” Unfortunately, determining that a mixture
distribution provides a better fit to the data than a normal (i.e. k = 1 component mixture)
distribution is not evidence that the underlying distribution is a mixture, for, as we have shown,
the underlying distribution could be some other non-normal, but homogeneous distribution.
Bimodality in large samples is often (but not always, see Tarpey and Petkova (2007)) evidence
of at least two distinct sub-populations. Of course, this will only occur if the mixture component
means are well separated and/or the mixture component variances are relatively small.
Powerful statistical techniques are essential in cases when the mixtures are not well-separated,
but unfortunately, in these cases, we will not always be able to distinguish a mixture from some
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other homogeneous non-normal distribution. The problem is compounded because the mixture
model and the homogenous non-normal probability model present two very different models
for reality.

Several authors have pointed out the danger of assuming the existence of a mixture. For
instance, Marriott (1971) states that “it is unsafe to assume that departure from a known
distributional form is an indication of a compound distribution (page 506).” Dunn et al.

1993 point out in discussing statistics and the nature of depression that “Bimodality provides
strongly suggestive evidence that there are two groups, but the lack of it does not imply the
opposite (page 72).” When bimodality is not present, Pearson (1895) expressed optimism that
a method would eventually be found to distinguish consistently between a mixture and a skew
curve (page 395). However, as shown in this paper, there exist homogeneous non-normal
densities that are essentially the same as k = 2 and 3 component mixtures which dashes the
optimism expressed by Pearson.
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HAM-D Difference (Baseline - Week 1)
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Figure 1.

Histogram of HAM-D difference (Baseline — Week 1) showing the amount of improvement
in mood after 1 week on Prozac. The solid curve is a skew-normal density and the dashed curve
is a 2-component normal finite mixture density. The 2 points on the x-axis are the normal
mixture component means.
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Beta densities and the corresponding best fitting k = 2 component normal mixtures obtained
from the population-based EM algorithm. Top Panel: a = b = 1 (uniform distribution); Middle
Panel: a =2, b = 4; Bottom Panel: a=5, b = 5. The k = 2 points are the mixture component

means.
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Gamma & Two-Component Normal Mixture
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Figure 3.

A gamma density (solid curve) with parameters § = 1, x = 10 and a two-component normal
mixture density (dashed curve) obtained by running the EM algorithm on the gamma
distribution. The two points on the x-axis represent the normal mixture component means.
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Similarity of Mixture & Gamma PDF’s
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Figure 4.

The similarity between gamma densities with shape parameters k and 2 and 3 component
normal mixtures.
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Figure 5.
Skew normal densities (solid curves) with shape parameter o = 3. Left Panel: k = 2 component

normal mixture and Right Panel: k = 3 component normal mixture (dashed curves). The points
are the mixture component means.
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Similarity of Mixture & Skew Normal PDF’s
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Figure 6.

The similarity between skew normal densities with shape parameters ranging from 1 to 5 with
k =2 and 3 component normal mixtures.
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Bivariate Skew Normal Contours & 4 Mixture Component Means
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Figure 7.
Contours of equal density for a bivariate skew normal with two different solutions for ak = 4
component normal mixture means plotted obtained from the population-based EM algorithm.
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2 & 3 Component Mixtures
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Figure 8.
Solid curve is a k = 3 component mixture and the dashed curve is a k = 2 component mixture
obtained from the population-based EM algorithm.
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Mixture Fit to HAM-D Differences
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Figure 9.

Histogram of the HAM-D difference data with a nonparametric density estimate (solid curve)
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