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Abstract
Soy isoflavones have been identified as dietary components having an important role in reducing the
incidence of breast and prostate cancers in Asian countries. Genistein, the predominant isoflavone
found in soy products, has been shown to inhibit the carcinogenesis in animal models. There is a
growing body of experimental evidence showing that the inhibition of human cancer cell growth by
genisteinis mediated via the modulation of genes that are related to the control of cell cycle and
apoptosis. It has been shown that genistein inhibits the activation of NF-κB and Akt signaling
pathways, both of which are known to maintain a homeostatic balance between cell survival and
apoptosis. Moreover, genistein antagonizes estrogen- and androgen-mediated signaling pathways in
the processes of carcinogenesis. Furthermore, genistein has been found to have antioxidant
properties, and shown to be a potent inhibitor of angiogenesis and metastasis. Taken together, both
in vivo and in vitro studies have clearly shown that genistein, one of the major soy isoflavones, is a
promising agent for cancer chemoprevention and further suggest that it could be an adjunct to cancer
therapy by virtue of its effects on reversing radioresistance and chemoresistance. In this review, we
attempt to provide evidence for these preventive and therapeutic effects of genistein in a succinct
manner highlighting comprehensive state-of-the-art knowledge regarding its multi-targeted
biological and molecular effects in cancer cells.
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1. Introduction
Laboratory research backed by epidemiological studies emancipating from the last few decades
have provided convincing evidence that isoflavones in soy rich foods contribute to relatively
lower rates of prostate and breast cancers in Asian countries such as China and Japan than in
Western population. Genistein (4,5,7-trihydroxyisoflavone) has been identified as the
predominant isoflavone in soybean enriched foods which comprises a significant portion of
the Asian diet, and provides 10% of the total per capita protein intake in Japan and China. A
recent study among women in Shanghai, China found that plasma isoflavone concentration
were inversely associated with the risk of non-proliferative and proliferative benign fibrocystic
conditions as well as breast cancer [1]. In parallel, relatively high levels of soy isoflavones
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have been found in the serum, urine and prostatic fluid of Asian men who consume a soy rich
diet possibly contributing in lowering the incidence of prostate cancer [2;3]. Since these initial
findings, several subsequent reports have been published documenting decreased risk of
localized prostate cancer associated with soy product and isoflavone consumption [4]. High
consumption of soymilk has also been associated with reduced risk of cancer [5]. These facts
provide an excellent opportunity for primary prevention of the most common cancers
worldwide. Furthermore, isoflavone sensitizes the effect of radiotherapy and cytotoxic
chemotherapeutic drugs used in variety of cancers, thus opening avenues for devising novel
therapeutic options.

We attempt herein to summarize the known inhibitory effects of genistein on cancer cells and
provide a comprehensive review on the multi-targeted molecular mechanism(s) underlying the
chemopreventive and therapeutic actions of genistein.

1.1. Molecular structure, estrogenic activity and metabolism of genistein
The isoflavone genistein was originally identified as having a close similarity in structure to
estrogens and harboring weak estrogenic activity and, as such, was labeled as a phytoestrogen.
The basic structural feature of isoflavone compounds is the flavone nucleus, which is composed
of 2 benzene rings linked through a heterocyclic pyrane ring. Because of its structural similarity
to 17β-estradiol, genistein has been shown to compete with 17β-estradiol in ER binding assays.
Kuiper et al. [6] reported that the binding affinity of genistein for ER-α was 4%, and for ER-
β was 87%, compared to estradiol. Thus, by interaction with estrogen receptor, genistein blocks
the binding of more potent estrogens at the same time and affects estrogen metabolism, thereby
exerting a potential favorable role in the prevention of hormone related cancers.

After intake and ingestion, genistein along with other isoflavones is conjugated with glycoside
and metabolized by the enzymes of the intestine. It has been proposed that in humans, genistein
is metabolized to dihydrogenistein and 6′-hydroxy-O-desmethylangolensin. Genistein and
their metabolites have been detected in plasma, prostatic fluid, breast aspirate and cyst fluid,
urine, and feces [2;3;7;8]. Adlercreutz et al. [2] have found that the plasma level of genistein
in people having a soy rich diet was 1–5 μM after metabolism and excretion. A recent report
from India also revealed an adequate circulating level of genistein after a single dose of soy
extract [9]. Another study targeted Phase I pharmacokinetic and pharmacodynamic analysis
following administration of unconjugated soy isoflavones (containing 43% and 90% genistein
respectively), to individuals with cancer found plasma concentration of genistein supposedly
associated with antimetastatic activity in vitro [10]. Genistein is relatively hydrophobic and
expected to be taken up by cells without previous cleavage and does not have to be biologically
active to exert its inhibitory effects on cancer cell growth [11]. However, cancer cell-specific
concentration of genistein in human population has not been determined.

1.2. Biological effects of genistein
Many important biological effects of genistein consumption have been elucidated with respect
to its anticancer properties. Nevertheless, genistein has many other important health benefits,
such as lowering the incidence of cardiovascular diseases [12], prevention of osteoporosis, and
attenuation of postmenopausal problems [13]. Furthermore, it has been reported that genistein
decreases body mass and fat tissue, accompanied by a decreased apetite. After ingestion of
dietary genistein, alterations in concentrations of hormones such as insulin, leptin, thyroid
hormones, adrenocorticotropic hormone, cortisol and corticosterone were observed.
Additionally, genistein intake is also associated with altered expression of genes engaged in
lipid metabolism and disturbed glucose transport into cells affecting lipolysis, lipogenesis and
altered ATP synthesis. These metabolic and hormonal changes have been succinctly
summarized by Szkudelska and Nogowski in a review article [14].
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Genistein is a known inhibitor of protein-tyrosine kinase (PTK), which may attenuate the
growth of cancer cells by inhibiting PTK-mediated signaling mechanisms [15]. Sakla et al
recently reported that genistein inhibits the protooncogene HER-2 protein tyrosine
phosphorylation in breast cancer cells as well as delaying tumor onset in transgenic mice that
overexpress the HER-2 gene This data support its potential anticancer role in chemotherapy
of breast cancer [16]. However, effects independent of this activity have also been
demonstrated [17]. For example, genistein also inhibits topoisomerase I and II [18], 5α-
reductase [19] and protein histidine kinase [20], all of which may contribute to the
antiproliferative or pro-apoptotic effects of genistein. It has been found that soy isoflavones,
including genistein, have antioxidant effects and protects cells against reactive oxygen species
by scavenging free radicals, inhibiting the expression of stress response related genes, thereby
reducing carcinogenesis [21;22]. Genistein has been shown to inhibit the growth of both
estrogen and androgen receptor positive and negative breast and prostate cancer cells in
vitro, respectively, and showed inhibitory effect on estrogen-stimulated growth of breast cancer
cells [23;24]. Furthermore, we have found that genistein is a powerful inhibitor of NF-κB and
Akt signaling pathways, both of which are important for cell survival [25]. These effects of
genistein are believed to be involved in the induction of apoptotic processes in genistein-treated
cells. Collectively, the knowledge regarding the effects of genistein on cancer cells is rapidly
growing although it is clear that genistein is a powerful agent whose utilization for the
prevention and/or treatment of cancer is likely be forthcoming.

2. Molecular targets and effects of genistein in vitro
Extensive experiments have concluded that genistein functions as a promising
chemopreventive agent that inhibits carcinogenesis. Additionally, genistein has been shown to
inhibit the growth of various cancer cells through the modulation of genes that are intimately
related to the regulation of cell cycle and programmed cell death (apoptosis). Table-1 briefly
summarizes multiple molecular targets of genistein action. Genistein also intervenes in several
cellular transduction signaling pathways inhibiting carcinogenesis and may also be involved
in the regulation of gene activity by modulating epigenetic events such as DNA methylation
and/or histone acetylation directly or through the estrogen receptor dependent process [26].
Genistein can also up-regulate mRNA expression of the BRCA1 gene during mammary
tumorigenesis, which is frequently inactivated by epigenetic events in breast cancer [27].
Moreover, it has been demonstrated that the angiogenesis and metastasis could also be inhibited
by genistein, implying the pleiotropic effects of genistein on the inhibition of carcinogenesis
and cancer cell growth.

2.1. Effects on cell cycle regulation
Experiments have shown that genistein inhibits the growth of several cancer cells including
leukemia, lymphoma, ovarian, cervical, leiomyoma, melanoma, neuroblastoma, gastric,
pancreatic, breast, and prostate cancer cells [23;24;28–31]. The growth inhibition of cancer
cells could be due to cell cycle arrest, which ultimately results in cessation of cell proliferation.
It has been demonstrated that genistein induces a G2/M cell cycle arrest in breast cancer, gastric
adenocarcinoma and melanoma cells [31;32]. We also showed that genistein induces a G2/M
cell cycle arrest in PC3 and LNCaP prostate cancer cells; H460 and H322 non small cell lung
cancer cells; MDA-MB-231 and MCF-10CA1a breast cancer cells [33;34]. Genistein also
causes G2/M arrest in normal MCF10A breast epithelial cells [35]. However, the effect of
genistein was more pronounced in malignant cells compared to normal cells. Thus, it is
generally accepted that genistein can cause G2/M cell cycle arrest, but a report has shown that
genistein could also arrest mouse fibroblast and melanoma cells at G0/G1 phase of the cell
cycle [36]. These data suggests that genistein induces either G2/M or G0/G1 cell cycle arrest,
depending on cell lines.
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Cell cycle progression is known to be tightly regulated by different cyclins, cyclin dependent
kinases (CDKs) and cyclin dependent kinase inhibitors (CDKIs) in different phases of the cell
cycle. Cancer cells treated with different concentrations of genistein showed a dose-dependent
decrease in the expression of cyclin B, which plays important roles in the positive regulation
of CDK activity and is necessary for forming cyclin B/CDK complex during the G2/M phase
procession. These observations are in concordance with the G2/M cell cycle arrest, suggesting
that genistein-induced cell cycle arrest in cancer cells is partially due to the down-regulation
of cyclin B [33;34]. The activities of cyclins/CDKs complexes are negatively regulated by
several CDK inhibitors (CDKIs) including p21WAF1, p27KIP1 and p16INK4a. We have found
a significant dose-dependent up-regulation of p21WAF1 expression in genistein treated cancer
cells including MDA-MB-231, MDA-MB-435 and MCF-7 breast cancer cells; PC3 and
LNCaP prostate cancer cells; H460 and H322 non-small cell lung cancer cells; and HN4 head
and neck squamous carcinoma cells [33;34;37–39]. Touny and Banerjee [40] reported the
involvement of upstream kinases Myt-1 and Wee-1 in the transcriptional repression of cyclin
B1 and the activation of p21WAF1 in prostate cancer cells. They found genistein treatment
increased Myt-1 levels and decreased Wee-1 phosphorylation, providing better insight into the
possible mechanism of genistein-induced G2/M arrest. These findings closely parallel with
results on the inhibition of cancer cell growth and cell cycle arrest, suggesting that genistein
can inhibit the growth of cancer cells by modulating the expression of genes that are involved
in the regulation of cell growth and the cell cycle.

2.2. Effects on the induction of apoptosis
In addition to cell cycle arrest, another specialized event of genistein action involves the
induction of programmed cell death known as ‘apoptosis’. This is mediated by a diverse group
of protein moieties in cells, namely the Bcl-2 family, along with a concerted cascade of
proteolytic activity of a family of asparate-specific cysteinyl proteases, or caspases activation,
leading to the digestion of structural proteins, DNA degradation, and ultimately phagocytosis.
The Bcl-2 family is the best characterized group of apoptosis mediating factors and can be
divided into two main groups according to their functional properties: anti-apoptotic proteins,
for example Bcl-xL and Bcl-2; and pro-apoptotic proteins, such as Bax, Bak, and Bad. The
data from our laboratory showed that genistein could induce apoptosis in MDA-MB-231,
MDA-MB-435 and MCF-7 breast cancer cells; PC3 and LNCaP prostate cancer cells; H460
and H322 non-small cell lung cancer cells; HN4 head and neck squamous carcinoma cells, and
pancreatic cancer cells [33;34;37–39;41;42]. Using multiple assay techniques as hallmark to
detect apoptosis, we found genistein induced apoptosis in all cancer cells tested. Flow
cytometry revealed that the number of apoptotic cells increased 43–57% with longer genistein
treatment. These results are consistent with studies reported by other investigators [43;44],
clearly attesting to the fact that genistein induces apoptosis in cancer cells. This was further
corroborated by recent findings of Moiseeva et.al., who reported that physiological
concentrations of a dietary phytochemical including genistein results in reduced growth and
induction of apoptosis of in cancer cells [45].

To explore the molecular mechanism by which genistein induces apoptosis, we studied the
effect of genistein on Bcl-2, Bax and caspases in multiple cell lines and found down-regulation
of Bcl-2 protein expression, up-regulation of Bax expression, and activation of caspases after
treatment with genistein. Other investigators have also reported that soy isoflavone genistein
could induce apoptosis in a variety of human cancer cells through caspase-3 activation and
down-regulation of Bcl-2, Bcl-xL, and HER-2/neu [46;47]. Furthermore, the p53 and
p21WAF1 tumor suppressor genes are also known to be involved in apoptotic processes, and
we have detected the expression of p53 gene in MDA-MB-231 breast cancer cells, which are
ER-negative and harbor mutant p53. Although the treatment of these cells with genistein down-
regulated the expression of the dysfunctional p53, the expression of p21WAF1 was induced
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within 24 h [37]. These results suggest that the induction of p21WAF1 and apoptosis by genistein
is functionally operated through a p53-independent pathway. A study reported by Kazi et al.
[48] showed that genistein induced apoptosis by inhibiting proteosome and induction of
p27 KIP1, IκBα, and Bax. A recent study showed that in hepatocellular carcinoma, genistein
induced apoptosis by the activation of several endoplasmic reticulum (ER) stress-relevant
regulators, which include the transcription factor-GADD153, m-calpain, GRP78 and
caspase-12 [49]. Taken together, these findings suggest that ER stress, caspase activation,
inhibition of proteosome, down-regulation of Bcl-2, Bcl-xL, and HER-2/neu may partly
represent the molecular mechanism by which genistein induces apoptosis, and the existing
evidence suggests that many of these cascades may also be regulated either directly or indirectly
by nuclear factor-κB (NF-κB).

2.3. Effects on inhibiting the activation of NF-κB
NF-κB plays important roles in the control of cell growth, differentiation, apoptosis and stress
response. Under non-stimulating conditions, NF-κB is sequestered in the cytoplasm through
tight association with the impeding IκB proteins. Following stimulation, IκB protein is
phosphorylated and degraded, allowing the NF-κB to translocate to the nucleus, bind to the
NF-κB-specific DNA-binding sites or interact with other transcription factors, and thus
regulate gene transcription. We have reported that genistein treatment could modulate NF-κB
DNA binding activity in prostate, breast, head and neck, and pancreatic cancer cells by
electrophoresis mobility shift assay (EMSA) [37;50;51]. In concordance with our findings
Natrajan et al also found that in human myeloid leukemia cells genistein blocked activation of
NF-κB concomitant with degradation of IκBα [52].

We have further investigated whether genistein could block NF-κB induction by known
inducers such as H2O2 and TNF-α, both of which has been previously shown to induce NF-
κB DNA binding activity. After treatment with H2O2 or TNF-α, we observed an increase in
NF-κB DNA binding activity in prostate cancer cells, which supports the findings reported by
Natrajan et al. [52]. However, when the cells were treated with 50 μM genistein for 24 h prior
to stimulation with the inducing agent, genistein abrogated the induction of NF-κB DNA
binding activity elicited by either H2O2 or TNF-α [53]. Furthermore, we found that genistein
inhibited the phosphorylation of IκB. By immunohistochemistry and confocal microscopic
analysis we also found that the treatment of cells with genistein significantly decreased the
nuclear staining of the NF-κB. These results indicate that genistein inhibits the translocation
of NF-κB to the nucleus, preventing NF-κB from binding to its target DNA and thereby
inhibiting the transcription of NF- κB downstream genes. This process ultimately inhibits cell
growth and also induces apoptotic cell death. Although controversies are sprouting whether
NF-κB could also function as tumor suppressor gene and thus inactivation of NF-κB could be
tumor promoting although the exact role of NF-κB certainly merits further investigation.

It has been reported that in the NF-κB signaling pathway, IκBα is phosphorylated by IκB kinase
α (IKKα) and IκB kinase β (IKKβ), while IKK is phosphorylated and activated by the upstream
molecule, mitogen activated kinase kinase 1 (MEKK1) [54;55]. We have found that genistein
treatment did not alter the protein expression of MEKK1; however, genistein treatment
inhibited MEKK1 kinase activity when tested by a kinase assay. These results demonstrate
that genistein inhibits MEKK1 activity, which may be responsible for the decreased
phosphorylation of IκB, thereby, resulting in the inactivation of NF-κB (unpublished data).

Genistein has also been found to potentiate the antitumor activity of chemotherapeutic agents
through regulation of NF-κB. It has been reported that some chemotherapeutic agents such as
cisplatin, gemcitabine and docetaxel induce the activation of NF-κB in cancer cells and this
may be responsible for drug resistance in cancer cells [42;56;57]. By in vitro and in vivo studies,
we have found that pre-treatment with genistein followed by treatment with lower doses of
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docetaxel or cisplatin elicited significantly greater inhibition of cell growth and induction of
apoptosis compared to either agent alone [41;42;56-58]. By EMSA, we found that NF-κB
activity was significantly increased by docetaxel, gemcitabine or cisplatin treatment, and the
NF-κB inducing activity of these agents was completely abrogated in cells pre-treated with
genistein. These in vitro results were also recapitulated in our in vivo studies [41;42;59]. Our
results clearly suggest that genistein pre-treatment, which inactivates NF-κB activity, together
with other cellular effects of genistein, may contribute to increased cell growth inhibition and
apoptosis with non-toxic doses of docetaxel, cisplatin, or gemcitabine.

2.4. Effects on regulation of Akt signaling pathway
Akt signaling is another important transduction pathway that plays a critical role in controlling
the balance between cell survival and apoptosis [92]. Evidence suggests that Akt also regulates
the NF-κB pathway via phosphorylation and activation of molecules in the NF-κB pathway
[60;61]. Thus, strategies to block the activity of Akt would ideally lead to the inhibition of
proliferation and the induction of apoptosis. By immunoprecipitation, Western blot and kinase
assays we found that genistein treatment reduced the level of the phosphorylated Akt protein
at Ser473 compared to control cells, resulting in a dose dependent induction of apoptosis after
genistein treatment of cells that display constitutively active Akt [41]. Additional studies were
carried out to examine the status of Akt in the PC-3 prostate cancer cells treated with genistein
followed by EGF stimulation. We found that EGF treatment alone activated Akt kinase as
expected, while genistein pre-treatment abrogated the activation of Akt by EGF [25]. This data
demonstrates that genistein inhibits the activation of Akt, which may result in the inhibition
of survival signals ultimately leading to induction of apoptotic signals.

We have explored the molecular cross talk between Akt and NF-κB signaling pathways by
conducting transfection experiments and found that genistein exerts its inhibitory effects on
NF-κB pathway through the Akt signaling pathway [25]. Several reports from other
investigators also showed similar regulation between Akt and NF-κB pathways [60–62] and
these results strongly suggest molecular cross-talk between NF-κB and Akt pathway and that
‘dual’ disruption of these pathways by genistein could be an effective strategy for the inhibition
of cancer cells. Stoica et al., demonstrated that genistein exerted inhibitory effect on Akt
activation induced by estradiol in MCF-7 cells [63;64]. El Touny and Banerjee [65] recently
documented that the chemopreventive action of genistein in vivo is mediated through the Akt-
GSK-3β signaling downstream effectors retarding cancer progression. Collectively, these
results demonstrate that genistein exerts its inhibitory effect on NF-κB signaling through Akt
pathway. Thus, abrogation of NF-κB and Akt signaling pathway by genistein may be one of
the molecular mechanisms by which genistein inhibits cancer cell growth and induces
apoptosis.

2.5. Effects on the regulation of androgen-mediated carcinogenesis
Research on androgens showed that androgens are involved in the development and
progression of prostate cancer via activating the androgen receptor (AR) [66]. Prostate-specific
antigen (PSA) is a clinically important AR-responsive gene which is used to monitor treatment
response, prognosis, and progression in patients with prostate cancer [67]. It has been
demonstrated that the transcriptional regulation of PSA occurs via AR binding to the AR-
responsive element (ARE) in the promoter region of PSA [68]. The expression of PSA is
initially regulated by androgen through the regulation of AR, and undergoes a sharp decline
after medical castration [69]. The tumor then becomes androgen-independent and PSA
expression is constitutively up-regulated through an unknown mechanism, suggesting the
importance of PSA in prostate carcinogenesis.
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We have previously demonstrated that genistein has different effects on ARE binding and the
expression of AR and PSA in androgen-sensitive (LNCaP) and androgen-insensitive (VeCaP)
prostate cancer cells. Genistein transcriptionally down-regulated AR, decreased nuclear
protein binding to ARE, thereby, inhibiting the transcription and protein expression of PSA in
androgen-sensitive LNCaP cells [70]. Genistein treatment also resulted in a dose and time
dependent decrease in the secreted PSA in the media collected from LNCaP cells treated with
low concentration of genistein (0.1–5μM). In contrast, genistein did not alter AR expression
and binding of nuclear AR to the ARE at low concentration in VeCaP cells. However, higher
concentrations (10–50 μM) of genistein were able to significantly inhibit PSA secretion in
VeCaP cells. Further studies using transient transfection of a PSA promoter construct revealed
that genistein can inhibit PSA synthesis in prostate cancer cells through an androgen-dependent
or androgen-independent pathway highlighting the fact that genistein inhibits cell proliferation
independent of androgen and PSA signaling pathways. These studies strongly support the role
of genistein as a chemopreventive/therapeutic agent for prostate cancer, irrespective of
androgen responsiveness. Genistein has also been shown to bind directly to the estrogen
receptor and modulate its function [71], suggesting the inhibitory effects of genistein on both
androgen and estrogen-mediated carcinogenesis. However, further studies are required to fully
understand the complex regulation of ER and AR pathways during genistein induced cell
growth inhibition and apoptosis.

2.6. Effects on the regulation of MAPK Pathway
MAPK pathway consists of a three tiered kinase core where MAP3K activates a MAP2K that
activates a MAPK (ERK, JNK, and p38), resulting in the activation of NF-κB and cell survival
[72;73]. It has been reported that activation of the MAPK pathways may cause the induction
of phase II detoxifying enzymes, and inhibition of MAPK pathways may inhibit AP-1-
mediated gene expression [74].

Genistein has been found to regulate the molecules in the MAPK pathway. Huang et al.,
reported that genistein inhibited TGF-β–mediated p38 MAP kinase activation, matrix
metalloproteinase type 2, and cell invasion in human prostate epithelial cells [75]. In other
studies, genistein has been found effective in preventing cytokine- induced ERK-1/2 activation
and promoted apoptotic cell death [76;77]. Since genistein is a well known inhibitor of tyrosine
kinase, it is possible that genistein may inhibit tyrosine kinase upstream of p38 MAPK and
subsequently inhibit the phosphorylation of tyrosine on p38 MAPK, leading to the inactivation
of MAPK pathway.

2.7. Anti-oxidation effects
Isoflavones, including genistein, are known antioxidants. Genistein has been shown to protect
cells against reactive oxygen species (ROS) by scavenging free radicals and reducing the
expression of stress-response related genes [21;22]. It has been demonstrated that genistein
inhibits tumor-promoter, 12-O-tetradecanoylphorbol-13-acetate- induced hydrogen peroxide
production as well as its function in human polymorphonuclear leukocytes, and HL-60 cells
[78;79]. Furthermore, as a follow up to genistein action showing antioxidant capacity, its effect
on activation of the transcription factors- Nrf1 and Nrf2, which have been implicated in the
regulation of genes involved in response to oxidative stress, was investigated [80], These
transcription factors are involved in the regulation of γ-GCS and other detoxification proteins.
Genistein was found to induce the cytosolic accumulation and nuclear translocation of Nrf1
and Nrf2 which closely paralleled changes in glutathione peroxidase (GPx) mRNA levels and
also the activity of GPx [80]. Genistein has also been shown to stimulate antioxidant protein
gene expression in Caco-2 cells [81]. It has been reported that oxidative stress activates NF-
κB [82] and our data showed that genistein is an antioxidant by virtue of its inhibition of the
activation of NF-κB stimulated by oxidant stress [53]. Thus, the ability of genistein in inhibiting
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the generation of ROS, resulting in the inhibition of NF-κB activation, make it a strong
candidate as an antioxidant and a powerful chemopreventive agent.

2.8. Regulation of other pathways
Cycloxygenase-2 (COX-2) is a critical enzyme catalyzing synthesis of bioactive prostaglandin
E2 (PGE2) from the substrate arachidonic acid (AA) and is found to be overexpressed in many
human tumor tissues. COX-2 is known to increase cell proliferation and VEGF production,
induce angiogenesis, and possess anti-apoptotic effects. Genistein and other soy isoflavones
have been found to be effective not only in reducing COX-2 expression but also for
antagonizing AA for controlling PGE2 production and invasiveness of the breast cancer MDA-
MB231 cells through downregulation of EGFR and HER-2/neu activity and by modulating the
level of NF-κB expression. Further transcriptional control studies by Lau and Leung [83]
identified activator protein-1 (AP-1)/cyclic AMP response element binding protein (CREB)
binding site in the COX-2 promoter which is critical for COX-2 expression. Genistein
suppressed AP-1/CREB binding, resulting in reduced COX-2 expression, which could be
important in the post-initiation events of breast carcinogenesis. In addition, genistein has shown
to be beneficial in combination with 5-Flurouracil (5-FU) in the treatment of colon cancer
through the COX pathway [84].

Genistein also inhibits insulin-like growth factor-1 receptor (IGF-1R) signaling, resulting in
the inhibition of cell proliferation and induction of apoptosis. Moreover, Raffoul et al. reported
that genistein also enhanced prostate cancer radiotherapy through the downregulation of
apurinic-apyrimidine endonuclease 1/redox factor-1 expression [85]. Among the STAT family
of transcription proteins, constitutive activation of STAT-3 and STAT-5 has been identified
as responsible for cell survival and growth by preventing apoptosis through increased
expression of antiapoptotic proteins such as Bcl-2 and Bcl-xL. Genistein has been shown to
inhibit phosphorylation of these transcription proteins which, in turn, may inhibit the
constitutive and abnormal signaling cascade, promoting survival and growth of tumor cells
[76]. Expression profiling of rat mammary epithelial cells by Su et al., [86] confirmed the
differential expression of Wnt (Wnt5a, Sfrp2) and Notch (Notch2, Hes1) signaling components
by soy protein isolate and/or genistein using quantitative real-time PCR. Wnt pathway
inhibition by genistein was supported by reduced cyclin D1 immunoreactivity in mammary
ductal epithelium in the genistein treated group, despite comparable levels of membrane-
localized E-cadherin and beta-catenin.

3. Inhibition of carcinogenesis in vivo by genistein
There is growing in vivo evidence demonstrating the inhibitory effects of genistein on
carcinogenesis. Although Hawrylewicz et al [87] and Ravindranath et al [88] have published
data pertaining to animal studies and anticancer potential of soy isoflavone genistein, here we
summarize the in vivo studies in a comprehensive fashion.

3.1. Inhibition of cancers in animal
It has been reported that genistein has a protective role against carcinogenesis in animals.
Prepubertal exposure to soy or genistein reduced mammary carcinogenesis in rats treated with
carcinogens, possibly by modulating the development of the mammary end buds [27;89]. One
of the early studies revealed that soy-containing diets reduced the severity of prostatitis in rats
[90]. Soy isoflavone supplemented diets also prevented the development of adenocarcinomas
in the prostate and seminal vesicles in a rat carcinogenesis model [91]. It has also been reported
to be effective in chemical carcinogen-induced rat ovarian carcinogenesis [92]. The soy diet
reduced growth of transplantable prostate adenocarcinomas and inhibited tumor cell
proliferation and angiogenesis of transplantable prostate cancer in immunodeficient mice
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[93;94]. A diet rich in soy also inhibited pulmonary metastasis of melanoma cells in C57Bl/6
mice [95]. Genistein inhibited the growth of carcinogen-induced cancers in rats and human
leukemia cells transplanted into mice [87;88;96;97]. Singh et al [98] evaluated the natural form
of genistein, and the isoflavone-rich soy phytochemical concentrate (SPC) on the growth and
metastasis of human bladder cancer cells 253J BV-induced tumors in an orthotopic site. Both
treatment regimes were effective in reducing tumor weight by more than 50%, accompanied
by induction of tumor cell apoptosis and inhibition of tumor angiogenesis in vivo. However,
SPC treatment was significantly better, which inhibited lung metastases by 95% and reduced
circulating insulin-like growth factor-I levels [98]. Furthermore, genistein protects the skin
from the effect of long-term psoralen plus ultraviolet A radiation (PUVA) therapy which is
associated with an increased risk of squamous cell carcinoma and malignant melanoma [99;
100]. Additionally genistein is also reported to substantially inhibit skin carcinogenesis and
cutaneous aging induced by ultraviolet (UV) light in mice [99]. In a murine PTEN (mPTEN)
heterozygous (+/−) mutant mouse model for endometrial carcinoma, as well as in estrogen-
related endometrial carcinogenesis, genistein exerted an inhibitory effect on PTEN-related
tumorigenesis [101]. Genistein also attenuated gastric carcinogenesis promoted by sodium
chloride in a rat model of gastric cancer [102]. Thus, a growing body of literature provide
strong evidence to support the role of the various soy products containing genistein in the
protection against carcinogenesis in animal models.

3.2. Inhibition of NF-κB activation supporting antioxidant effect of isoflavone in humans
We have investigated the effects of isoflavone supplementation on NF-κB activation in vivo
in human volunteers [53]. Genistein is an antioxidant as indicated earlier, thus, soy isoflavone
supplementation is expected to inhibit NF-κB activation and, in turn, may reduce the oxidative
damage in human lymphocytes. The lymphocytes from healthy male subjects were harvested
from peripheral blood and cultured for 24 h in the absence and presence of genistein. EMSA
revealed that genistein treatment inhibited basal levels of NF-κB DNA binding activity by 56%
and abrogated TNF-α induced NF-κB activity by 50%. Furthermore, when human volunteers
received 50 mg of soy isoflavone supplements (Novasoy™) twice daily for three weeks, TNF-
α failed to activate NF-κB activity in lymphocytes harvested from these volunteers, however
lymphocytes from these volunteers collected prior to soy isoflavone intervention showed
activation of NF-κB DNA-binding activity upon TNF-α treatment ex vivo [53]. These results
demonstrate that soy isoflavone supplementation has a protective effect against TNF-α induced
NF-κB activation in humans in vivo. We have also measured the levels of oxidative DNA
damage in the blood of the six subjects before and after supplementation with Novasoy™. The
results demonstrate that isoflavone supplementation reduced the levels of the 5-OhmdU and
decreased oxidative damage in human subjects, which provided strong evidence that soy
isoflavone functions as antioxidant. and these effects of genistein could be responsible for its
chemopreventive activity [53].

4. Effects on the inhibition of angiogenesis and metastasis
Matrix metalloproteinases (MMPs) are proteolytic enzymes believed to provide cancer cells
with their invasive potential by degrading the extracellular matrix. Genistein has been shown
to reduce the angiogenic and metastatic potential of cancers [38;103;104]. Additionally,
genistein also significantly decreased the incidence of cancer cell invasion into the lymphatic
vessels attenuating cancer metastasis. Our laboratory has examined the inhibitory effect of
genistein on tumor cell invasion and metastasis of MDA-MB-435 breast cancer cells
transfected with c-erbB-2, which has been shown to promote secretion of MMPs and
subsequent metastasis in experimental models [38]. We found that the expression of c-erbB-2,
MMP-2, and MMP-9 in MDA-MB-435 cells stably transfected with c-erbB-2, was much
higher than that in parental MDA-MB-435 cells. However, the high expression of c-erbB-2,
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MMP-2, and MMP-9 in MDA-MB-435 435 transfectants was significantly down-regulated by
genistein treatment. These results suggest that increased c-erbB-2 expression in MDA-MB-435
435 transfectants may result in increased secretion of MMPs, and that genistein may inhibit
the expression of c-erbB-2 and subsequently decrease the secretion of MMPs in breast cancer
cells. An interesting finding reported by Owen et al, showed that genistein was effective in
decreasing the constitutively high levels of MMP-9 within T-lymphocytes harvested from
mammary tumor bearing mice [105].

By gene expression profiling of genistein treated PC-3 prostate cancer cells and PC-3 bone
tumor, we also found that genistein down-regulated the expression of MMP-9, MMP-2,
protease M, uPAR, VEGF, neuropilin, TSP, BPGF, LPA, TGF-β, TSP-1, and PAR-2, and up-
regulated the expression of connective tissue growth factor and connective tissue activation
peptide [106]. All of these genes are related to angiogenesis and metastasis. These findings
were further supported by studies reporting inhibition of MMP-2 activation and reduction of
prostate cancer cell invasion by genistein [75;107]. Another oligonucleotide microarrays study
has been reported by Lee wherein the gene expression profile by genistein treatment in breast
cancer cells was investigated [108]. Accordingly, this author have shown that TFPI-2, ATF3,
DNMT1, and MTCBP-1, which inhibit invasion and metastasis, were upregulated, and
MMP-2, MMP-7, and CXCL12, which promote invasion and metastasis, were downregulated.

However, as a corollary to our in vitro study, we have further investigated the effect of dietary
genistein on the growth of metastatic prostate cancer cells in a SCID-human experimental
model of prostate cancer bone metastasis. Our results demonstrate that genistein inhibited
prostate cancer cell growth in the bone environment and down-regulated the transcription and
translation of genes critically involved in the control of tumor cell invasion and metastasis in
vitro and in vivo, suggesting the possible therapeutic role of genistein for metastatic prostate
cancer [109]. Other investigators have also demonstrated similar results showing that
isoflavones inhibited bone metastasis of human breast cancer cells in a nude mouse model and
metastasis of androgen-sensitive human prostate tumors in mice [110;111]. Furthermore, we
documented that genistein also intervenes in the regulation of the osteoprotegerin/receptor
activator of NF-κB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer, suggesting
that isoflavone genistein could be a promising non-toxic agent augmenting the therapeutic
outcome of metastatic prostate cancer with chemotherapeutic drugs [59]. Since cancer
metastases follows a multi-step pathway wherein invasion and cell motility is an early step,
genistein at physiological relevant concentrations has been shown to be effective in exerting
an inhibitory effect on the migration of prostate cancer cells [112]. Complimenting these report,
Craft et.al., recently demonstrated that genistein also has the potential to therapeutically
compensate endoglin deficiency- a key regulator of cell motility in prostate cancer [113].
Another recent report showed that genistein induced metastatic suppressor kangai-1 (KA11),
suggesting that genistein could be used for anti-metastatic therapies [114].

Angiogenesis is the formation of new blood vessels and it is essential for normal reproductive
function, development and wound repair processes. However, angiogenesis in solid tumors are
important and necessary for promoting the proliferation, invasion and metastasis of cancer
cells. It has been found that genistein inhibits vessel endothelial cell proliferation and in
vitro angiogenesis at half maximal concentration of 5 and 150 μM, respectively, suggesting
that genistein is a potent inhibitor of vascularization and cancer cell growth [104]. TGF-β is a
known major factor that regulates cell proliferation [115], and TGF-β signaling is an important
feature in the up-regulation of angiogenesis [116]. Genistein has been known to inhibit TGF-
β signaling, and therefore inhibit angiogenesis [116]. Further evidence in support of soy-based
foods as natural dietary inhibitors of tumor angiogenesis was reported in a study by Su et al.
[117]. The efficacy of soy isoflavones on angiogenesis inhibition in vivo was examined by
nude mice xenograft and chick chorioallantoic membrane bioassay. Factors analyzed included
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angiogenic factors, matrix-degrading enzymes, and angiogenesis inhibitors. Genistein was the
most potent inhibitor of angiogenesis in vitro and in vivo among the isoflavone compounds
tested. It may also account for most of the reduced microvessel density observed in xenografts
and the suppressed endothelial migration by soy isoflavones. Genistein exhibited a dose-
dependent inhibition of expression/excretion of vascular endothelial growth factor165, platelet-
derived growth factor, tissue factor, urokinase plasminogen activator, and matrix
metalloprotease-2 and 9, respectively. On the other hand, there was an up-regulation of
angiogenesis inhibitors- plasminogen activator inhibitor-1, endostatin, angiostatin, and
thrombospondin-1. In addition, a differential inhibitory effect between immortalized
uroepithelial cells and most cancer cell lines was also observed. All these reports suggest that
tissue factor, endostatin, and angiostatin are novel molecular targets of genistein.

Recently, Guo et al. [118] documented that genistein significantly reduced nuclear
accumulation of hypoxia-inducible factor-1α in PC-3 cells, which is the principle transcription
factor that regulates VEGF expression in response to hypoxia. These observations support the
hypothesis that genistein may inhibit prostate tumor angiogenesis through the suppression of
VEGF-mediated autocrine and paracrine signaling pathways between tumor cells and vascular
endothelial cells. Hence, we believe that there is ample evidence to suggest that genistein is a
potent anti-angiogenic agent and its application in human awaits further investigation.

5. The sensitizing effect of genistein in cancer treatment
In recent years, novel combination treatments with conventional cancer therapies and
chemopreventive agents have received much attention in cancer research. More importantly,
the published studies have shown that isoflavone genistein could potentiate the antitumor
effects of chemotherapeutic agents in various cancers in vitro and in vivo in preclinical studies.
We have reported in vitro that genistein potentiated growth inhibition and apoptotic cell death
caused by cisplatin, erlotinib, docetaxel, doxorubicin, gemcitabine, and CHOP (cyclophos-
phamidine, doxorubicin, vincristine, prednisone) in cancers of prostate, breast, pancreas, and
lung and lymphoma [56–58;119–121]. We have also found that dietary genistein in vivo could
enhance the antitumor activities of gemcitabine and docetaxel in a tumor model, resulting in
apoptotic cell death and the inhibition of tumor growth [42;109]. Similar observations has been
reported by other investigators showing that the antitumor effects of chemotherapeutics,
including 5-fluorouracil (5-FU), adriamycin, cytosine arabinoside, tamoxifen and perifosine
could be potentiated by genistein [84;122–126]. Genistein also enhanced the antitumor effect
of bleomycin in HL-60 cells, but not in normal lymphocytes in an in vitro study [127]. The
synergistic action of genistein and cisplatin or carmustine (BCNU) on the growth inhibition
of glioblastoma and medulloblastoma cells has also been observed [128]. In ovarian cancer,
genistein potentiated the antiproliferative and proapoptotic effect of antibodies directed against
the cell adhesion molecule L1-CAM [129]. Furthermore, despite limitations in the cytotoxic
effect of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) in gastric
and pancreatic adenocarcinoma cell lines, subtoxic concentrations of genistein sensitized these
TRAIL-resistant cells to TRAIL/Apo2L-mediated apoptosis [130;131]. In radiotherapy,
experimental studies from Dr. Hillman’s laboratory have demonstrated that the combination
of genistein and radiation exert enhanced inhibitory effects on tumor growth and progression
of renal cell carcinoma and prostate tumor in orthotopic models [132;133]. Genistein also
enhanced radiosensitivity in human esophageal, and cervical cancer cells, suggesting the
beneficial effects of genistein in cancer radio-therapy [134;135]. These reports clearly
demonstrate that genistein could be used in cancer treatment to further enhance the antitumor
activities of conventional therapeutics.
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6. Genistein analogues and related studies
To enhance the antitumor activity of isoflavone, several isoflavone derivatives have been
synthesized and used in in vitro and in vivo experiments and in clinical trials. These compounds
have shown a low IC50 in the inhibition of cancer cell growth in vitro. Moreover, at low
concentrations, these compounds were able to enhance the antitumor activity of clinically
available chemotherapeutic agents, suggesting their potent effects as therapeutic agents for
combination treatment. Phenoxodiol is one such analog of isoflavone genistein and has shown
a broad-spectrum, anticancer effect. In an animal study, phenoxodiol inhibited dimethyl-benz
(a)anthracene (DMBA)-induced mammary carcinogenesis in female Sprague-Dawley rats,
suggesting that phenoxodiol is an effective chemopreventive agent against DMBA-induced
carcinogenesis [136]. In experimental studies and clinical trials, phenoxodiol has been used
both as a mono-therapy and in combination with standard chemotherapeutics. These studies
have shown that in some cancers phenoxodiol appears to be strong enough to work on its own
as a monotherapy. However, one of the major benefits of phenoxodiol is its ability to sensitize
cancer cells to the antitumor effects of conventional chemotherapeutics [137]. It has been found
that cancer cells that have become resistant to the effects of conventional chemo-therapeutics,
phenoxodiol could restore chemosensitivity [138]. Therefore, by exposing chemoresistant
cancer cells to phenoxodiol first, long-standing drug resistance is removed, making cancer cells
susceptible once again to standard chemotherapeutics, such as cisplatin, carboplatin, taxanes,
and gemcitabine. Phenoxodiol is currently undergoing clinical studies in the USA and
Australia. So far, phase I/II clinical trials have shown some disease stabilization without severe
toxicity [138]. We have also synthesized structurally-modified derivatives of isoflavone based
on the structural requirements for optimal anti-cancer effect [139]. We found that these
synthetic derivatives of isoflavone exerted higher anti-cancer activity with lower IC50. These
derivatives of isoflavone also induced more apoptosis compared to genistein. Other
investigators also synthesized a series of genistein derivatives and evaluated either their
cytotoxic potential and/or protective efficacy against hydrogen peroxide induced endothelial
cell damage [140;141]. Some of these have effect comparable to 5-Flurauracil in potency of
their cytotoxicity [141]. These results suggest that genistein and synthetic structurally-modified
derivatives of isoflavone may be promising agents for cancer chemoprevention and therapy
either alone or in combination with existing chemotherapeutic agents.

7. Clinical trials: effects on patients with prostate cancer
Several phase I and II clinical trials using isoflavone supplementation have been conducted in
the patients with prostate cancer. In phase I clinical trials, the safety, pharmacokinetic
parameters, and efficacy of orally administered isoflavones have been determined [10;142;
143]. No toxicity has been observed in the subjects. Oral administration of soy isoflavones
gives plasma concentrations of genistein up to 16.3 μM that have been associated with anti-
metastatic activity in vitro [10]. No genotoxicity has been found in subjects treated with a
purified soy unconjugated isoflavone mixture [143].

Our in vitro data demonstrated the inhibition of prostate cancer cell growth and decreased PSA
expression in LNCaP cells by genistein. Hence, we conducted a phase II clinical trial to
investigate the modulation of serum PSA levels in patients with prostate cancer by soy
isoflavone supplementation. Patients with prostate cancer were eligible to participate if they
had rising PSA levels and were previously untreated (Group I), treated with local therapy
(Group II), or treated with hormone therapy (Group III), and had either three successive rising
PSA levels or a PSA of >10 ng/ml at two successive evaluation. No other therapy or
supplements were allowed during the study period. Patients received 100 mg Novasoy™

(Archer Daniels Midland Company, Decatur, IL, USA) orally twice daily for a minimum of
three months in the absence of progression or toxicity. Novasoy™ contains genistein, daidzein,
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and glycitin at a 1.3:1:0.3 ratios. Serum PSA, IGF-1 and IGFBP-3 levels were measured and
toxicity was assessed. Serum PSA levels were monitored at baseline and monthly during the
study. The results showed that soy isoflavone supplementation inhibited the linear rise in PSA
in both androgen sensitive and androgen insensitive patient populations. There were no
statistically significant changes in the plasma levels of IGF-1 and IGFBP-3. These data
demonstrated that soy isoflavone supplementation decreases the rate of rise in serum PSA
levels without any toxicity in prostate cancer patients. The lack of significant side effects of
soy isoflavone makes it an ideal agent for patients with advanced disease for further studies.
Nevertheless, the results of in vitro studies along with numerous in vivo studies in different
animal models, and our pilot in vivo human studies collectively point towards a favorable
application of genistein as chemopreventive and/or therapeutic agent for prostate and other
cancers.

A phase II randomized, placebo-controlled clinical trial using purified isoflavones in
modulating steroid hormones in patients with localized prostate cancer has been reported
recently [144]. Although significant increases in plasma isoflavones (P < 0.001) was observed
with no clinical toxicity, the corresponding modulation of serum SHBG, total estradiol, and
testosterone in the isoflavone-treated group compared to men receiving placebo was
nonsignificant. Increasing plasma isoflavones failed to produce a corresponding modulation
of serum steroid hormone levels in men with localized prostate cancer, suggesting the need to
explore other potential mechanisms by which prolonged and consistent purified isoflavone
consumption may modulate prostate cancer risk [144].

Recently, the investigators from our institute reported the results from a phase II clinical trial
designed to investigate the efficacy of lycopene alone or in combination with soy isoflavones
on serum PSA levels in men with prostate cancer [145]. 35 of 37 (95%) evaluable patients in
the lycopene group and 22 of 33 (67%) evaluable patients in the lycopene plus soy isoflavone
group achieved stable disease, described as stabilization in serum PSA level. The data suggest
that lycopene and soy isoflavones have activity in prostate cancer patients with PSA relapse
disease and may delay progression of both hormone-refractory and hormone-sensitive prostate
cancer [145]. Another human in vivo study also showed that a daily diet containing four slices
of a bread rich in heat treated soy grits favorably influences the PSA level and the free/total
PSA ratio in patients with prostate cancer, suggesting the inhibitory effects of phytoestrogen
on PSA level [146]. Although these results are provocating, further clinical trials are needed
to fully justify the use of isoflavones for cancer prevention and therapy.

8. Conclusions
In conclusion, genistein ingested through natural food sources exerts its anti-carcinogenic
effects, mediated via its pleiotropic molecular mechanism(s) of action on cell cycle, cell
apoptotic processes, angiogenesis, invasion, and metastasis. These effects may be primarily
due to specific effects of genistein on Akt, NF-κB, MMPs and Bax/Bcl-2 signaling pathways.
However, further basic and clinical research in this rapidly growing field of isoflavones should
provide lessons for its ultimate application in the cancer field. Such advances will provide
critical data that will be supported by definitive clinical trials to prove or disprove whether
isoflavone, genistein could fulfill its promise as a chemopreventive and/or therapeutic agent
against human cancers with utmost confidence.
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Table-1
Molecular targets of genistein

Apoptosis Transcription factors Cell cycle Others

↑Bax ↓NF-κB ↓Cyclin B1 ↓Akt
↓Bcl-2 ↑Nrf1 ↓Cyclin D1 ↓AR
↓Bcl-xL ↑Nrf2 ↑p21WAF1 ↓PSA
↑PARP ↓STAT-3 ↑p27 KIP1 ↓COX-2
↓Survivin ↓STAT-5 ↑p16 INK4a ↓MMP-9
↓IAP ↓IGF-1R ↑Myt-1 ↓MMP-2
↓XIAP ↓Ape-1/Ref ↓Wee-1 ↓p38 MAPK
↑BAD ↓Wnt ↓CDK-1 ↓ERK-1/2
↑Active caspases ↓vNotch-2 ↑GPx
↑ER stress regulators ↓AP-1 ↑kangai-1

↓CREB ↑Endoglin
↑GADD 153 ↓RANK/RANK-L
↓HIF-1α ↓PTEN
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