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Abstract
Natural killer (NK) cells were named after their ability to mediate spontaneous cytotoxicity during
innate immune responses. However, it has become clear in recent years that they play an equally
important role in restricting infections and assisting the development of adaptive immune responses
via their ability to produce cytokines. In humans, a dedicated NK cell subset primarily fulfills these
later functions. In this review we discuss the non-cytotoxic effector functions of NK cells and how
they could be harnessed for immunotherapy and vaccine development.

Introduction
Natural Killer (NK) cells have been named for their ability to mediate spontaneous cytotoxicity
against transformed and infected cells. However, in recent years it has become evident that
their functions reach far beyond this traditional role. Notably, NK cells can assist in T cell
polarization, dendritic cell maturation and innate immune control of viral infection by their
ability to secrete immunomodulatory and antiviral cytokines. In this review, we will first briefly
discuss the nature of the cytokine secreting NK cell subsets, their trafficking, and their tissue
distribution. Next we will address the question of how particular NK cell functions are activated
and which cell types in which tissue environments are able to provide NK cell-activating
signals. Then, we will highlight recent data from in vitro and in vivo studies demonstrating the
essential role of non-cytotoxic functions of NK cell responses in infections. Finally, we will
explore future directions of research as well as how these non-cytotoxic functions could be
harnessed for immunotherapy.

NK cell subsets in mouse and man
Natural killer (NK) cells were originally described as a homogenous population of innate
lymphocytes characterized by their ability to spontaneously kill target cells (1-3). However,
already in the 1980s, it was proposed that human NK cells in peripheral blood can be divided
into at least two subsets based on the expression of CD56 and CD16 (Table 1) (4).The major
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subset of CD56dimCD16+ NK cells constitutes around 90 % of total blood NK cells, kills target
cells upon proper recognition and secretes only low levels of IFN-γ (5). In contrast,
CD56brightCD16− NK cells (<10% of total blood NK cells) produce large amounts of cytokines
including IFN-γ, TNF and GM-CSF upon stimulation by pro-inflammatory cytokines, but
acquire cytotoxicity only after prolonged activation. Further differences between the subsets
have also been found with respect to expression of inhibitory and activating receptors. While
CD56brightCD16− NK cells express high levels of the inhibitory CD94/NKG2A complex
recognizing HLA-E, they do not express MHC class I allele-specific killer-inhibitory receptors
(KIRs) that are in contrast expressed by CD56dimCD16+ NK cells. Regarding the expression
of activating receptors, both NK cell subsets in human peripheral blood express the activating
receptors NKG2D and NKp30 as well as NKp46, whose ligands are induced in pathogen-
infected or stressed cells, yet a major discrepancy between the two subsets is the expression
of antibody dependent cellular cytotoxicity (ADCC) mediating CD16 (FcγRIII) in the
CD56dim subset (6,7). Finally, NK cell subsets also differ in the expression of chemokine
receptors. Cytotoxic CD56dimCD16+ NK cells express CXCR1 and CX3CR1 and respond to
IL-8 and fractalkine, the respective ligands for these receptors (8). Interestingly, only
CD56bright NK cells express secondary lymphoid organ (SLO) homing markers such as CCR7,
CD62L, and CXCR3, resulting in an enrichment of this subset in SLO and sites of
inflammation, respectively (8-10). The question of whether or not the development of the
human subsets is interconnected has been under investigation for some time. Recently, a
number of studies suggested that CD56brightCD16− NK cells are able to differentiate into
CD56dimCD16+ NK cells upon prolonged activation (11,12).

Murine NK cells share a lot of the properties of human NK cells, but since they do not express
the mouse homologue of CD56, it has proven difficult to identify functionally different NK
cell subsets in mice. More recently however, three studies showed the presence of functionally
different NK cell subsets in mice (Table 1) (13-15). The first study suggested differentiating
mature NK cells according to their expression of CD27 into Mac1highCD27+ and
Mac1highCD27− subsets (13). Although these two subsets differ in the expression of inhibitory
and activating receptors as well as chemokine receptors, there are striking differences between
human and mouse subsets. Most importantly, Mac1highCD27+ NK cells are superior to
Mac1highCD27− ones in both the production of cytokines as well as cytotoxicity, whereas in
human NK cell subsets CD56brightCD16− NK cells are superior in IFN-γ production, but are
not cytotoxic. In a second study, a new developmental pathway for a distinct NK cell subset
was described in the thymus (14). These cells are characterized by expression of the IL-7
receptor, CD127, and the transcription factor GATA-3. Interestingly, this subset resembles
human CD56brightCD16− NK cells in expression of CD127, lower expression of inhibitory
molecules and cytotoxic molecules, yet higher cytokine production after IL-12 stimulation.
Furthermore, this subset seems to be enriched in lymph nodes compared to other NK cells
although to a lesser degree compared to humans (15−30 % vs. 75 %, respectively) (10,14). It
remains unclear so far which functions this NK cell subset has is in vivo, and how closely its
development reflects CD56brightCD16− NK cell generation in humans, given the previously
discussed experimental evidence for a linear instead of a separate development of the two
functionally diverse NK cell subsets in humans. In the third study, NK1.1+B220+CD11c+ NK
cells were found to be enriched in secondary lymphoid tissues and to secrete higher levels of
IFN-γ compared to other mouse NK cells (15). However, NK cells of this subset also killed
classical NK cell targets efficiently (16), and CD11c, B220 and MHC class II were upregulated
on NK1.1 cells upon activation (17). Thus, NK1.1+B220+CD11c+ cells might represent in vivo
activated NK cells rather than the mouse equivalent of human CD56brightCD16− NK cells.
Nevertheless, the discovery of functionally different NK cell subsets in humans and mice has
extended the field of NK cell research tremendously and yielded insight into important
noncytotoxic functions of NK cells.
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Tissue distribution and trafficking of NK cells
In line with their role in innate immunity and immune surveillance, NK cells are widely
distributed in mammals, yet, intriguingly, the distribution of NK cell subsets differs between
distinct anatomical sites, suggesting a specialization of NK cells subsets (3,18-20). In humans,
the CD56brightCD16− subset is markedly enriched in SLO, making up to 75 % of NK cells in
lymph nodes and 50 % in the spleen (10). As lymph nodes are suggested to harbor 40% of all
human lymphocytes, whereas probably only 2% of all lymphocyte circulate through peripheral
blood at any given moment, CD56brightCD16− NK cells in SLO constitute a remarkable pool
of innate effector cells in humans. In mice, the distribution of NK cells subsets is also different
as Mac1+CD27high, CD127+ and B220+CD11c+ NK cells are all enriched in lymph nodes,
whereas they represent minor subsets in spleen and peripheral blood (13,14). In general, while
mouse NK cells are mainly excluded from B and T cell areas in both spleen and lymph nodes
in the steady state, human NK cells are present at significant levels of 1−5% of all mononuclear
lymph node cells in perifollicular T cell zones in these secondary lymphoid organs (Table 1)
(9,18,19). Their localization in perifollicular regions in lymphoid organs potentially positions
them to interact with incoming DCs that arrive through the afferent lymph. Notably, in human
lymph nodes NK cells can be found in close proximity to resident DCs, furthermore intra-vital
microscopy of mice revealed that NK cells were crawling and communicating with their
environment in lymph nodes, forming contacts with DCs (18,21,22). But, NK cells can not
only be found in lymphoid tissues, also lung, liver and skin have been shown to harbor
significant numbers of NK cells in both mice and humans. Furthermore, a particular subset of
NK cells is found in the placenta where it regulates specific developmental processes at the
fetal-maternal interface (23,24). Uterine NK cells have been described to be less cytotoxic
(25), but remodel decidual vessels as well as promote decidual cellularity (26). Placental
remodeling by this NK cell subset seems to depend on their ability to produce IFN-γ. In
addition, decidual NK cells produce other immunomodulatory factors, like galectin-1 and
progestagen-associated protein 14 (27). Thus, NK cells seem to promote placenta development
and create a tolerogenic environment for fetal semiallograft acceptance. Finally, NK cell
distribution is not static as NK cells can recirculate between organs in a subset-specific manner
(19). In addition to their distribution and recirculation in the steady state, NK cells are recruited
to sites of inflammation (3). Detailed analysis of mouse NK cells showed that they can be
recruited to lymph nodes, lung, liver, and central nervous system during infections. These NK
cells apparently mainly originate from the spleen and the bone marrow as NK cells numbers
decrease in these organs as they increase in other organs (28). Due to their expression of
chemokine receptors such as CCR2, CCR5, CXCR3, and CX3CR1, NK cells are able to
respond to a large array of inflammatory cytokines (19,29). As discussed above, NK cell subsets
in both man and mouse differ in the expression of certain chemokine receptors. Notably, in
humans mainly CD56brightCD16− and only few CD56dimCD16+ NK cells were found in a
number of inflammatory sites suggesting that the CD56brightCD16− NK cell subset is
specifically recruited to sites of infection, inflammation and tumorigenesis (30-32). Finally,
inflammation also causes a redistribution of mouse NK cells in spleen and lymph nodes into
T cell zones into close proximity of DCs (21). The CXCR3-dependent recruitment to the lymph
node in the mouse might be very different from the situation in humans as human
CD56brightCD16− NK cells express the lymph node-homing molecule CCR7 and are found in
significant numbers also in non-inflamed lymph nodes (9,10,33). Additionally, separate NK
cell development to CD56brightCD16− NK cells in lymph nodes also contributes to the
enrichment of this NK cell subset at these sites (34). Furthermore, in the non-inflamed human
spleen, NK cells are found in close proximity to DCs in T cell zones, again demonstrating
species-specific differences (18). Altogether the analysis of the distribution and localization
as well as the recruitment of NK cells and more recently of NK cell subsets in mouse and man
has provided important insight into NK cell biology, highlighted differences between the
species and led to the discovery of new functions of NK cell subsets.
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Activation of NK cells during innate immune responses
Initially, NK cells were recognized for their ability to mediate spontaneous cytotoxicity against
target cell lines. Of particular interest, immune surveillance of B cell lymphomas that arise
spontaneously in mice with a deficiency in β2-microglobulin, a component of MHC class I
molecules, has been connected to NK cells and was dependent on the cytotoxic molecule
perforin (35). Furthermore, natural cytotoxicity negatively correlated with tumor incidence in
a 11-year follow-up study in humans (36). However, in addition to the important role for NK
cells in innate immune surveillance by natural cytotoxicity, it was later discovered that
additional signals were needed for NK cells to become fully activated. Numerous studies in
humans and mouse models both in vivo and in vitro found that these signals can be provided
by dendritic cells (37-42). The activation of NK cells was demonstrated to be mediated directly
by cell-cell contact and indirectly via the secretion of cytokines such as type I interferons or
monokines such as IL-12, IL-15, and IL-18. Among the soluble factors, IL-12 has been
repeatedly observed to induce IFN-γ secretion and proliferation and was thought to be the most
pivotal signal enhancing factor for NK cell effector functions in humans and in mice (18,
42-45). Yet, a recent study suggests that IL-15 acts as an even earlier and more crucial regulator
of NK cell differentiation and function at least in mice (46). After in vivo stimulation with TLR
ligands or bacterial and viral infection, it was shown that myeloid CD11chigh DCs need to
prime NK cells via presentation of IL-15 to produce IFN-γ and become cytotoxic against a
MHC class I low cell line expressing NKG2D ligands. Curiously in analogy to adaptive T cell
responses, NK cells needed to enter the draining lymph node to receive the priming signal to
subsequently perform effector functions in the periphery. In humans, we have recently shown
that IL-15 receptor alpha colocalizes at the synapse between DCs and NK cells and contributes
to NK cell survival (47). Closer characterization of this synapse revealed that both activating
signals such as mediated by IL-15 and inhibitory signals such as interactions of CD94/NKG2A
and KIRs with MHC class I molecules are transmitted in spatially separated domains within
the center of this synapse. The regulatory DC/NK cell synapse was formed very rapidly (1
−5min), lasted for long time periods (≥10min) and was distinct from activating NK cell
synapses formed with classical MHC class Ilow NK cell targets (48,49). Strikingly, DCs are
protected from NK cell killing, although intracellular Ca2+ levels rise in NK cells upon
interaction which have been correlated with killing of target cells (47,49). Notably, at later
timepoints (>20 min) DCs seem to polarize preformed vesicles of IL12 to the synapse providing
further activation signals to conjugated NK cells (50). These studies suggest that efficient NK
cell activation and maintenance requires synapse formation with DCs.

Based on previous studies the different NK cell activating cytokines were believed to mediate
different aspects of DC-induced NK cell stimulation and steer the innate immune response to
distinct NK cell effector functions. While type I interferons, mainly secreted by plasmacytoid
but also myeloid DCs are predominantly involved in the upregulation of NK cell-mediated
cytotoxicity, IL-12 and IL-18 were found to influence IFN-γ production by NK cells (43,44,
51-53). Finally, in vitro studies suggest that another pathway for the activation / coactivation
of NK cells might be the direct recognition of microbial products via TLRs or of infected cells
via NKG2D/NCRs (54-59). These distinct pathways of NK cell activation might converge to
regulate and activate different arms of NK cell effector functions, and thereby tailor the NK
cell response to the needs of the particular immune response.

Direct antiviral functions of NK cells
As previously discussed, NK cells are readily recruited and activated at sites of viral infections.
Traditionally, NK cells have been recognized for their protective role by directly killing
infected cells. However, it is now established that cytokines such as IFN-γ and TNF-α,
produced by NK cells, contribute to the control of multiple murine and human infections
(Figure 1)(60). The effects of IFN-γ in innate immunity are manifold, ranging from
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strengthening intrinsic immunity via the induction of antiviral factors or degradative pathways
in exposed cells, to the activation of other innate lymphocytes such as macrophages. Since
these functions have been more comprehensively summarized elsewhere (61,62), we will focus
on the role of IFN-γ during herpesvirus specific immune control, in which NK cells play a
crucial role. In MCMV infection, it was shown that DC-activated NK cells produce IFN-γ that
is directly responsible to control viral infection (51,63). Moreover, it was demonstrated that
NK cells can protect the host via secretion of IFN-γ, but not as efficiently as in combination
with cytotoxicity (64). IFN-γ directly inhibits replication of MCMV, protecting against virus-
induced pathogenesis and lethality (65,66). In addition, IFN-γ is also critical for efficient
clearance of persistent viral replication and suppresses MCMV reactivation from latency
(65). Notably, IFN-γ inhibits growth of MCMV in infected macrophages in a cell-type specific
manner via suppression of immediate early protein 1 expression (67). With respect to human
herpesviruses, there is evidence to support the role of NK cells in limiting the early infection
of HCMV, a β-herpesvirus, but also of Epstein Barr virus (EBV), a γ-herpesvirus, using
cytotoxic and non-cytotoxic functions (45,68,69). In the case of EBV, we demonstrated
recently that CD56brightCD16− NK cells curb B cell transformation by EBV upon activation
by DCs via IFN-γ by a yet unknown mechanism, presumably involving down regulation of the
viral oncogene LMP1 (45). NK cells from tonsils, the site of primary EBV infection, were
particular effective due to their ability to produce higher amounts of IFN-γ that their
counterparts from blood. Interestingly, as NK cells are also recruited to sites of inflammation
and tumorigenesis, it is noteworthy that the infiltrating NK cells in a number of human
inflammatory lesions were found to be mainly CD56brightCD16− NK cells, although
CD56dimCD16+ express chemokine receptors such as CXCR1, CX3CR1 and ChemR23 that
could also guide them to these sites (31,32). The homing cells were negative for perforin and
had an increased capability to produce IFN-γ upon stimulation with a combination of IL-12
and IL-18. Thus, NK cells can limit herpesvirus latency and restrict reactivation of lytic
infection by these viruses by directly suppressing herpesviral gene expression via IFN-γ. In a
broader context it demonstrates that the role of NK cells goes beyond traditional cytotoxic
functions and that cytokines, in particular IFN-γ, secreted by NK cells are important effector
molecules that contribute directly to pathogen control.

Immunomodulatory functions of NK cells
In addition to their direct antiviral role, a number of recent studies illustrated additional roles
for NK cells in the modulation of innate immunity and polarization of adaptive immunity,
extending the influence of NK cells into adaptive immunity.

Maturation of DCs by NK cells—DC maturation supplies a signal that links innate
immunity to adaptive immune responses. Previously, we discussed activation of NK cells by
mature DCs, yet, activated NK cells can also trigger DC maturation (Figure 1). DC maturation
has been reported after NK cell recognition of MHC Class Ilow tumor cells and NK cell
activation with IL-2 (39,40,70,71). NK cells mature DCs via TNF-α and IFN-γ production, and
additional cell-to-cell contact-dependent signals. The superior ability of NK cells to recognize
virus infected or transformed cells via NKp46 and NKG2D, especially after virus-induced
MHC class I down-regulation, might make NK cells important accessory cells for DC-initiated
immune responses (72). NK cell-matured DCs display up-regulation of CD86 and secrete IL-12
(39,40). Because DC maturation might be confined to the site of innate lymphocyte activation,
it is potentially a local and very early event. However, this interaction in turn expands and
activates innate lymphocytes and initiates T cell immunity. Indeed, the interplay between DCs
and NK cells can completely replace CD4+ T cell help in the induction of an anti-tumor
CD8+ response (70). Together, these findings demonstrate that cross-talk between NK cells
and DCs is important during innate immunity, influencing the activation status of both cell
types potentially amplifying immune activation.
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T cell polarization by NK cells—To successfully control infection, adaptive immune
responses need to be tailored to the respective pathogen. Polarization of T cell responses is
mediated by DCs in the initial priming phase and takes largely place in secondary lymphoid
organs (73). As previously discussed, human secondary lymphoid organs harbor mainly
CD56brightCD16− NK cells, which are the NK cell subset primarily activated by DCs.
Furthermore, studies have shown both in vitro and in vivo that NK cells are located in lymph
nodes in close proximity to DCs. Intravital microscopy revealed that NK cells were highly
motile in lymph nodes in steady-state sampling their microenvironment and forming aggregates
with DCs and B cells (21,22). Upon inflammation, NK cells are recruited to lymph nodes and
importantly, upon infection with Leishmania major, IFN-γ-secreting NK cells were found to
contact the same DC as antigen-specific CD4+ T cells in the lymph node (21). This observation
provides insight into the regulation of T cell responses by NK cells as it has been demonstrated
that upon activation by mature DCs, NK cells produce high levels of IFN-γ that are sufficient
to mediate Th1 polarization in mouse models and human allogeneic immune responses (Figure
1) (21,33,74,75). Although there are clear parallels between mice and humans, important
details of NK cell-assisted T cell polarization appear to be different. In humans, tissue-resident
NK cells from human secondary lymphoid tissues supported Th1 polarization more efficiently
than blood NK cells by their superior ability to produce IFN-γ after stimulation with DCs
(75). Yet in mice, NK cells need to be recruited to lymph nodes in a CCR7-independent,
CXCR3-dependent manner to support T cell polarization (33). Shaping of immune responses
by NK cells is particular important for a variety of immune responses, since Th1 polarized T
cell responses have been found to be more effective in the immune control of tumors and viral
infections in mice (76,77). Furthermore, Th1-based immune control has been correlated with
protection from HCMV after primary infection in kidney transplant patients (78).

NK cells in immunotherapy
Immunological research is driven partly by an interest in the basic biology of the immune
system, but even more by an interest into translating research into the clinic and vaccine
development. A number of clinical studies have attempted to take advantage of the cytotoxic
abilities of NK cells, but very little attempts have been made to include NK cells to modulate
and direct immune responses via secretion of cytokines (79-82). Yet, there is evidence that
targeting of NK cells directly or indirectly via DCs can polarize T cell responses during
vaccination. In mice, a number of adjuvants such as the TLR7/8 antagonist R848 or the
microbial product-containing emulsion Ribi were shown to polarize Th1 responses via indirect
activation of NK cells that provide IFN-γ necessary for efficient T cell priming by DCs in
lymph nodes (33). In contrast, other adjuvants such as the TLR9 antagonist CpG1826 or
complete Freund's adjuvant that did not lead to NK recruitment did not achieve Th1 polarization
in this model. Another commonly used adjuvant, the TLR3/mda-5 ligand polyI:C, induces
strong Th1 responses and has been shown to directly induce IFN-γ production in NK cells.
Accessory cells such as DCs or monocytes could amplify IFN-γ production by secretion of
IL-12 or IL-18 (18,57,83). In our hands the stimulation of human monocyte-derived DCs with
different adjuvants resulted in striking differences in the ability of DCs to induce NK cell
activation (45). PolyI:C induced the highest secretion of IL-12 and led to strong upregulation
of IL-15Rα expression, inducing IFN-γ production and proliferation of mainly the
CD56brightCD16− NK cell subset. In addition, we also showed that CD56brightCD16− NK cells
from secondary lymphoid organs but not from peripheral blood produced sufficient IFN-γ after
stimulation by polyI:C-matured DCs to polarize human allogeneic T cell responses (75).
Hence, we propose that NK cells should be harnessed for immunotherapy not only because of
their potential antitumor functions, but also for their ability to mobilize and polarize adaptive
immune responses via DCs. Adjuvants should not only be assessed for their ability to directly
stimulate DCs, but also for their ability to directly or indirectly stimulate NK cells to support
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the development of Th1 responses, which are desired in a majority of cancer immune therapy
or vaccine development approaches.

Conclusions
In the recent years, studies have provided new insights into the versatile functions of NK cells
in viral, bacterial, and parasite infections, as well as anti-tumor immunity. Most importantly,
the classical view of NK cells as spontaneous cytotoxic cells has been extended and additional
NK cell functions are now appreciated. In particular, cytokines secreted by activated NK cells
during innate immune responses have gained much attention. IFN-γ, secreted by NK cells, was
found to be important not only in minimizing the spread of infections, but, it also polarizes
adaptive immunity to efficiently protect the host. Furthermore, additional studies in mouse and
human have documented that DC/NK cell interactions take place both at peripheral inflamed
sites and in secondary lymphoid tissues, and that these interactions are crucial for optimal
reciprocal activation of these two innate lymphocyte subsets. The difference between the two
species with respect to this interaction, however, seems to be that humans constitutively harbor
a substantial amount of NK cells in secondary lymphoid tissues, which are enriched in the NK
cell subset that preferentially responds to DC activation. In contrast, NK cells are rare in murine
secondary lymphoid tissues, but get recruited to these sites upon mature DC migration into
secondary lymphoid organs. In summary, these results suggest that NK cell activation by DCs
and its polarizing effect on adaptive immune responses is important in a number of infection
models and should be harnessed for vaccine development by choosing adjuvants that enable
DCs to activate NK cells and to prime preferentially Th1-polarized immune responses.
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Figure 1.
Biological functions of non-cytotoxic NK cells. CD56brightCD16− human NK cells and
possibly their mouse counterparts (Mac1highCD27+ and/or CD127+GATA-3+) restrict
pathogen infections primarily by IFN-γ secretion (left side). In addition, they mature and
polarize DCs for more efficient priming of Th1 cells. These mature DCs can further augment
NK cell responses via IL-12/IL-18 (IFN-γ secretion by NK cells), IFN-α/β (NK cell
cytotoxicity) and IL-15 (NK cell proliferation/survival), and stimulate mainly the
CD56brightCD16− NK cell subset enriched in secondary lymphoid tissues.
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