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Abstract

Background: Autocrine motility factor/phosphoglucose isomerase (AMF/PGI) is the extracellular ligand for the gp78/
AMFR receptor overexpressed in a variety of human cancers. We showed previously that raft-dependent internalization of
AMF/PGI is elevated in metastatic MDA-435 cells, but not metastatic, caveolin-1-expressing MDA-231 cells, relative to
non-metastatic MCF7 and dysplastic MCF10A cells suggesting that it might represent a tumor cell-specific endocytic
pathway.

Methodology/Principal Findings: Similarly, using flow cytometry, we demonstrate that raft-dependent endocytosis of
AMF/PGI is increased in metastatic HT29 cancer cells expressing low levels of caveolin-1 relative to metastatic, caveolin-1-
expressing, HCT116 colon cells and non-metastatic Caco-2 cells. Therefore, we exploited the raft-dependent internalization
of AMF/PGI as a potential tumor-cell specific targeting mechanism. We synthesized an AMF/PGI-paclitaxel conjugate and
found it to be as efficient as free paclitaxel in inducing cytotoxicity and apoptosis in tumor cells that readily internalize AMF/
PGI compared to tumor cells that poorly internalize AMF/PGI. Murine K1735-M1 and B16-F1 melanoma cells internalize FITC-
conjugated AMF/PGI and are acutely sensitive to AMF/PGI-paclitaxel mediated cytotoxicity in vitro. Moreover, following in
vivo intratumoral injection, FITC-conjugated AMF/PGI is internalized in K1735-M1 tumors. Intratumoral injection of AMF/PGI-
paclitaxel induced significantly higher tumor regression compared to free paclitaxel, even in B16-F1 cells, known to be
resistant to taxol treatment. Treatment with AMF/PGI-paclitaxel significantly prolonged the median survival time of tumor
bearing mice. Free AMF/PGI exhibited a pro-survival role, reducing the cytotoxic effect of both AMF/PGI-paclitaxel and free
paclitaxel suggesting that AMF/PGI-paclitaxel targets a pathway associated with resistance to chemotherapeutic agents.
AMF/PGI-FITC uptake by normal murine spleen and thymus cells was negligible both in vitro and following intravenous
injection in vivo where AMF/PGI-FITC was selectively internalized by subcutaneous B16-F1 tumor cells.

Conclusions/Significance: The raft-dependent endocytosis of AMF/PGI may therefore represent a tumor cell specific
endocytic pathway of potential value for drug delivery to tumor cells.
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Introduction

Endocytosis is the general mechanism by which cells regulate

entry of external substances into the cell and represents an important

route for delivery of targeted therapeutics for a variety of pathologies

including cancer [1]. Clathrin-mediated endocytosis represents the

best characterized endocytic pathway, however a number of

clathrin-independent endocytic routes, in particular raft-dependent

pathways, have recently come under intense scrutiny. Various raft

pathways showing differential caveolin, dynamin and small G

protein dependence have been characterized and shown to be

coopted by various viruses, toxins and extracellular pathogens [2–4].

Caveolae-mediated uptake is a well-characterized endocytic mech-

anism in endothelial cells [5], but whether other raft-dependent

pathways represent selective portals into specific cell types, such as

tumor cells, remains to be demonstrated.

A novel promising target for anti-cancer agents is the receptor for

autocrine motility factor/phosphoglucose isomerase (AMF/PGI),

known as gp78/AMFR, that was recently identified as one of 189

genes mutated at significant frequency in breast and colorectal

cancer [6]. Increased expression of gp78/AMFR in human cancers

is significantly correlated with more advanced tumor stage and

decreased patient survival [7]. Gp78/AMFR is the cell surface

receptor for AMF/PGI and also an E3 ubiquitin ligase localized to a

distinct mitochondria-associated smooth subdomain of the endo-

plasmic reticulum [8–11]. The recent identification of the KAI1
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metastasis suppressor as a gp78/AMFR endoplasmic reticulum-

associated degradation (ERAD) substrate strongly supports a role for

gp78/AMFR up-regulation in metastasis promotion [12].

AMF/PGI is a glycolytic enzyme that has been shown to exhibit

extracellular cytokine function, under the aliases neuroleukin,

maturation factor and AMF, targeting neurons, lymphocytes and

cancer cells, respectively [13–18]. AMF/PGI is selectively secreted

by transformed cell lines and has been extensively implicated in the

autocrine stimulation of tumor cell motility and proliferation through

activation of PKC, Rho, Rho-GDI and p27Kip1 inducing

reorganization of focal contacts and loss of E-cadherin via

upregulation of the E-cadherin transcription repressor SNAIL

[19–25]. AMF/PGI exhibits anti-apoptotic activity by downregu-

lating Apaf-1 and caspase-9 expression [26]. AMF/PGI is also an

angiogenic factor, whose expression is induced under hypoxic

conditions in response to expression of HIF-1, and crosstalk between

AMF/PGI and VEGF regulates both induction of AMF/PGI and

AMF/PGI promotion of angiogenesis [27–29]. AMF/PGI overex-

pression induces cellular transformation and promotes tumorigenic-

ity as well as the formation of larger tumors and metastases upon

orthotopic implantation of PaCa-2 pancreatic tumor cells, while

partial AMF/PGI knockdown induces cellular senescence

[22,30,31]. Increased AMF/PGI levels in the urine and serum of

cancer patients is associated with the presence of colorectal, breast,

lung, kidney and gastrointestinal carcinomas [32–37]. Expression of

both AMF/PGI and gp78/AMFR are therefore strongly associated

with tumor progression and metastasis.

Upon binding of AMF/PGI to cell surface gp78/AMFR, it is

endocytosed via a dynamin-dependent raft pathway to the smooth

endoplasmic reticulum that is negatively regulated by expression of

Cav1 [38,39]. This pathway is distinct from that followed by GM1

ganglioside bound cholera toxin b-subunit (Ct-b) and appears to

represent a unique pathway in that it targets directly the smooth

endoplasmic reticulum [4,40] The raft-dependent endocytosis of

AMF/PGI is upregulated in Ras- and Abl-transformed NIH-3T3

cells that express reduced levels of the raft-associated protein

caveolin-1 (Cav1) [39]. Metastatic breast tumor cell lines show

increased cell surface gp78/AMFR expression, however AMF/

PGI uptake was increased only in metastatic MDA-435 cells that

express gp78/AMFR and reduced Cav1 levels and not in MDA-

231 cells expressing both gp78/AMFR and high levels of Cav1

[41]. The raft-dependent endocytosis of AMF/PGI to the smooth

endoplasmic reticulum may therefore represent a specific

endocytic pathway for the selective targeting of gp78/AMFR-

positive, Cav1-deficient tumors.

In this study, we show that raft-dependent uptake of AMF/PGI

is specific for gp78/AMFR-positive/Cav1-negative metastatic

colon cancer cells, does not target normal immune cells and

occurs in vivo in subcutaneous K1735-M1 and B16-F1 melanoma

tumor models. In addition, we have synthesized and characterized

a novel AMF/PGI-paclitaxel conjugate that shows increased

tumor selectivity and cytotoxicity compared to free paclitaxel and

targets and kills AMF/PGI-internalizing cells, both in vitro and in

vivo. Intratumoral injection of AMF/PGI-paclitaxel induced

tumor regression and increased survival of tumor bearing mice,

identifying AMF/PGI-paclitaxel as a potential targeted therapeu-

tic agent for gp78/AMFR-positive cancers.

Results

gp78/AMFR expression and AMF/PGI internalization in
human colon carcinoma cell lines

We previously showed that gp78/AMFR expression was elevated

in metastatic MDA-435 and MDA-231 cells relative to non-

metastatic MCF-7 and dysplastic MCF10A mammary tumor cells

and that AMF/PGI-FITC uptake was selectively increased in MDA-

435 cells that express reduced levels of Cav1 [41]. We have now

expanded these studies to three human epithelial colon cancer cell

lines, non-metastatic Caco-2 and metastatic HCT116 and HT29

cells. By western blot, significant gp78/AMFR protein expression

was detected in invasive HCT116 and HT29 colon cancer cell lines

and was very low in Caco-2 cells. Expression of caveolin (Cav1/2)

was elevated in HCT116 cells and was minimal in HT29 and Caco-

2 cells (Figure 1A). Flow cytometry analysis confirmed abundant cell

surface gp78/AMFR expression in metastatic HCT116 and HT29

cells with reduced expression in Caco-2 cells (Figure 1B). Following

incubation of the cells with 25 mg/ml AMF/PGI-FITC for

30 minutes at 37uC, AMF/PGI-FITC was abundantly internalized

in gp78/AMFR-positive/Cav1-negative HT29 cells relative to the

other colon cell lines (Figure 1B), as determined by flow cytometry.

HT29 cells showed significant uptake of AMF/PGI-FITC both in

terms of percentage of AMF/PGI-FITC positive cells and mean

fluorescence intensity. AMF/PGI-FITC uptake was slightly in-

creased in HCT116 relative to Caco-2 cells but was significantly

lower compared with HT29 cells. Immunofluorescence analysis

shows that AMF/PGI-FITC was internalized selectively by HT29

cells to the anti-gp78/AMFR labeled smooth endoplasmic reticulum

(Figure 1C). Increased uptake of AMF/PGI-FITC in metastatic

colon carcinoma cells is therefore inversely correlated with caveolin

expression.

Cholesterol extraction with mbCD and inhibition of tyrosine

kinases with genistein [40] inhibited the raft-dependent endocytosis

of AMF/PGI-FITC in HT29 cells (Figure 2A). Furthermore,

unlabeled AMF/PGI competed for AMF/PGI-FITC uptake

confirming that uptake in these cell lines is receptor-mediated

(Figure 2A). Neither mbCD nor genistein had any impact on the

clathrin-dependent uptake of transferrin or cell surface gp78/AMFR

expression (Figure 2A). Pretreatment of HT29 cells with these agents

also disrupted delivery of AMF/PGI-FITC to the smooth

endoplasmic reticulum (Figure 2B). Adenoviral overexpression of

Cav1 and the dynamin-K44A mutant but not the clathrin hub, or

wild-type dynamin, inhibited AMF/PGI-FITC uptake in HT29 cells

(Figure 2C). The receptor-mediated, dynamin-dependent uptake of

AMF/PGI-FITC via a raft-dependent endocytic pathway to the

smooth endoplasmic reticulum is therefore elevated in metastatic

colon carcinoma cells expressing low levels of caveolin.

AMF/PGI-paclitaxel is pro-apoptotic and growth
inhibitory

AMF/PGI-paclitaxel conjugate at a 4.3:1 molar ratio of

paclitaxel to AMF/PGI dimers was prepared as previously

described [42] and its specificity assessed by its ability to inhibit

uptake of AMF/PGI-FITC in MDA-435 cells. MDA-435 cells

were incubated with 25 mg/ml AMF/PGI-FITC in the presence

of excess concentrations of either free AMF/PGI or AMF/PGI-

paclitaxel conjugate and the uptake of AMF/PGI-FITC was

measured by flow cytometry (Figure 3A, left panel). The ability of

both AMF/PGI and AMF/PGI-paclitaxel to compete with AMF/

PGI-FITC uptake confirms that paclitaxel conjugation to AMF/

PGI preserves the receptor binding properties of paclitaxel

conjugated AMF/PGI.

Paclitaxel is well known for its ability to arrest tumor cells in

mitosis and promote apoptosis [43]. The pro-apoptotic activity of

the AMF/PGI-paclitaxel conjugate was evaluated using an

Annexin V-FITC flow cytometry assay (Figure 3A, right panel).

AMF/PGI-paclitaxel induced a significant increase in cell surface

Annexin V expression, when used at the same molar concentra-

tion as free paclitaxel.

Raft-Mediated Drug Delivery
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The ability of AMF/PGI-paclitaxel to prevent tumor cell

proliferation was evaluated in vitro on HT29 colon and MDA-435

breast cells that efficiently internalize AMF/PGI-FITC, as well as

HCT116 colon and MCF-7 breast tumor cells, that show

significantly lower uptake of AMF/PGI-FITC (Figure 1) [41]. Cells

were incubated in the presence of increasing log concentrations

(0.001–1 mM) of paclitaxel, or equimolar paclitaxel equivalents of

AMF/PGI-paclitaxel conjugate, and cell number determined after

48 hours relative to control cells. AMF/PGI-paclitaxel was less

efficient at inhibiting HCT116 and MCF-7 cell proliferation than

free paclitaxel (Figure 3B), consistent with the reduced uptake of

AMF/PGI-FITC by these cells. However, treatment of HT29 and

MDA-435 cells with AMF/PGI-paclitaxel resulted in a significant

dose-dependent inhibition of cell proliferation, at least equivalent to

that of free paclitaxel (Figure 3C). These results, firstly, confirm that

the conjugation of AMF/PGI to paclitaxel did not alter the

biochemical properties of free paclitaxel and, secondly, demonstrate

the selectivity of the AMF/PGI-paclitaxel conjugate towards tumor

cells that efficiently internalize AMF/PGI.

We then tested whether excess free AMF/PGI could prevent

the inhibition of cell proliferation by the AMF/PGI-paclitaxel

conjugate. Concomitant treatment of HT29 and MDA-435 cells

with free AMF/PGI significantly abrogated growth inhibition by

AMF/PGI-paclitaxel (Figure 3D). These results suggest that free

AMF/PGI may compete with AMF/PGI-paclitaxel for cell

surface receptor binding. However, excess free AMF/PGI also

reduced the cytotoxic effect of free paclitaxel suggesting that it may

generally exhibit a pro-survival role [30]. AMF/PGI-paclitaxel

may therefore inhibit cell proliferation by abrogating a prosurvival

pathway associated with resistance to chemotherapeutic agents.

AMF/PGI internalization in murine melanoma cells and
tumors

B16-F1, the original cell line in which gp78/AMFR was

identified, and K1735-M1 are highly metastatic melanoma cells,

that express gp78/AMFR and respond to AMF/PGI treatment [44–

47]. By flow cytometry, both K1735-M1 and B16-F1 cells show high

levels of gp78/AMFR expression and robust uptake of AMF/PGI-

FITC that could be inhibited by mbCD, genistein or 10-fold excess

free AMF/PGI (Figure 4A). Confocal analysis confirmed that

internalization of AMF/PGI-FITC to the anti-gp78/AMFR labeled

smooth endoplasmic reticulum in both cell lines was effectively

Figure 1. Gp78/AMFR surface expression and AMF/PGI-FITC endocytosis in human colon tumor cells. A. TX-100 soluble fractions from
Caco-2, HCT116 and HT29 colon cell lines were analyzed by western blot for gp78/AMFR, AMF/PGI, Cav1/2 and b-actin, as indicated. B. Caco-2,
HCT116 and HT29 human colon tumor cells were profiled for surface expression of gp78/AMFR and for AMF/PGI-FITC uptake and analyzed by flow
cytometry. Cells were labeled with 3F3A primary antibody followed by Alexa-647 conjugated secondary antibody. Alternatively, the cells were
incubated for 30 min at 37uC in the presence of AMF/PGI-FITC and flow cytometry of AMF/PGI-FITC uptake performed after 10 min incubation in
DMEM containing pronase (400 mg/ml). Relative quantitative analysis of the percentage of positive cells (top graph) and changes in the Mean
Fluorescence Intensity (MFI) (bottom graph) are shown. The data represent the average of at least three separate experiments (mean6SEM; **,
P#0.001, relative to Caco-2 cells). C. Caco-2, HCT116 and HT29 human colon tumor cells were incubated with 25 mg/ml AMF/PGI-FITC for 30 min
prior to fixation and labeling with the 3F3A anti-gp78/AMFR monoclonal antibody followed by appropriate secondary antibodies and analyzed by
confocal microscopy. AMF/PGI-FITC labeling is presented in green and the anti-gp78/AMFR labeled smooth endoplasmic reticulum in red.
doi:10.1371/journal.pone.0003597.g001
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disrupted by mbCD and genistein (Figure 4B). Taken together, these

results confirm that in metastatic K1735-M1 and B16-F1 murine

melanoma cells, AMF/PGI is internalized to the smooth endoplas-

mic reticulum via a raft-dependent pathway.

Furthermore, to determine whether tumor cells in situ

internalize AMF/PGI, we established subcutaneous (s.c.) K1735-

M1 tumors in the flanks of syngeneic C3H mice. Immunohisto-

logical examination of 6 m tumor sections confirmed the high

degree and uniform expression of gp78/AMFR by cells within the

K1735-M1 tumor (Figure 5A). AMF/PGI-FITC was then

administered directly into well-established K1735-M1 tumors.

After 6 hours mice were sacrified and the tumors resected. One

half of each tumor was used for histological analysis. The second

half was processed for flow cytometry of AMF/PGI-FITC uptake

in single cell suspensions generated from tumor tissue by

mechanical/enzymatic digestion followed by protease treatment.

As seen in Figure 5B, AMF/PGI-FITC labeling in tumor sections

is localized to both the cell surface and cytoplasmic region of the

Figure 2. AMF/PGI-FITC uptake in colon carcinoma cells is raft-dependent, dynamin-dependent and negatively regulated by Cav1.
A. Caco-2, HCT116 and HT29 colon cells were pretreated for 30 min with 5 mM mßCD, 100 mg/ml genistein, or an excess of unconjugated AMF/PGI
(1 mg/ml) and then incubated with AMF/PGI-FITC (left graph) or Tf-FITC (center graph), followed by incubation with pronase and flow cytometry.
Surface gp78/AMFR expression of HT29 cells treated for 30 min with 5 mM mßCD, or 100 mg/ml genistein, was determined by staining cells at 4uC
with 3F3A anti-gp78/AMFR mAb followed by Alexa647-conjugated secondary antibody and analysis by flow cytometry (n = 4; mean6S.E.; **, P#0.001
relative to control). B. HT29 colon cells were left untreated or pretreated for 30 min with 5 mM mßCD or 100 mg/ml genistein, incubated with 25 mg/
ml AMF/PGI-FITC for 30 min prior to fixation and labeling with the 3F3A anti-gp78/AMFR monoclonal antibody followed by appropriate secondary
antibodies. AMF/PGI-FITC labeling is presented in green and the anti-gp78/AMFR labeled smooth endoplasmic reticulum in red. C. HT29 cells were
infected with adenoviruses expressing the tTA alone (control) or coinfected with the tTA adenovirus and adenoviruses coding for Cav1, clathrin hub,
wild-type dynamin-1 (DynWT) or mutant dynamin-1 K44A (DynK44A). After 48 hours, AMF/PGI-FITC uptake was assessed by flow cytometry (percent
positive cells; n = 3; ** P#0.001 relative to control).
doi:10.1371/journal.pone.0003597.g002
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Figure 3. The growth inhibition and pro-apoptotic effects of AMF/PGI-paclitaxel. A. The specificity of AMF/PGI-paclitaxel was determined
by competitive binding assay. MDA-435 cells were incubated for 60 min at 4uC in the presence of various concentrations (100–500 mg/ml) of either
free AMF/PGI or AMF/PGI-paclitaxel conjugate. Afterwards, cells were stained with anti-gp78/AMFR mAb (3F3A) and Alexa647-conjugated secondary
antibody and surface expression of gp78/AMFR determined by flow cytometry (left panel). Results were normalized and expressed as means6SE

Raft-Mediated Drug Delivery

PLoS ONE | www.plosone.org 5 October 2008 | Volume 3 | Issue 10 | e3597



tumor cells, as defined by phalloidin labeling of F-actin.

Furthermore, by flow cytometry, dose-dependent uptake of

AMF/PGI-FITC in tumor cells was observed (Figure 5C),

demonstrating that K1735-M1 tumor cells in situ are able to

efficiently internalize fluorescently labelled AMF/PGI.

In vivo efficacy of AMF/PGI-paclitaxel
To test our approach in mice, we used two melanoma tumor

models, K1735-M1 and B16-F1. In vitro treatment of K1735-M1

and B16-F1 cells with increasing log concentrations (0.001–1 mM) of

free paclitaxel, or with equimolar concentrations of AMF/PGI-

paclitaxel conjugate, resulted in a dose-dependent inhibition of cell

proliferation (Figure 6A,B). However, far lower concentrations of

AMF/PGI-paclitaxel conjugate, compared to free paclitaxel, were

needed to evoke an antiproliferative effect in both cell lines. The

concentration at which proliferation of K1735-M1 cells was inhibited

by 50% (IC50) was 0.1 mM with AMF/PGI-paclitaxel compared to

1 mM for free paclitaxel (p,0.001; Figure 6A, left panel). B16-F1

melanoma cells were not sensitive to paclitaxel alone however their

proliferation was efficiently inhibited by equimolar concentrations of

AMF/PGI-paclitaxel (Fig. 6B, left panel). As observed for HT29 and

MDA-435 cells (Figure 3), the ability of AMF/PGI-paclitaxel to

inhibit cell proliferation of both K1735-M1 and B16-F1 cells was

inhibited by the concomitant addition of excess AMF/PGI. AMF/

PGI alone did not affect proliferation of either K1735-M1 or B16-F1

cells but did inhibit paclitaxel-mediated inhibition of cell proliferation

of K1735-M1 and B16-F1 cells (Figure 6A, B; right panels).

We next examined the effect of the AMF/PGI-paclitaxel

conjugate on tumor growth and survival in the K1735-M1 and

B16-F1 syngeneic mouse melanoma tumor models. Well-defined

tumors 50–60 mm3 in volume were formed approximately 11–13

days after s.c. injection of C3H mice with K1735-M1 and of C57/

BL6 mice with B16-F1 melanoma cells, at which time the

treatment was initiated. Intratumoral injections of AMF/PGI-

paclitaxel conjugate (300 ng paclitaxel) on five consecutive days

resulted in a consistent measurable difference in tumor size

between the control and AMF/PGI-paclitaxel treated animals in

both K1735-M1 and B16-F1 models (Figure 6C, D).

In the K1735-M1 model, there was significant tumor regression

on day 25, with most of the animals treated with AMF/PGI-

paclitaxel exhibiting tumors that were much smaller compared to

untreated mice (Figure 6C, left panel). Twenty-five days after

subcutaneous implantation of K1735-M1 cells, the mean tumor

volume was 6376112 mm3 for the mice that received i.t.

injections of diluent compared to 58627 mm3 for the mice that

received i.t. injections of AMF/PGI-paclitaxel conjugate. Statis-

tical analysis with the Student-T two-sample test confirmed that

mean tumor volume was significantly smaller in the group treated

with AMF/PGI-paclitaxel, compared with the group treated with

diluent alone (p,0.001). Intratumoral injections of free paclitaxel

also resulted in tumor regression. The mean tumor volume for the

8 animals that received intratumoral free paclitaxel injections was

229665 mm3, however free paclitaxel was significantly less

effective compared to AMF/PGI-paclitaxel treatment (p,0.05).

The median survival time (MST) of untreated mice was 21 (17–

25) days, and because of tumor burden all mice from this group

were terminated by day 25 (Figure 6C, right panel). Mice treated

with 5 consecutive i.t. injections of free paclitaxel (300 ng) showed

improved, although not statistically significant, survival compared

to untreated mice. MST for this treatment group was 25 (19–39)

days and 1 of 8 mice was still alive after 39 days. The treatment of

tumor bearing mice with intratumoral injections of AMF/PGI-

paclitaxel conjugate significantly prolonged their survival com-

pared with untreated controls (p,0.05). The median survival time

of this group was 27 days (17–39 days), and 3 of 8 mice were still

alive after 39 days, not having tumor relapse and exhibiting tumor

regression of 90%. This efficacy was not associated with

measurable physical and behavioural changes (weight loss,

sickness, aggressiveness, or decreased physical activity), suggesting

that the short term treatment with AMF/PGI-paclitaxel was

efficacious and without detrimental side effects.

Results obtained from the B16-F1 melanoma model show that

neither paclitaxel alone nor paclitaxel plus AMF/PGI affected

B16-F1 tumor growth. While paclitaxel alone did not impact on

tumor size, AMF/PGI-paclitaxel significantly (p,0.05) suppressed

tumor growth of B16-F1 tumors (Figure 6D, left panel). Median

survival time of AMF/PGI-paclitaxel treated mice was 29 (19–32)

days compared to 20 (19–22) days for untreated and 21 (19–24)

days for taxol treated mice, and significantly prolonged survival

(p,0.05). (Figure 6D, right panel). AMF/PGI-paclitaxel therefore

suppresses tumor growth and extends the survival time of mice

bearing primary B16-F1 tumors more effectively than an

equimolar dose of free paclitaxel.

Mice receiving combinatorial treatment with AMF/PGI-

paclitaxel and free AMF/PGI had no effect on tumor growth

regression or median survival time compared to control treatments

in both the K1735-M1 and B16-F1 primary melanoma tumor

models (Figure 6C,D). Free AMF/PGI also effectively abrogated

the anti-tumor effect of free paclitaxel in the K1735-M1 model

suggesting that AMF/PGI may exhibit a pro-survival, anti-

chemotherapeutic activity in vivo.

Selective targeting of tumor and not normal immune
cells upon systemic delivery of AMF/PGI

AMF/PGI exhibits lymphokine activity and is a maturation

factor for cells of immune lineage [14,17]. We therefore assessed

gp78/AMFR expression in lymphoid tissues from adult immuno-

competent mice. Immunohistochemical labeling of spleen and

thymus tissue sections was performed using the anti-gp78/AMFR

mAb. Tissue sections of early neonatal mouse brain and HCT116

colon tumor were included as positive controls. Strong positive

gp78/AMFR staining was detected in 20 day old HCT116 colon

tumor sections as well as in 5-day old mouse brain, as previously

reported in developing rat brain [48]. Immunoreactivity in the

brain and tumor sections was localized to both the cytoplasm and

the cell surface. However anti-gp78/AMFR labeling was not

detected in adult spleen and thymus sections (Figure 7A).

(n = 4) compared to the control (untreated cells). Induction of apoptosis by 10 mM staurosporine, 1 mM paclitaxel (Tx) or 1 mM AMF/PGI-paclitaxel
conjugate was determined as described in the Material and Methods by flow cytometry using the Annexin V–FITC assay (right panel). The growth
inhibitory ability (B, C) and selectivity (D) of AMF/PGI-Paclitaxel conjugate were assessed on HCT116 and MCF7 cells that poorly internalize AMF/PGI
(B) and HT29 and MDA-435 cells that efficiently internalize AMF/PGI (C, D). Cells were treated with increasing log concentrations of paclitaxel
equivalent concentrations (0–1 mM) of free paclitaxel, AMF/PGI-paclitaxel conjugate, or controls, as indicated, for 48 hours (B, C). Alternatively, HT29
and MDA-435 cells were treated with 1 mM free paclitaxel or AMF/PGI-paclitaxel in the presence or absence of a 206 fold excess of unconjugated
AMF/PGI for 48 hours (D). Cell viability was then measured using crystal violet staining. Each measurement was done in quadruplicate and the results
are presented relative to untreated control cells. Results were normalized and expressed as mean6SE (n = 4) compared to the control (untreated
cells), **, P#0.001 versus control.
doi:10.1371/journal.pone.0003597.g003
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We then used flow cytometry to evaluate gp78/AMFR

surface expression and AMF/PGI uptake in single cell

suspensions prepared from spleens and thymuses, as well as in

an enriched population of spleen macrophages. Relative to

MDA-435 cells, included as a positive control [41], both gp78/

AMFR cell surface staining and AMF/PGI-FITC uptake were

dramatically lower (40-fold) in the primary immune cells

(Figure 7B). Only 2% of splenic cells and thymocytes were

gp78/AMFR positive. Surface gp78/AMFR expression was

slightly higher in the enriched population of splenic macro-

phages but AMF/PGI-FITC uptake was not increased

(Figure 7B). Both gp78/AMFR surface expression and AMF/

Figure 4. Internalization of AMF/PGI to the smooth endoplasmic reticulum of murine melanoma cells is raft-dependent. A. K1735-M1
(grey) and B16-F1 (black) melanoma cells were left untreated (Control) or pretreated for 30 min with 5 mM mbCD, 100 mg/ml genistein, or an excess of
unconjugated AMF/PGI (1 mg/ml), then incubated with AMF/PGI-FITC or Tf-FITC, followed by incubation with pronase. Flow cytometry analysis of AMF/
PGI-FITC (left panel, mean6SEM; **, P#0.001; n = 4) and Tf-FITC (middle) containing cells was performed as described in Material and Methods. Surface
gp78/AMFR expression on untreated cells (Control) or cells treated for 30 min with 5 mM mbCD or 100 mg/ml genistein, was determined by labeling with
3F3A anti-gp78/AMFR mAb followed by Alexa647-conjugated secondary antibody at 4uC and analyzed by flow cytometry (right panel). B. K1735-M1 (left)
and B16-F1 (right) melanoma cells were incubated with 25 mg/ml AMF/PGI-FITC for 30 min prior to fixation. AMF/PGI-FITC was revealed with rabbit anti-
FITC and the smooth endoplasmic reticulum labeled with 3F3A anti-gp78/AMFR antibody followed by appropriate secondary antibodies and confocal
imaging. AMF/PGI-FITC labeling is presented in green and the anti-gp78/AMFR labeled smooth endoplasmic reticulum in red. Where indicated, cells were
pretreated for 30 min with 5 mM mbCD (+mbCD; middle row) or 100 mg/ml genistein (+gen; bottom row).
doi:10.1371/journal.pone.0003597.g004
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PGI uptake are therefore significantly lower in normal immune

cells relative to tumor cells.

To assess whether systemic delivery of AMF/PGI could selectively

target tumor cells, mice bearing s.c. B16-F1 melanoma tumors were

injected i.v. with AMF/PGI-FITC, free FITC or PBS alone. Two

hours following i.v. injection, we performed flow cytometry on single

cell suspensions prepared from spleen, thymus and tumor tissues

(Figure 7C). We detected no significant fluorescence in cells from all

three sources following injection of PBS or free FITC. However, we

were able to detect selective uptake of AMF/PGI-FITC in

approximately 25% of the tumor cells and essentially no uptake in

spleen or thymus cells. This suggests that systemic i.v. administration

is potentially a valid and selective delivery route for AMF/PGI-

conjugated molecules to tumor cells.

Discussion

Tumor heterogeneity is a hallmark of neoplastic disease.

Tumor-specific therapies, targeting specific molecular character-

istics of human malignancies through a prescreening process, have

increasingly become adopted into clinical practice. AMF/PGI

represents an ideal carrier for drug delivery in that it is a native

protein circulating at high levels in serum [32–37], is the ligand for

a receptor, gp78/AMFR, significantly associated with malignancy

in a broad range of human cancer types [7] and is internalized via

a distinct, tumor-associated raft-dependent endocytic pathway

[40,41]. The demonstration here of upregulated gp78/AMFR

expression and increased AMF/PGI uptake by tumor cells relative

to normal immune cells further supports the tumor specificity of

the raft-dependent endocytosis of AMF/PGI. The lack of gp78/

AMFR expression in adult thymus and spleen is consistent with

previous reports of the reduced expression of gp78/AMFR in

adult brain relative to developing brain [48]. This suggests that

gp78/AMFR expression may be enhanced during development

and that the role of AMF/PGI in lymphocyte maturation [13]

may be absent or limited in normal adult immune tissue.

Therefore, while AMF/PGI is a ubiquitous cytokine with multiple

cellular targets, increased gp78/AMFR expression in cancer and

Figure 5. Gp78/AMFR expression and AMF/PGI-FITC uptake in primary tumors. A. K1735-M1 tumor sections were immunohistochemically
labeled with anti-gp78/AMFR antibody followed by biotinylated secondary antibody, HRP-conjugated avidin-biotin complex and staining with DAB.
Control sections were labeled in parallel in the absence of primary antibody. B. K1735-M1 tumor sections from tumors injected with PBS (Control) or
250 mg/ml AMF/PGI-FITC were labeled with Hoechst nuclear stain (blue) and Alexa568-phalloidin (red) and images acquired by confocal microscopy
using equivalent acquisition settings. FITC labeling (green) in AMF/PGI-FITC injected tumors overlapped extensively with phalloidin-labeled actin
(red). C. PBS and AMF/PGI-FITC injected K1735-M1 tumors were mechanically dissociated, treated with pronase and analyzed for AMF/PGI-FITC
positivity by flow cytometry. The data represent the average of seven different tumors (mean6SEM; **, P#0.001, relative to PBS injected tumors).
doi:10.1371/journal.pone.0003597.g005
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low expression in normal adult tissue, suggests that circulating

AMF/PGI may preferentially interact with gp78/AMFR express-

ing tumor cells relative to normal cells.

Selectivity of the AMF/PGI raft-dependent pathway for tumor

cells is certainly related to expression of its receptor by target cells.

However, the sorting mechanism that segregates AMF/PGI-

internalizing rafts from other endocytic raft domains and delivers

internalized AMF/PGI to the smooth endoplasmic reticulum

remains unclear. The selective uptake of AMF/PGI, amongst

other studied raft endocytic ligands, via this pathway to the smooth

endoplasmic reticulum is consistent with a role for AMF/PGI

binding in raft domain segregation and endocytosis. The role of

Cav1 as a negative regulator of raft-dependent uptake of AMF/

PGI in tumor cells [39,41] is supported here by the demonstration

that metastatic Cav1-expressing HCT116 colon tumor cells show

reduced uptake of AMF/PGI relative to HT29 cells. Compilation

of data obtained on the same breast cancer tissue microarray

probed with antibodies to gp78/AMFR and Cav1 [41,49] shows

that gp78/AMFR and Cav1 tumor cohorts do not correlate with

one another (p = 0.421). Together with the lack of gp78/AMFR

correlation with HER2 [41], this suggests that gp78/AMFR

labeling defines a substantial cohort of tumors that cannot be

treated with HER2-targeted therapy and that should, in the

absence of Cav1, internalize AMF/PGI.

Cav1 may function to sequester critical effectors that regulate

the raft-dependent endocytosis of AMF/PGI [50]. The positive

correlation of gp78/AMFR and pAkt expression in an invasive

breast cancer tumor cohort, the PI3K sensitivity of AMF/PGI

uptake and the ability of AMF/PGI to stimulate PI3K-dependent

cell survival suggests that PI3K is such an effector [30,41].

Figure 7. Gp78/AMFR expression and AMF/PGI uptake in normal mouse immune tissue and cells. A. Immunohistochemical labeling of
tissue sections showed no gp78/AMFR reactivity in normal mouse spleen and thymus. However, strong positive gp78/AMFR staining was detected in
5 day old mouse brain tissue and in 20 day old HCT116 s.c. tumor sections. A representative experiment of eight is shown (original magnification,650
and 6200). B. Cell surface gp78/AMFR expression (top panel) and AMF/PGI-FITC uptake (bottom panel) of single cell suspensions prepared from
mouse spleen and thymus, an enriched population of spleen macrophages as well as MDA-435 cells were assessed by flow cytometry and the
percentage of positive cells is presented. The data represent the average of three separate experiments (mean6SEM; **, P#0.001).). C. B16-F1
melanoma tumors were established s.c. in C57/BL6 mice and after 12 days, mice were injected i.v. with PBS, 250 mg/ml AMF/PGI-FITC or an equivalent
concentration of free FITC. After two hours, spleen, thymus and B16-F1 s.c. tumors were mechanically dissociated, treated with pronase and analyzed
for FITC positivity by flow cytometry. The data represent the average of six different tumors (mean6SEM; **, P#0.001, relative to PBS injected mice).
doi:10.1371/journal.pone.0003597.g007

Figure 6. Anti-tumor efficacy of AMF/PGI-paclitaxel in K1735-M1 and B16-F1 melanoma tumor models. The effect of AMF/PGI-paclitaxel
on inhibition of K1735-M1 (A) and B16-F1 (B) melanoma cell proliferation in vitro was determined by crystal violet staining. Cells were seeded at
initial density of 56103 cells/well in 96-well plates, allowed to attach overnight and treated with increasing log concentrations (0–1 mM) of either free
paclitaxel or AMF/PGI-paclitaxel conjugate (left panel). Alternatively cells were treated with 1 mM free paclitaxel or AMF/PGI-paclitaxel in the presence
or absence of a 206 fold excess of unconjugated AMF/PGI for 48 hours (right panel). Cell viability was then measured using crystal violet staining.
Each measurement was performed in quadruplicate and the results are presented relative to untreated control cells. In vivo tumor regression (left)
and survival (right) in mice bearing K1735-M1 (C) or B16-F1 (D) melanoma s.c. tumors were measured after i.t. treatment with AMF/PGI-paclitaxel.
K1735-M1 (C) or B16-F1 (D) melanoma cells were injected s.c. into the flank of C3H or C57/BL6 mice, respectively, and tumor volumes measured
every other day. As indicated, mice were injected i.t. for five consecutive days with paclitaxel (Tx, %), AMF/PGI and paclitaxel (AMF/PGI+Tx, #), AMF/
PGI-paclitaxel conjugate (AMF/PGI-Tx, &) and, for B16-F1 tumors, AMF/PGI and AMF/PGI-paclitaxel conjugate (AMF/PGI+AMF/PGI-Tx, e). Control
mice (n) received injections of diluent (sterile PBS). Results show means6S.E. for AMF/PGI-paclitaxel group versus free paclitaxel and control groups:
K1735-M1 (tumor regression: P#0.001; survival: P#0.05); B16-F1 (tumor regression: P#0.05; P#0.05). In K1735-M1 tumors, complete regression of
tumor growth was observed in three out of sixteen tumors after treatment with five consecutive daily i.t. injections of AMF/PGI-paclitaxel.
doi:10.1371/journal.pone.0003597.g006
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However, the relationship between raft-dependent AMF/PGI

uptake and its role as a prosurvival factor remains to be

determined. The ability of free AMF/PGI to protect cells from

cell death induced not only by AMF/PGI-paclitaxel but also by

free paclitaxel suggests that AMF/PGI may be generally exerting a

prosurvival effect on tumor cells. Paclitaxel is a common clinically

utilized chemotherapeutic drug and elevated levels of circulating

AMF/PGI in cancer patients may therefore function to suppress

its pro-apoptotic effects, and potentially have similar effects on

other chemotherapeutic drugs. AMF/PGI-paclitaxel may there-

fore be targeting a PI3K/Akt-dependent pathway that is critical

for tumor cell survival and promotes resistance to commonly

employed chemotherapeutic drugs. Indeed, the ability of AMF/

PGI-paclitaxel to suppress the proliferation of paclitaxel-resistant

B16-F1 melanoma cells in vitro and to significantly delay B16-F1

tumor growth in vivo, suggests that it may bypass or override the

drug resistance of these cells.

Paclitaxel is an established chemotherapeutic drug and has been

shown to be efficacious when conjugated to various anti-cancer

agents [51]. The data presented here demonstrate that AMF/PGI

can mediate drug delivery to gp78/AMFR expressing tumor cells

in vitro and in vivo. Use of AMF/PGI as a carrier of a

chemotherapeutic drug represents a novel therapeutic approach

unique in that, firstly, it utilizes a native circulating protein that

should not elicit an immune response and, secondly, it targets a

receptor that is over-expressed and actively internalized via a

distinct endocytic pathway by specific cancers. Use of AMF/PGI

thereby addresses a major challenge for targeted therapeutics,

designing a carrier system for effective intracellular drug delivery.

The ability of AMF/PGI-paclitaxel to induce tumor regression

and promote survival upon intratumoral injection of K1735-M1

and B16-F1 tumors identifies the raft-dependent endocytosis of

AMF/PGI as a novel drug delivery route for tumor cells. AMF/

PGI-paclitaxel is therefore a potential therapeutic agent for

targeted treatment of select cohorts of tumors resistant to currently

utilized chemotherapeutic drugs.

Materials and Methods

Antibodies and reagents
Monoclonal rat IgM antibody against gp78/AMFR (3F3A) was

used in the form of ascites fluid [52]. Rabbit anti-Cav1/2 antibody

was purchased from Transduction Laboratories (Greenland, NH)

and rabbit anti-pAkt and Akt from Cell Signaling (Danvers, MA).

Alexa-488 and Alexa-647 conjugated anti-rat secondary antibod-

ies and Alexa-568-conjugated phalloidin were purchased from

Molecular Probes (Eugene, OR). Rhodamine-red-X anti-rat IgM

was from Jackson Immunoresearch Laboratories (West Grove, PA)

and ACK buffer from Cambrex Bio Science (Walkersville, MD).

Methyl-b-cyclodextrin (mbCD), genistein, FITC-conjugated trans-

ferrin (Tf-FITC), rabbit PGI (Type XI), propidium iodide (PI),

paclitaxel, staurosporin, goat serum and pronase (from Strepto-

myces griseus, Type XIV) were purchased from Sigma (St. Louis,

MO). Annexin V-FITC apoptosis detection kit was purchased

from BD Pharmingen. AMF/PGI was conjugated to fluorescein

with the Fluorescein-EX protein labeling kit (Molecular Probes).

Synthesis of 29-Glutaryl-Paclitaxel and Conjugation to
AMF/PGI

29-Glutaryl-paclitaxel was synthesized by mixing 39 mM

paclitaxel with 3 mM glutaric anhydride each dissolved in pyridine

for 3 h at room temperature [42]. This reaction forms an ester

bond at the C29 position of paclitaxel. The solvent was then

removed in vacuo, and the residue was dissolved in CHCl3 and

washed with double-distilled H2O. Purification was achieved by

high-performance liquid chromatography on a semipreparative

column (Phenomenex); the mobile phase consisted of acetonitrile:-

water gradient from 35:65 to 75:25 over 50 min.

29-Glutaryl-paclitaxel (1.334 nmol) was then derivatized with

N,N9-carbonyldiimidazole (13.34 nmol; Sigma) for 25 min at

45uC. The carbodiimide reaction activates a carboxylic group

on 29-glutaryl-paclitaxel by removing a hydroxyl. Then, AMF/

PGI was added slowly over a 20-min period at room temperature

at a 2:1 molar ratio of paclitaxel:AMF/PGI, and the reaction

proceeded for 16 h at 4uC. The reaction forms an AMF/PGI-

paclitaxel conjugate via formation of a peptide bond with amino

groups in the protein. The solution was then dialyzed for 2 h

against water and overnight against PBS.

To quantify conjugated paclitaxel, a known mass of AMF/PGI-

paclitaxel conjugate was incubated for 48 h at room temperature

in 0.1 M acetate buffer (pH 4) to hydrolyze ester bonds. Paclitaxel

was then extracted with chloroform and evaporated to dryness.

Quantification of this purified paclitaxel was done by analytical

high-performance liquid chromatography (Phenomenex) on a

mobile phase of acetonitrile:water from 35:65 to 75:25 over

40 min (Figure S1). Known concentrations of paclitaxel were used

as standard control. The measured molar ratio of protein:coupled

paclitaxel to AMF/PGI dimer was 4.3:1 [42].

Cell lines and primary cells
Caco-2, HCT116, HT29, MCF7 and MDA-435 were obtained

from American Type Culture Collection (ATCC, Manassas, VA)

and maintained in complete RPMI 1640 supplemented with 10%

fetal bovine serum. The highly metastatic murine melanoma

K1735 clone M1 (K1735-M1) was kindly provided by Dr I. Fidler,

M.D. Anderson Cancer Center, Houston, TX). K1735-M1 and

B16-F1 [44] cells were maintained in DMEM supplemented with

10% fetal bovine serum. To minimize phenotypic drift, all cell

lines were passaged two to three times after recovery from frozen

stocks before initiating the experiments and maintained in culture

for a maximum of 8–10 passages.

Primary cells were obtained from mice euthanized by CO2

asphyxiation and perfused with 0.6 mM EDTA in PBS prior to

organ collection. Spleen, thymus and brain tissue was collected and

placed in ice-cold PBS/2%FBS. Single cell suspensions were treated

with ACK buffer to lyse the red blood cells. An enriched population

of spleen macrophages was obtained by incubating spleen

suspensions at 37uC and removing non-adherent cells after 3 h.

Experimental Animals
Six to 10-week-old C3H/HeN (MTV-) and C57/BL6 specific

pathogen-free female mice were purchased from Charles River

Laboratories (Wilmington, MA) and used for in vivo studies. Mice

were housed four per cage and maintained under pathogen-free

conditions according to international and institutional guidelines.

Ambient light was regulated on a 12-h light-dark cycle. Animals

were cared for and used in accordance with protocols (#A04-

0360) approved by the Animal Care Committee of the University

of British Columbia.

Immunofluorescence labeling, flow cytometry and
western blotting

Western blotting and flow cytometry of cell surface gp78/

AMFR expression and AMF/PGI-FITC internalization, were

performed as previously described [41]. For uptake studies, cells

were incubated with 25 mg/ml AMF/PGI-FITC, or 15 mg/ml Tf-

FITC for 30 min at 37uC. Cell surface-bound conjugate was
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removed with pronase (400 mg/ml) for 10 min. Where indicated,

cells were pretreated for 30 min at 37uC with 5 mM mßCD,

100 mg/ml genistein, or 1 mg/ml AMF/PGI and treatments were

maintained during incubation with AMF/PGI-FITC. For flow

cytometry, at least 50,000 cells were acquired and analyzed using

FACSCalibur and Cellquest software (BD Biosciences). Confocal

microscopy was performed with the 1006 PlanApochromat

objective of an Olympus FV1000 confocal microscope.

In vitro growth inhibition
The growth-inhibitory effects of AMF/PGI-paclitaxel conjugate

and free paclitaxel was quantified by measuring cell viability using

a crystal violet colorimetric assay [53]. Cells were seeded at

56103 cells/well in 96-well microtiter plates and allowed to attach

overnight. Paclitaxel was dissolved in DMSO as a stock

concentration of 5 mg/ml. Serial dilutions of either free paclitaxel,

or an equimolar paclitaxel concentration of AMF/PGI-paclitaxel

conjugate were made with growth medium and added to the wells

to achieve concentrations of 0–1000 nM. Control cells received

the same amount of the diluent. Competition of AMF/PGI-

paclitaxel growth-inhibition potency was done by adding a 20-fold

excess of AMF/PGI to the treated cells. Cell growth inhibition was

quantified after 48 hours. Quadruplicate cultures were analyzed in

three separate experiments and the results are presented as a

percentage of treated v.s. untreated control cells, considering

untreated cells as 100% control values.

In vitro apoptosis assay
To detect apoptosis, cells were treated with the indicated

concentration of AMF/PGI-paclitaxel, free paclitaxel, or staur-

osporine for 48 hours and 24 h, respectively. After that, cells were

trypsinized, double-stained with Annexin V-FITC and 7-ami-

noactinomycin (7-ADD) according to the manufacturer’s instruc-

tions (Annexin V-FITC apoptosis detection kit, BD Parmingen)

and analyzed by dual-color flow cytometry. Cells staining positive

for annexin V-FITC but not 7-ADD were considered apoptotic.

The loss of cell viability in the analyzed cells was confirmed by

propidium iodine (PI) staining.

In vivo uptake of AMF/PGI-FITC conjugate
For in vivo uptake studies, syngeneic C3H/HeN mice were

injected s.c. with K1735-M1 tumor cells (16106 in 50 mL sterile

PBS) into the lower flanks near the rib cage. Tumor growth was

recorded every other day and when established tumors reached a

diameter of 8–10 mm, mice were anesthetized by i.p. injection of

ketamine and received intratumoral (i.t.) 50 ml injections of either

PBS or FITC-conjugated AMF/PGI in PBS. After 6 hours, the

animals were sacrificed and tumors excised, weighed, embedded in

OCT, quickly frozen and stored at 280uC. 10 mm thick sections

were stained with Hoechst and Alexa568-phalloidin fluorescence

and analyzed with an Olympus FV1000 confocal microscopy. To

obtain single cell suspensions, the tumors were cut into small pieces

in ice cold PBS, resuspended vigorously, pelleted and incubated

for 10 min at 37uC in PBS containing pronase (0.4 mg/ml).

Tumor cell suspensions were analyzed by flow cytometry for

presence of AMF/PGI-FITC positive cells.

In vivo efficacy studies
C3H/HeN mice were injected s.c. with K1735-M1 mouse

melanoma cells and tumor growth was recorded every other day.

Tumor nodules were allowed to grow for approximately 11–13

days and the length and width of the tumors were measured by

digital calipers, calculating tumor volume by the following

formula: length6width26P/6. At this time mice were randomized

such that each group had a mean starting tumor volume of 40–

50 mm3 prior to treatment. Mice were divided into four

experimental groups with 8 mice in each of them: mice in control

group received 50 ml diluent (PBS-DMSO); mice in second group

received 50 ml free paclitaxel (300 ng/injection); mice in the third

group received free paclitaxel (300 ng) and AMF/PGI (18 mg);

and mice in group four received AMF/PGI-paclitaxel conjugate

(300 ng of paclitaxel-equivalent and 18 mg of AMF/PGI).

C57/BL6 mice were injected s.c. with B16-F1 (0.56106 in

50 mL sterile PBS) mouse melanoma cells. Well-defined s.c.

tumors were formed after 11–12 days, at which time mice were

randomized such that each group had a mean starting tumor

volume of approximately 60 mm3. Mice were divided into five

experimental groups with 10 mice in each of them: mice in the

control group received 50 ml diluent (PBS-DMSO); mice in the

second group received 50 ml free paclitaxel (300 ng/injection);

mice in the third group received free paclitaxel (300 ng) and

AMF/PGI (18 mg); mice in the fourth group received AMF/PGI-

paclitaxel conjugate (300 ng of paclitaxel-equivalent and 18 mg of

AMF/PGI); and mice in the fifth group received free AMF/PGI

(18 mg) concomitantly with AMF/PGI-paclitaxel conjugate.

Animals received a total of five consecutive daily i.t. injections

with a 21-gauge needle placed in the center of the tumors. The i.t.

injections were infused over 10–15 s, and the needle was allowed

to remain in place for an additional 15–20 s before removal. After

the treatments, all mice were tagged, and tumors were measured

three times per week. Animals were weighed at the time of tumor

measurement. Mice were monitored for a maximum of 40 days,

until the tumor was completely regressed, or until the tumor

volume exceeded 10612 mm in diameter, for which the mice

were euthanized for excessive tumor load. Then, the excised

tumors were resected, weighed, embedded in OCT, quickly frozen

and stored at 280uC.

gp78/AMFR immunolabeling of mouse tissues
Mouse organs, K1735-M1 and B16-F1 tumors were quickly

frozen in ornithine carbamyl transferase (OCT; Tissue-Tek, Miles,

Elkhart, IN) and stored at 280uC. Human HCT116 colon

carcinoma xenografts and 5 day old mouse brain sections were

kindly provided by Drs. Cal Roskelley and Tim O’Connor,

respectively (Dept. of Cellular and Physiological Sciences,

University of British Columbia). Serial frozen sections were cut

at 7 mm, fixed in ice-cold methanol for 10 minutes followed by a

short rinse in phosphate-buffered saline. Endogenous peroxidase

activity was blocked with 3% H2O2 in methanol and non-specific

adsorption minimized by pre-incubating the sections in 10%

normal rabbit serum/0.3% Triton X-100 in PBS for 20 min. The

sections were then incubated for 60 min with anti-gp78/AMFR

(1:25), followed by 30 min incubation with rabbit anti-rat IgM-

biotinylated secondary antibody (1:1000). Bound antibody was

detected using the avidin biotin complex (ABC Elite kit; Vector

Laboratories, Burlingame, CA) with diaminobenzidine (DAB) as a

substrate. All sections were stained simultaneously at room

temperature. Control sections were treated in the same way with

omission of primary antibody. Tissues were counterstained with

hematoxylin/eosin solution.

In vivo targeting of fluorescently labeled AMF/PGI
C57/BL6 mice were injected s.c. with B16-F1 (0.56106 in 50 mL

sterile PBS) mouse melanoma cells. At day 12 after implantation,

tumors reached ,60 mm3 in size, at which point mice were

administered AMF/PGI-FITC (250 ug/ml), free FITC or PBS

alone i.v. through the tail vein. Two hours later the mice were
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terminated, tumors, spleens and thymuses collected, processed as

single cell suspensions, treated with pronase, and analyzed by flow

cytometry for intracellular uptake of the FITC label.

Statistical analysis
Unless otherwise stated, all values are presented as mean6SEM

(standard error of the mean) and are representative of at least three

independent experiments each performed in duplicate. Statistical

significance was calculated using the Student t-test for paired

comparison; p,0.05 was considered statistically significant.

Supporting Information

Figure S1 HPLC-based quantification of the stoichiometry of

conjugated AMF/PGI-paclitaxel. A standard curve of paclitaxel

was studied by injection of 50 ml in HPLC. A: [c] = 0.003 mg/ml,

B: [c] = 0.006 mg/ml, C: [c] = 0.125 mg/ml, D: [c] = 0.250 mg/

ml, E: [c] = 0.500 mg/ml. F displays the plotted standard curve. G

shows the concentration of paclitaxel present in a sample of

conjugated AMF/PGI-paclitaxel that was hydrolyzed to release

free paclitaxel (see Materials and Methods). For the hydrolysis

165 mg of the conjugate was used, as determined by the Bradford

method. The final molar ratio of paclitaxel:AMF/PGI was 4.3:1.

In controls (not shown) there were no free paclitaxel peaks when

unconjugated AMF/PGI was subjected to hydrolysis and there

were no free paclitaxel peaks when conjugated AMF/PGI-

paclitaxel was not subjected to hydrolysis. The AMF/PGI protein

is too large to be resolved in these chromatograms.

Found at: doi:10.1371/journal.pone.0003597.s001 (0.29 MB TIF)
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