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Aspartate is an excitatory amino acid that is costored with gluta-
mate in synaptic vesicles of hippocampal neurons and synaptic-like
microvesicles (SLMVs) of pinealocytes and is exocytosed and stim-
ulates neighboring cells by binding to specific cell receptors.
Although evidence increasingly supports the occurrence of as-
partergic neurotransmission, this process is still debated because
the mechanism for the vesicular storage of aspartate is unknown.
Here, we show that sialin, a lysosomal H�/sialic acid cotransporter,
is present in hippocampal synaptic vesicles and pineal SLMVs. RNA
interference of sialin expression decreased exocytosis of aspartate
and glutamate in pinealocytes. Proteoliposomes containing puri-
fied sialin actively accumulated aspartate and glutamate to a
similar extent when inside positive membrane potential is imposed
as the driving force. Sialin carrying a mutation found in people
suffering from Salla disease (R39C) was completely devoid of
aspartate and glutamate transport activity, although it retained
appreciable H�/sialic acid cotransport activity. These results
strongly suggest that sialin possesses dual physiological functions
and acts as a vesicular aspartate/glutamate transporter. It is pos-
sible that people with Salla disease lose aspartergic (and also the
associated glutamatergic) neurotransmission, and this could pro-
vide an explanation for why Salla disease causes severe neurolog-
ical defects.

Salla disease � sialin � vesicular excitatory amino acid transporter �
vesicular glutamate transporter

A classical neurotransmitter is defined as a substrate that is
stored in synaptic vesicles, secreted through exocytosis, and

then stimulates the target cells upon binding to specific recep-
tors. Among excitatory and inhibitory amino acids, glutamate,
GABA, and glycine fulfill these criteria and are well established
as neurotransmitters (1–4). Although aspartate has been known
as a signaling molecule for a long time, this amino acid does not
fulfill the above criteria (5–16). Aspartate is usually costored
with glutamate in a population of synaptic vesicles in specific
neurons such as the CA1 neuron of hippocampus and synaptic-
like microvesicles (SLMVs) of pinealocytes (10, 12, 13). How-
ever, the transporter responsible for the vesicular accumulation
of aspartate has not yet been identified. The vesicular glutamate
transporter (VGLUT) is responsible for vesicular storage of
glutamate but not aspartate because VGLUT does not recognize
aspartate as a transport substrate (4). We hypothesized that, like
other vesicular neurotransmitter transporters, the putative ve-
sicular aspartate transporter is present in aspartate-containing
secretory vesicles and takes up aspartate by using an electro-
chemical gradient of protons as the driving force.

SLC17 is a type I phosphate transporter family consisting of
nine genes that is divided into four distinct subfamilies:
SLC17A1–4, Na�, and inorganic phosphate cotransporters
(NPT); SLC17A5, a lysosomal H�/sialic acid cotransporter
(sialin); SLC17A6–8, VGLUTs; and SLC17A9, a vesicular nu-
cleotide transporter (VNUT) (Fig. 1) (4, 17). VGLUT and NPT1
are known to be bifunctional in nature and possess two distinct
intramolecular transport machineries, i.e., Na� and inorganic
phosphate cotransport and membrane potential (��)-dependent
organic anion transport (18–20). Furthermore, biochemical
studies on VGLUT and VNUT suggest involvement of a family-
wide conserved transmembrane region as the substrate-binding

site. Small spatial changes near the binding region may deter-
mine substrate specificity (17, 18). We suspected that a member
of a SLC17 subgroup other than VGLUT was involved in the
vesicular storage of aspartate. Sialin was the most appropriate
candidate because this protein is highly expressed in nonlysoso-
mal compartments of cells found in various regions of the central
nervous system, some of which correspond to the sites of
vesicular storage of aspartate (21, 22).

Here, we investigated this possibility, and we present evidence
that sialin is responsible for vesicular storage for aspartate in
neurons and pinealocytes. We also present an unexpected link-
age between aspartergic neurotransmission and Salla disease, an
autonomic neurological disorder.

Results and Discussion
Sialin Is a Constituent of Hippocampal Synaptic Vesicles. To test the
working hypothesis that sialin acts as vesicular aspartate trans-
porter, we first investigated whether sialin-containing synaptic
vesicles were present in the hippocampus, and if yes, whether
these synaptic vesicles can actively accumulate aspartate. We
found that crude synaptic vesicles (P2 fraction) from hippocam-
pus contain sialin (Fig. 2A). Immunohistochemistry with cul-
tured hippocampal neurons indicated that sialin was approxi-
mately colocalized with synaptophysin, a marker of synaptic
vesicles, in the processes (Fig. 2B, arrows). Immunoelectron
microscopy indicated that a population of synaptophysin-
containing vesicles possess sialin immunoreactivity (Fig. 2C).
Quantitatively, 90% sialin–ImmunoGold particles were associ-
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ated with 25% synaptophysin-containing vesicles. Upon the
addition of ATP, synaptic vesicles from hippocampus accumu-
lated aspartate in carbonyl cyanide 3-chlorophenylhydrazone
(CCCP)-sensitive manner, whereas synaptic vesicles from whole
brain did not (Fig. 2D). The ATP-dependent aspartate uptake in
hippocampal synaptic vesicles was sensitive to D,L-threo-�-
hydroxyaspartate (tHA), a false transmitter for vesicular aspar-
tate pool (23). ATP-dependent glutamate uptake by hippocam-
pal synaptic vesicles was also somewhat sensitive to tHA, but that
of whole-brain synaptic vesicles was not (Fig. 2D). These results
suggested that sialin is a constituent of hippocampal synaptic
vesicles and that tHA-sensitive ATP-dependent aspartate/
glutamate transporters other than VGLUT were present in
synaptic vesicles of hippocampus.

Sialin Is a Constituent of SLMVs. Subsequently, we investigated the
expression and localization of sialin in rat pinealocytes because
these cells are known to store both aspartate and glutamate in
SLMVs and to secrete both amino acids through exocytosis upon
depolarization (12). Sialin immunoreactivity was present within
the punctated structure and approximately colocalized with
synaptophysin, a marker of SLMVs, in cultured rat pinealocytes
(Fig. 3 A and B). Aspartate immunoreactivity also colocalized
with synaptophysin (Fig. 3B). Immunoelectron microscopy in-
dicated that a major population of synaptophysin-containing

vesicles possess sialin immunoreactivity (Fig. 3C): �90% total
ImmunoGold particles were associated with 50% SLMVs. RNA
interference (RNAi) using a probe directed against rat sialin in
pinealocytes indicated selective loss of sialin expression, whereas
VGLUT expression was not altered (Fig. 3D). Then, we mea-
sured the exocytosis of aspartate and glutamate from pinealo-
cytes upon addition of KCl. We observed that RNAi treatment
decreased exocytosis of aspartate and glutamate to 32% and
60% of the control level, respectively (Fig. 3E). Because sialin
siRNA was incorporated into 70% pinealocytes under the
condition, these results suggested that siRNA-incorporated pi-
nealocytes have almost completely lost the ability of aspartate
exocytosis. In a separate experiment, the siRNA-evoked sup-
pression of aspartate exocytosis was partially recovered (50%)
upon transduction of human sialin construct. Together, these
results support the idea that sialin was a constituent of pineal
SLMVs and was responsible for the vesicular storage of aspartate
and glutamate.

Sialin-Mediated Vesicular Storage of Aspartate and Glutamate. To
demonstrate that sialin was a vesicular aspartate and glutamate
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Fig. 2. ATP-dependent uptake of aspartate was detected in sialin-containing
synaptic vesicle preparation from hippocampus. (A) Immunoblotting revealed
the presence of sialin in the hippocampal P2 fraction. The position of sialin is
marked by an arrow. (B) Sialin is partially colocalized with synaptophysin.
Cultured hippocampal neurons were double immunostained with antibodies
against sialin and synaptophysin. (Scale bar, 10 �m.) (C) Double-labeling
immunoelectron microscopy demonstrated the association of sialin with syn-
aptophysin-containing vesicles. Samples were treated with sets of anti-
synaptophysin monoclonal antibodies (5-nm particles, arrows) and anti-sialin
serum (10-nm particles, arrowheads), anti-synaptophysin monoclonal anti-
bodies (5-nm particles, arrows) and anti-VGLUT1 serum (10-nm particles,
arrowheads), or anti-synaptophysin monoclonal antibodies (5-nm particles)
and control serum (10-nm particles). (Scale bar, 100 nm.) (D) ATP-dependent
uptake of aspartate and glutamate at 5 min by P2 fractions isolated from
hippocampus and whole brain. Concentrations of CCCP and tHA were 1 �M
and 5 mM, respectively.
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Fig. 3. Sialin was associated with pineal SLMVs and is involved in exocytosis
of aspartate and glutamate. (A) Sialin was present in pineal SLMV fractions as
revealed by immunoblotting. The position of sialin is marked by an arrow. (B)
Sialin is colocalized with aspartate and synaptophysin. Cultured pinealocytes
were double immunostained with antibodies against aspartate and synapto-
physin (Upper) or sialin and synaptophysin (Lower). (Scale bar, 10 �m.) (C)
Double-labeling immunoelectron microscopy demonstrated the association
of sialin with synaptophysin. Samples were treated with sets of anti-
synaptophysin monoclonal antibodies (5-nm particles, arrows) and anti-sialin
serum (10-nm particles, arrowheads) or anti-synaptophysin monoclonal anti-
bodies (5-nm particles, arrows) and anti-VGLUT2 serum (10-nm particles,
arrowheads) or anti-synaptophysin monoclonal antibodies (5-nm particles)
and control serum (10-nm particles). (Scale bar, 100 nm.) (D) RNAi directed
against rat sialin decreased sialin expression without affecting the expression
of VGLUT2. Quantitative analysis for sialin and VGLUT2 mRNA levels was
performed by real-time PCR. (E) Exocytosis of aspartate and glutamate after
20-min incubation upon KCl stimulation from control siRNA-treated pinealo-
cytes and sialin siRNA-treated pinealocytes.
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transporter, mouse sialin was expressed in insect cells, purified,
and reconstituted into liposomes (Fig. 4A). The purified sialin
fraction contained a single major polypeptide with an apparent
molecular mass of �60 kDa. We detected �pH-dependent sialic
acid transport activity in proteoliposomes (Fig. 4 B and Table 1).
The specific activity and the transport properties were compa-
rable with those of purified lysosomal H�/sialic acid cotrans-
porter reported (Fig. 4B and Table 1) (24). These results
confirmed that the reconstituted sialin was a H�/sialic acid
cotransporter. We then measured �� -dependent aspartate
uptake in the same proteoliposome preparations (Fig. 4 C–E).
Upon the addition of ATP, the proteolipsomes established ��
(positive inside) through the active proton pumping of the
bacterial F-ATPase (18). Aspartate was taken up against a
concentration gradient in a time-dependent fashion (Fig. 4C).
Only background level uptake was observed in liposomes lacking

sialin. The ATP-dependent aspartate uptake exhibited dose
dependence with Km and Vmax of 0.62 mM and 142 nmol/min per
mg of protein, respectively (Fig. 4D). Aspartate transport was
driven by �� (inside positive) but not �pH (Table 1).

Testing of a spectrum of possible cis-inhibitors indicated that
aspartate uptake was insensitive to lactate, succinate, and sialic
acid but sensitive to aspartate and tHA as opposed to that of
H�/sialic acid cotransport (Table 1). Similar to that in VGLUT
and VNUT (17, 18), aspartate transport obligatorily required
chloride anions and was inhibited by Evans blue, whereas
H�/sialic acid cotransport did not require chloride anions and
was insensitive to Evans blue (Fig. 4E and Table 1). Further-
more, as expected from the results shown in Figs. 2 and 3,
proteoliposomes containing sialin took up glutamate with prop-
erties similar to those of aspartate transport (Fig. 4 F–H and
Table 1).

Thus, we concluded that sialin was a vesicular aspartate and
glutamate transporter with properties similar to but distinct
from those of VGLUTs. This function of sialin explained why
RNAi decreased exocytosis of both aspartate and glutamate in
pinealocytes (Fig. 3E) and why glutamate is usually colocalized
with aspartate in aspartate-secreting cells (10, 12–15). It is
noteworthy that other members of the SLC17 anion trans-
porter family did not exhibit any aspartate/glutamate transport
activity (Table 2).

Effects of Mutations Causing Sialic Acid Storage Diseases. Mutations
in the sialin gene are known to cause two distinct diseases,
infantile sialic acid storage disease (ISSD), an early fatal
disorder with many features characteristic of a lysosomal
disorder and Salla disease, a neurological disorder in which the
affected persons have a near-normal life expectancy (25–30).
However, why different sialin mutations cause different dis-
eases is less understood. A mutated form of sialin found in
patients with ISSD was devoid of sialic acid transport activity,
whereas the form of sialin commonly associated with Salla
disease retained some sialic acid transport activity. These
observations provided plausible explanations for the different
pathogenicity of the two diseases (27, 31, 32). We found that
the ��-dependent uptake of aspartate and glutamate of these
two mutants was totally different. The mouse sialin mutant
carrying the amino acid exchange R39C, a mutation that
causes Salla disease in humans, was completely inactive in the
��-dependent uptake of aspartate and glutamate while re-
taining 34% of wild-type sialic acid cotransport activity (Fig.
5). In contrast, the ��-dependent uptake of aspartate and
glutamate was fully active in the mouse H183R mutant, a
mutation associated with ISSD in humans, whereas H�/sialic
acid cotransport was completely inactive (Fig. 5). Thus, per-
sons carrying sialin with an R39C mutation are expected to
have impaired sialin-mediated aspartergic and glutamatergic
neurotransmission; this at least partially explains why the
central nervous system is so severely affected in Salla disease.

Sialin as a Vesicular Excitatory Amino Acid Transporter (VEAT). The
present work provides evidence that sialin acts as a VEAT.
This means that sialin possesses dual physiological functions.
When present in synaptic vesicle and SLMVs, sialin is respon-
sible for vesicular storage and subsequent exocytosis of aspar-
tate and glutamate. When present in lysosomes, it acts as an
H�-coupled sialic acid exporter. Because all criteria for as-
partate as a neurotransmitter are now satisfied, sialin should
be a missing link in aspartergic neurotransmission and the sixth
member of the vesicular neurotransmitter transporter family,
which comprises vesicular monoamine transporter, vesicular
acetylcholine transporter, vesicular inhibitory amino acid
transporter, VGLUT, and VNUT. Because both glutamate
and aspartate belong to excitatory amino acids, sialin should
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be named VEAT (Fig. 1). The present work predicts that
glutamatergic neurotransmission is always accompanied by an
aspartergic one. More extensive studies on the structure and
function of sialin will help clarify the entire features of
aspartergic and associated glutamatergic neurotransmission.
For instance, sialin can be used as a marker for aspartergic
neurons to explore the occurrence of aspartergic and associ-
ated glutamatergic neurotransmission in the central nervous
system. The present work also pointed out the unexpected link
between aspartergic/glutamatergic neurotransmission and
Salla disease. This finding may facilitate the identification of
potential molecular targets for the pharmacotherapy of this
neurological disorder. Conversely, the studies on the patho-
genesis of Salla disease can provide clues for exploring the
physiology of aspartergic/glutamatergic neurotransmission.

Materials and Methods
Detailed materials and methods are provided in supporting information (SI)
Methods.

cDNA. cDNAs of mouse and human SLC17A5 (GenBank accession no.
NM172773 and NM012434, respectively) were cloned by PCR.

Expression, Purification, and Reconstitution of Sialin. Essentially the same
procedure for purification and reconstitution of VGLUT was used as described
in ref. 18. Wild-type and mutant mouse sialin were expressed in Sf9 cells,
solubilized from the membrane with octyl glucoside, purified by affinity
chromatography, and reconstituted into liposomes by dilution. Uptake of
radiolabeled aspartate, glutamate, and sialic acid into proteoliposomes was
assayed by the centrifuge column method as described in ref. 18.

RNAi Experiment. Cells of the pineal glands from 3- to 4-week-old Wistar rats
were isolated and cultured as described in ref. 12. After culturing for 4 days,
pinealocytes were transfected with 25 nM AllStars negative control siRNA
(Qiagen) (control siRNA) or rat sialin siRNA (target sequence: CACCAGAAACT-
CACAAGACAA). HiPerFect transfection reagent (Qiagen) was used for trans-
fection of siRNA. Aspartate and glutamate release and mRNA levels of sialin
and VGLUT2 were assayed 3 days later as described (12, 17). To rescue the RNAi

Table 1. Uptake of aspartate, glutamate, or sialic acid by the sialin-containing
proteoliposomes in the presence of various compounds

Compound
Concentration,

�M

Uptake, % of control

L-Aspartate L-Glutamate Sialic acid

Control 100.0 � 9.2 100.0 � 9.3 100.0 � 8.4
Valinomycin 2 23.9 � 5.5** 16.5 � 8.9** 101.0 � 8.7
Nigericin 2 77.8 � 7.7* 80.2 � 16.8 17.3 � 9.4**
Val � Nig 2 0.0 � 8.9** 0.0 � 9.0** 13.0 � 5.6**
CCCP 1 6.2 � 7.7** 24.8 � 4.1** 15.6 � 5.1**
Evans blue 1 20.7 � 3.7** 14.6 � 6.9** 114.4 � 3.3
L-aspartate 5,000 0.0�1.7** 8.7 � 10.0** 109.9 � 1.1
D-Aspartate 5,000 3.2 � 3.3** 6.9 � 6.2** 92.1 � 6.6
tHA 5,000 0.0 � 7.3** 0.0 � 0.8** 84.2 � 11.6
L-glutamate 5,000 1.3 � 2.0** 0.0 � 4.5** 98.0 � 12.0
Sialic acid 5,000 57.5 � 11.0* 51.2 � 10.8* 9.8 � 8.7**
L-lactate 5,000 95.9 � 10.9 97.0 � 2.7 11.5 � 8.0**
Succinate 5,000 93.0 � 3.0 84.7 � 9.9 20.7 � 8.4**

Sialin-mediated ��-dependent uptake of aspartate and glutamate and �pH-dependent uptake of sialic acid
were measured, and the effects of various compounds were examined as described in the legend of Fig. 4. Control
activities (100%) correspond to 2.9 nmol/min per mg of protein for aspartate uptake, 2.3 nmol/min per mg of
protein for glutamate uptake, and 67 nmol/min per mg of protein for sialic acid uptake. Val, valinomycin; Nig,
nigericin. *, P � 0.05; **, P � 0.001.

Table 2. Vesicular aspartate and glutamate transport activity is a
special property of sialin

Protein name Gene name

Uptake, % of control

Aspartate Glutamate

Sialin SLC17A5 100.0 � 9.2 100.0 � 9.3
NPT1 SLC17A1 3.9 � 8.2 0.0 � 5.1
VGLUT2 SLC17A6 2.7 � 4.9 116.3 � 3.1
VGLUT3 SLC17A8 0.0 � 7.4 60.2 � 11.2
VNUT SLC17A9 0.0 � 0.7 1.1 � 5.9

Members of the SLC17 family were purified and reconstituted into lipo-
somes. The �y-dependent uptake of 100 �M aspartate was determined after
a 5-min incubation as described in the legend of Fig. 4. The values are
expressed as percentages of aspartate uptake (2.9 nmol/min per mg of pro-
tein) and glutamate uptake (2.3 nmol/min per mg of protein). The proteoli-
posomes showed the following transport activities for the authentic sub-
strates: NPT1, Na�-dependent phosphate uptake activity, 6.5 nmol/min per
mg of protein; VGLUT2, ATP-dependent L-glutamate uptake, 2.8 nmol/min
per mg of protein; VGLUT3, ATP-dependent L-glutamate uptake, 1.4 nmol/min
per mg of protein; VNUT, ATP uptake, 8.0 nmol/min per mg of protein.
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effect, pinealocytes were cotransfected with 1 �g/ml pcDNA3.1/nV5-human
sialin and 25 nM rat sialin siRNA.

Data Analysis. All numerical values are shown as the mean � SEM, n � 3–6.
Statistical significance was determined by Student’s t test. *, P � 0.05; **,
P � 0.001.
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