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Abstract
The inner ear contains the developmentally related cochlea and peripheral vestibular labyrinth. Given
the similar physiology between these two organs, hearing loss and vestibular dysfunction may be
expected to occur simultaneously in individuals segregating mutations in inner ear genes. Twenty-
two different genes have been discovered that when mutated lead to non-syndromic autosomal
dominant hearing loss. A review of the literature indicates that families segregating mutations in 13
of these 22 genes have undergone formal clinical vestibular testing. Formal assessment revealed
vestibular dysfunction in families with mutations in ten of these 13 genes. Remarkably, only families
with mutations in the COCH and MYO7A genes self-report considerable vestibular challenges.
Families segregating mutations in the other eight genes do not self-report significant balance
problems and appear to compensate well in everyday life for vestibular deficits discovered during
formal clinical vestibular assessment. An example of a family (referred to as the HL1 family) with
progressive hearing loss and clinically-detected vestibular hypofunction that does not report
vestibular symptoms is described in this review. Notably, one member of the HL1 family with
clinically-detected vestibular hypofunction reached the summit of Mount Kilimanjaro.
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1. Introduction
Given the common embryonic origins and biology of the auditory and vestibular systems within
the inner ear, it might be anticipated that single gene mutations known to cause inherited
hearing loss would also lead to vestibular dysfunction. Hearing loss is classified as either
syndromic or non-syndromic. When hearing loss is coupled with diagnoses affecting body
systems other than the inner ear (e.g. diabetes, retinitis pigmentosa, heart arrhythmias) the
hearing impairment is considered syndromic. More commonly, hearing loss is found as a single
entity and therefore referred to as non-syndromic.
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Genes underlying non-syndromic deafness (DFN) can be inherited in an autosomal dominant
(DFNA), autosomal recessive (DFNB), or X-linked (DFN) manner. A number following the
DFNA, DFNB, or DFN designation indicates the order in which the genetic locus was
discovered (e.g. DFNA1, DFNA2) and each locus refers to a specific chromosomal location.
Non-syndromic hearing loss can also be inherited maternally due to mitochondrial mutations.
The vast majority of deafness genes have been discovered by collaborating with large hearing
impaired human pedigrees where the inheritance pattern of the hearing loss in the family is
compared to the segregation pattern of genetic markers in DNA from these same individuals.
Twenty-two different genes have been discovered that lead to non-syndromic autosomal
dominant hearing loss.

In this reveiw, we describe a human pedigree (the HL1 family) segregating non-syndromic
autosomal dominant sensorineural hearing loss. Clinical testing in the HL1 family revealed
vestibular hypofunction, however the family appears to have adapted well to this lack of
vestibular information from their inner ears. In an effort to interpret the HL1 vestibular findings
in the context of other DFNA pedigrees we conducted a review of the DFNA vestibular
literature.

2. The HL1 family
2.1 Autosomal dominant inheritance of progressive hearing loss

The HL1 family is an American pedigree of Irish decent (Fig. 1). Written informed consent
was obtained from the HL1 family members for all study procedures under a protocol approved
by the Institutional Review Board of the University of Washington. Linkage to the X-
chromosome was excluded by genetic marker analysis as male-to-male transmission was not
observed in the pedigree. We also analyzed the segregation pattern of genetic markers tightly
flanking the COCH (D14S1021-COCH-D14S54) and MYO7A (D11S1314-MYO7A-
D11S937) genes in the HL1 family. These markers did not co-segregate with hearing loss in
the HL1 family. Mitochondrial inheritance from the mother can not be ruled out as father-to-
child transmission has not been observed in the HL1 pedigree. However, the HL1 family
members do not have mutations in the two mitochondrial genes, 12S rRNA (bp 648-1601) and
tRNASer (UCN) (bp 7446-7516), known to harbor alterations associated with non-syndromic
hearing impairment. In addition, the auditory findings in the HL1 family are not consistent
with mitochondrial inheritance which is correlated generally with a variable phenotype due to
heteroplasmy. Therefore, the auditory phenotype in the HL1 family most likely segregates as
an autosomal dominant trait. The gene mutation in the HL1 family has not yet been discovered.
Affected HL1 family members demonstrate progressive hearing loss with a tendency for a
notch at 2000 Hz (Fig. 1). All molecular genetic and auditory analyses were conducted as
described previously [29].

2.2 Vestibular hypofunction
Based on the hearing and balance questionnaires and discussions with the HL1 family
members, complaints of significant vestibular problems were not elicited. To determine if
clinical vestibular problems could be detected, testing was conducted with two HL1 family
members that both demonstrated hearing loss, female II-4 (at the age of 56 years) and her son,
male III-3 (at the age of 32 years). Vestibular test parameters and normal values have been
described previously [29]. Oculomotor and caloric test results are not available for female II-4.
Oculomotor testing was normal for male III-3.

Computerized dynamic posturography
Sensory organization and motor control testing: Male III-3 generated an overall normal
sensory organization test (SOT) composite score of 84. During the test, the COG (center of
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gravity) alignment indicated that male III-3 put more weight on his left than right foot. This
uneven weight distribution may have impacted the motor control test (MCT) results which
scored prolonged latencies on the backward translations on the right side. Female II-4 gave an
overall abnormal SOT composite score of 65 with her poorest performance under platform
condition 6. Her COG alignment favored weight to her left foot, but not to the extent of her
son. On the MCT, a prolonged latency was scored on the backward translation on the left side.

Rotational testing
Velocity Step Test: For the velocity step test, the mother and son pair displayed abnormal gain
and response time constants under almost all conditions (Table 1).

Sinusoidal oscillation test: During the oscillation test, male III-3 demonstrated abnormal gains
across all frequencies (Fig. 2A) with a phase angle lag at 0.04 and 0.08 Hz (Fig. 2B). Female
II-4 displayed abnormal gains across all frequencies except 0.64 Hz (Fig. 2A) and a phase lag
at 0.08 Hz (Fig. 2B).

Caloric testing: Caloric testing in male III-3 detected a 30% unilateral weakness in the right
ear indicating that male III-3 is receiving more vestibular information from his left inner ear
than his right.

3. Vestibular literature review for known DFNA gene mutations
To appreciate how often vestibular symptoms and/or abnormal findings from formal clinical
vestibular assessment are reported for families with mutations in known DFNA genes, we
conducted a review of the DFNA literature.

3.1 Compensation for vestibular dysfunction in families with DFNA mutations
Families with alterations in 13 of the 22 DFNA genes had undergone formal clinical vestibular
testing (Table 2) consisting of one or more of the following evaluations: calorics, ocular motor,
vestibulo-ocular reflex (VOR) in most cases by the rotary chair velocity step test, cervico-
ocular reflex (COR), computerized dynamic posturography (CDP), and vestibular evoked
myogenic potential (VEMP). Caloric testing was the most common type of vestibular
assessment in these families. Formal vestibular testing yielded abnormal results in at least some
family members for 10 of these 13 DFNA genes. For two of these 10 genes, COCH and
MYO7A, abnormal clinical vestibular tests manifested as vestibular symptoms in at least some
family members. This is particularly evident in families with COCH mutations where Meniere-
like features are not unusual (Table 2). Therefore, genetic screening of COCH and MYO7A is
clearly indicated in families with abnormal clinical vestibular test results. Families segregating
mutations in the other eight DFNA genes yield at yeast some abnormal clinical vestibular test
results, but these family members either do not complain of vestibular problems or the problems
are considered mild and may also be found in a random sample of individuals. In most cases,
family members affected by a DFNA mutation seem to compensate for their clinically-detected
vestibular loss fairly well in everyday life.

3.2 Notes regarding Table 2
A few points of clarification regarding Table 2 follow. The article reference indicates where
the vestibular data was presented, not necessarily where mutation findings were first
documented for the family. The “affected individual” notation in Table 2 refers to the finding
of hearing loss, but not necessarily vestibular dysfunction in those individuals. In most reports,
family members with normal hearing are not included in the vestibular testing. If an article
could not be located describing clinical vestibular testing, the cloned DFNA locus was not
listed in Table 2, for example DFNA genes GJB3 (DFNA2), GJB6 (DFNA3), EYA4
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(DFNA10), POU4F3 (DFNA15), MYH9 (DFNA17), MYO6 (DFNA22), TFCP2L3
(DFNA28), TMC1 (DFNA36), and MYO1A (DFNA48). The two DFNA5 mutations leading
to skipping of exon 8 are different genomic alterations. The three p.W276S KCNQ4 mutations
are thought to be from unrelated families as is the case for the two p.T669M WFS1 alterations.
The ESPN gene study [11], indicated that routine vestibular tests were conducted including
one or more of the following tests: caloric, rotatory, optokinetic, swinging torsion,
statokinesimetric, and vestibulo-vegetative. Some of the abnormal vestibular findings may be
specific to a particular mutation within the DFNA gene. The DFNA9 family segregating the
p.C542F cochlin alteration demonstrated abnormal central oculomotor test results, suggesting
the need for a study addressing cochlin expression in the human central nervous system.

4. Summary
As seen in the HL1 family, the DFNA literature review indicates that in most cases vestibular
symptoms are not a major complaint of families with mutations in the known DFNA genes
even if a vestibular loss is detected in these individuals through formal clinical evaluation.
Therefore, the lack of self-reported vestibular symptoms may not accurately convey the amount
of vestibular information contributed by the inner ear to families segregating DFNA mutations.
The HL1 family members do not self-report vestibular problems perhaps because they have
adapted to a lack of vestibular information from their inner ears from an early age. Female II-4
and male III-3 appear to compensate well for their clinically-detected vestibular loss in every-
day life. This is evident particularly in male III-3 who demonstrated vestibular hypofunction
with caloric and rotary chair testing, but generated normal SOT scores on the balance platform
and during the same year as these vestibular evaluations reached the summit of Mount
Kilimanjaro.
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Fig. 1.
Audiologic and haplotype characterization of the HL1 Pedigree. (A) Each individual in the
pedigree is assigned a number by generation. Underlined numbers indicate that auditory
evaluations were performed for that person. Affected individuals are denoted by blackened
symbols, males are denoted by squares, females are denoted by circles, and deceased persons
are indicated by a diagonal line through the symbol. Symmetrical hearing loss was detected in
all affected HL1 family members and therefore only right ear threshold values are plotted on
the audiogram. Frequency in Hertz (Hz) is plotted on the x-axis and hearing level in decibels
(dB HL) on the y-axis. Plotted on each audiogram (gray line) are the average pure-tone air
conduction thresholds for a person with normal hearing matched in age to the earliest
audiogram collected for the family member.
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Fig. 2.
Sinusoidal Oscillation Test Results. The mother (II-4) and son (III-3) are plotted with a square
and diamond, respectively. For both graphs (A, B) the frequency in Hertz (Hz) is shown on
the x-axis. For both graphs the abnormal response range defined by cutting scores (2SD) is
denoted by hatched light gray regions. (A) The gain (peak eye velocity/peak head velocity) is
plotted on the y-axis. (B) The phase relationship between chair stimulus and eye response is
plotted on the y-axis. An abnormal phase angle would be a lag or lead in degrees between eye
velocity and chair velocity. VOR = vestibule-ocular reflex.
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