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    Introduction 
 Clathrin-coated pits are a major port of entry into mammalian 

cells. After assembly of AP2 adaptor complexes and clathrin, 

other endocytic components including the GTPase dynamin and 

cargoes, such as transmembrane receptors, become selectively 

incorporated into coated pits. The coated pits then invaginate 

and, after scission, form clathrin-coated vesicles (CCVs). 

Removal (uncoating) of peripheral coat proteins is a prerequi-

site for the progression of these vesicles through the endocytic 

pathway ( Conner and Schmid, 2003 ). 

 Uncoating of clathrin from isolated CCVs in vitro has been 

extensively characterized and requires the heat shock protein 

Hsc70 and auxilin, a J domain – containing cofactor ( Schlossman 

et al., 1984 ;  Schmid et al., 1985 ;  Ungewickell et al., 1995 ;  Umeda 

et al., 2000 ). However, other investigations demonstrated that 

AP2 uncoating requires an additional, distinct cytosolic activity 

( Hannan et al., 1998 ). Coat disassembly is facilitated by mini-

mizing protein – protein interactions between peripheral coat pro-

teins and transmembrane receptors established during coated pit 

assembly ( Ricotta et al., 2002 ;  Jackson et al., 2003 ;  Honing et al., 

2005 ). Neurons derived from mice lacking synaptojanin, an ino-

sitol 5 �  phosphatase, display a delay in uncoating. This appears to 

be because of enhanced AP2 and clathrin association with the 

plasma membrane in a process that requires phosphoinositide 4,5-

bisphosphate (PtdIns(4,5)P 2 ;  Cremona et al., 1999 ). 

 Assembly of AP2 onto the plasma membrane is mediated 

by a low affi nity interaction between PtdIns(4,5)P 2  and a bind-

ing site on the  � -adaptin subunit of AP2 and is further enhanced 

by phosphorylation of the  � 2 subunit of AP2, which promotes 

PtdIns(4,5)P 2  binding to a distinct site on  � 2 ( Rohde et al., 2002 ; 

 Honing et al., 2005 ).  � 2 phosphorylation also specifi cally en-

hances its association with Yxx �  motifs within cargoes such as 

transferrin receptor (TfnR;  Fingerhut et al., 2001 ;  Ricotta et al., 

2002 ). There is a  � 2 kinase (most likely AAK1 [ Conner and 

Schmid, 2002 ]) tightly associated with AP2. Previous studies 

showed that clathrin activates the  � 2 kinase ( Conner et al., 2003 ) 
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by sequestration of its GEF, the absence of a dominant-negative 

effect in vitro of cytosol containing overexpressed rab5 S34N  is most 

likely because in vitro uncoating assays measure a single round 

of uncoating, obviating the need for continuous exchange of 

GDP for GTP on rab5. These data provide the fi rst evidence 

for a role for rab5 in the specifi c regulation of AP2 uncoating 

in vitro. 

 We next examined the effect of altering the levels of two 

rab5 exchange factors, rabex-5 and RME-6. Because rabex-5 

exists in complex with a rab5 effector, rabaptin5 ( Horiuchi et al., 

1997 ;  Lippe et al., 2001 ), immunodepletion of rabaptin5 can be 

used to remove rabex-5 from cytosol ( Mattera et al., 2003 ). 

Cytosol depleted of rabex-5 (depletion of rabaptin5 was  � 90% 

and of rabex-5  > 65% as assessed by Western blotting; Fig. S1, 

avail able at http://www.jcb.org/cgi/content/full/jcb.200806016/DC1) 

showed dramatically reduced ability to support the uncoating 

reaction compared with a mock-depleted control ( Fig. 1 B ). 

The effect of depletion of rabaptin5 – rabex-5 was specifi c for 

AP2 uncoating as AP1 was uncoated to a similar extent by 

mock- or rabex-5 – depleted cytosol ( Fig. 1 B ). 

 Similarly, cytosol derived from cells overexpressing 

hRME-6 enhanced AP2 uncoating compared with control cyto-

sol. The enhancement was comparable to that observed with 

cytosol overexpressing rab5 wt  ( Fig. 1 C ). When the rabaptin5 –

 rabex-5 complex was immunodepleted from cytosol over-

expressing hRME-6, there was no signifi cant reduction in the 

ability of this cytosol to stimulate AP2 uncoating ( Fig. 1 D ). 

Collectively, these fi ndings suggest that these two exchange fac-

tors are functionally redundant in vitro. 

 Although Hsc70 and auxilin are necessary and suffi cient 

for clathrin uncoating in vitro, an additional cytosolic factor 

has been shown to be required for removal of AP2 from CCVs 

( Hannan et al., 1998 ). PP2A was shown to be suffi cient to re-

move both AP2 and AP1 from liver-derived CCVs ( Ghosh and 

Kornfeld, 2003 ). Consistent with these results and using brain-

derived CCVs, we also found that PP2A is capable of uncoating 

AP2 as well as AP1 ( Fig. 1 E ). 

 Specifi c regulation of AP2 uncoating 
by rab5 in vivo 
 Having identifi ed a role for rab5 during uncoating in vitro, we 

wanted to investigate if rab5 also regulates AP2 uncoating in 

living cells. We established a system to measure differences in 

the extent of colocalization of AP2 with endocytic vesicles as a 

relative measure of uncoating. Cells were incubated for 5 min at 

37 ° C with Texas red or Cy5-transferrin (Tfn) and then surface 

Tfn was removed by acid stripping before antibody staining. 

Control experiments where cells were incubated on ice revealed 

that acid stripping effectively removed 95% of the surface fl uo-

rescence (unpublished data). The degree of colocalization of 

AP2 with Tfn ( Fig. 2 A ) was then measured as described in 

Materials and methods. [ID]FIG2[/ID]  In mock-treated cells, no more than 10% of 

the AP2-positive spots colocalized with Tfn after acid stripping. 

We compared the extent of AP2 colocalization with endocytic 

vesicles labeled with Texas red Tfn in mock-transfected cells 

and those overexpressing rab5 S34N , which has a dominant-neg-

ative effect on endocytosis ( Li and Stahl, 1993 ). We expressed 

to promote cargo sequestration into clathrin-coated pits ( Jackson 

et al., 2003 ). It follows that  � 2 dephosphorylation might facili-

tate uncoating and, indeed, studies using liver CCVs indicated 

that protein phosphatase 2A (PP2A) is suffi cient to mediate 

AP1 (the adaptor protein complex present in TGN-associated 

CCVs) and AP2 uncoating from CCVs in vitro ( Ghosh and 

Kornfeld, 2003 ). However the in vivo signifi cance of PP2A ’ s 

role has not been explored. 

 Rab5 is a major regulator of the early endocytic pathway. 

Through interactions with a variety of effector molecules, it 

modulates CCV budding, endosomal fusion, motility, and sig-

naling ( Zerial and McBride, 2001 ). Rabex-5 and RME-6 both 

act as guanine nucleotide exchange factors (GEFs) for rab5. 

Rabex-5 exists in complex with a rab5 effector, rabaptin5, and 

this complex appears to be functionally important for rabex-5 

recruitment to endosomal membranes ( Horiuchi et al., 1997 ;  Lippe 

et al., 2001 ). Recent studies in  Caenorhabditis elegans  have in-

dicated that the rab5 exchange factor RME-6 may act specifi cally 

at clathrin-coated pits ( Sato et al., 2005 ). Mammalian ortho-

logues of RME-6, hRME-6 ( Sato et al., 2005 ), also known as 

RAP6 ( Hunker et al., 2006 ), and GAPex5 ( Lodhi et al., 2007 ) 

were found to regulate endocytic traffi c ( Hunker et al., 2006 ; 

 Su et al., 2006 ;  Lodhi et al., 2007 ). 

 Here we demonstrate a novel role for rab5 in specifi cally 

regulating AP2 uncoating from CCVs. We demonstrate that rab5 

modulates AP2 uncoating via hRME-6 rather than rabex-5. 

Recruitment of hRME-6 promotes  � 2 dephosphorylation. Further-

more, rab5 appears to regulate PtdIns(4,5)P 2  levels in endocytic 

vesicles, thus providing a mechanistic symmetry to AP2 assem-

bly during the disassembly process. 

 Results 
 Rab5 regulates uncoating of AP2 from 
CCVs in vitro 
 Our previous results indicated that rab5 acts at several steps in 

the CCV cycle ( McLauchlan et al., 1998 ). We asked whether 

rab5 might participate in the regulation of CCV uncoating. 

Using in vitro uncoating assays ( Ghosh and Kornfeld, 2003 ), 

we examined the effects of cytosols prepared from HEK293T 

cells overexpressing wild-type rab5 (rab5 wt ), constitutively active 

rab5GTP (rab5 Q79L ), rab5GDP (rab5 S34N ), and wild-type rab1 

(rab1 wt ) on clathrin and adaptor protein (AP2 and AP1) uncoating. 

We found that cytosols containing elevated levels of rab5GTP 

(rab5 wt  and rab5 Q79L ) enhanced the extent of AP2 uncoating, 

monitored by released  � -adaptin levels, compared with cytosols 

containing increased levels of either rab5GDP (rab5 S34N ) or 

rab1GTP (rab1 wt ;  Fig. 1 A ). [ID]FIG1[/ID]  Interestingly, the effect of rab5GTP 

was specifi c for AP2. Although all of the cytosols contain com-

ponents that enhance the uncoating of AP1, there was no signifi -

cant difference in their ability to uncoat either AP1 or clathrin, 

as assessed by immunoblotting ( Fig. 1 A ). The comparable effects 

of rab5 wt  and rab5 Q79L  are consistent with previous results showing 

that cytosol, containing equivalent amounts of posttranslation ally 

modifi ed rab5 wt  and rab5 Q79L , show comparable stimulation of 

endosomal fusion in vitro ( Stenmark et al., 1994a ). Because 

Rab5 S34N  is presumed to exert its dominant-negative effect in vivo 
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 In contrast to our observations on AP2, we found no change 

in clathrin association with endocytic vesicles in mock-trans-

fected cells versus those where rab5 S34N  was overexpressed ( Fig. 2, 

F and G ). Furthermore, overexpression of dominant-negative 

rab11 (rab11 S25N ), which inhibits the recycling pathway, did not 

signifi cantly affect the degree of colocalization of AP2 with endo-

cytic vesicles compared with mock-treated cells (Fig. S2, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200806016/DC1). 

These data therefore are fully consistent with the hypothesis that 

rab5 regulates AP2 uncoating in vivo, mirroring our in vitro 

results showing that rab5 specifi cally regulates AP2 uncoating. 

 Recruitment of rab5 to clathrin-coated pits 
 Because RME-6 acts as a GEF for rab5 at clathrin-coated pits in 

 C. elegans  ( Sato et al., 2005 ), we wished to investigate potential 

mechanisms of hRME-6 recruitment to CCVs to address how 

rab5 participates in uncoating. GST pull-down experiments 

the extent of overlap of AP2 and Tfn in mock-transfected cells 

as 1 and found a signifi cant increase in the degree of colocaliza-

tion of AP2 with endocytic vesicles  ( 1.46  ±  0.13 vs. 1  ±  0.06 

fold) in cells with elevated levels of rab5GDP ( Fig. 2 B ). 

 One possible explanation for these data could be that 

rab5GDP decreases cargo recruitment into coated pits. If this was 

the case, then the enhanced association of AP2 with Tfn-positive 

endocytic, observed after rab5 S34N  overexpression, could result from 

lower concentrations of cargo molecules per individual vesicle. 

To address this, we used gold-labeled B3/25 antibodies that rec-

ognize the TfnR ectodomain to measure the density of TfnR per 

coated pit in mock-transfected cells and in cells overexpressing 

rab5 mutants ( Fig. 2 C ). Quantifi cation of gold particles revealed 

no signifi cant difference in the density of cargo per pit in control 

cells versus cells overexpressing rab5 wt , rab5 Q79L , or rab5 S34N  

( Fig. 2 D ). However, there were fewer coated pits per profi le in 

cells overexpressing rab5 Q79L  ( Fig. 2 E ). 

 Figure 1.    Rab5 specifi cally regulates AP2 
uncoating in vitro.  (A) Uncoating assays were 
performed on CCVs isolated from porcine 
brain incubated with ATP, Hsc70 (1.3  μ g), and 
cytosols (50  μ g) prepared from HEK293T cells 
overexpressing Rab5 wt , Rab5 Q79L , Rab5 S34N , 
or Rab1 wt  as indicated. (top) CCVs (P) were 
separated from released coat proteins (S) and 
analyzed by Western blotting for clathrin  using 
CHC 5.9, AP2 using anti –  � -adaptin mAb 
100/2, and AP1 using anti –  � -adaptin mAb 
100/3. (bottom)  � -Adaptin, clathrin, and 
 � -adaptin amounts released into supernatant 
during uncoating quantifi ed by densitometry 
of Western blots ( n  = 3). Data expressed as 
a percentage  ±  SEM of maximal uncoating 
seen in the presence of rab5 wt  or rab5 Q79L . 
AP2 uncoating in the presence of rab5 S34N  
and rab1 wt  was signifi cantly different from un-
coating by rab5 wt  (**, P  <  0.01) and rab5 Q79L  
(***, P  <  0.001). (B, top) HEK293T cytosol 
preincubated with anti-rabaptin5 antibodies 
to deplete rabex-5 or with nonspecifi c IgG 
was assayed for its ability to promote clathrin, 
AP2, and AP1 uncoating. (bottom)  � -Adaptin 
present in supernatant was quantifi ed and is 
expressed as a percentage of coat protein 
uncoating after treatment of cytosol with non-
specifi c IgG. Results are the mean  ±  range of 
duplicate samples. (C, top) Uncoating assays 
were performed in the presence of HEK293T 
cytosol or HEK293T cytosol overexpressing 
rab5 wt  or hRME-6. (bottom)  � -Adaptin present 
in supernatants was quantifi ed and expressed 
as a percentage of AP2 uncoating after incuba-
tion with cytosol overexpressing HA – hRME-6. 
Results are means  ±  range of duplicate sam-
ples. (D, top) Cytosol overexpressing hRME-6 
was treated with anti-rabaptin5 antibodies or 
nonspecifi c IgG and assayed by Western blot-
ting for its ability to uncoat AP2. (bottom) AP2 
present in supernatants was quantifi ed and 
expressed as a percentage of AP2 uncoating 
after incubation with control cytosol. Results 
are means  ±  range of duplicate samples. 
(E) Uncoating assays were performed in the 
presence of increasing concentrations of PP2A 
and supernatants were assayed for release of 
AP1 and AP2.   
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with MgATP and phosphatase inhibitors bound less effi ciently 

(at least twofold) to  � -adaptin compared with hRME-6 from 

mock-treated cytosol ( Fig. 3 C ). Phosphorylation may therefore 

negatively regulate binding of hRME-6 to AP2 early in the CCV 

cycle when AAK1 activity is required for cargo recruitment. 

 Because the VPS9 domain of hRME-6/RAP6 has GEF 

activity in vitro ( Hunker et al., 2006 ), we set out to measure GEF 

activity ( Hama et al., 1999 ) of the full-length protein. We over-

expressed HA-tagged hRME-6 wt  or hRME-6 F1487A  in HEK293T 

cells and immunopurifi ed both proteins using anti-HA anti-

bodies ( Fig. 3 D ). Surprisingly, full-length hRME-6 showed no 

intrinsic GEF activity. However, robust activity was observed 

in the presence of both ATP and GST  � -adaptin ear domain. The 

measured activity was comparable to that observed at  > 10-fold 

indicated that, like its nematode orthologue ( Sato et al., 2005) , 

hRME-6 binds to the  � -adaptin ear ( Fig. 3 A ). [ID]FIG3[/ID]  AAK1 and hRME-6 

have been suggested to bind to the same site on  � -adaptin, via 

WxxF motifs ( Mishra et al., 2004 ). In support of this, we found 

that hRME-6 competes with AAK1 for binding to  � -adaptin ear 

( Fig. 3 A ). This suggests a possible mechanism whereby rab5 

recruitment would result in net  � 2 dephosphorylation as a result 

of displacement of AAK1 from AP2 by hRME-6. We identifi ed 

a WxxF motif in the C terminus of hRME-6,  1484 WMQF. Muta-

tion of phenylalanine 1487  to alanine hRME-6 F1487A  resulted in an 

approximately fi vefold reduced binding of hRME-6 to  � -adaptin 

ear ( Fig. 3 B ), confi rming that this motif promotes interaction 

between the two proteins. Binding of hRME-6 to  � -adaptin ap-

pears to be regulated. hRME-6 derived from cytosol preincubated 

 Figure 2.    Rab5 regulates AP2 uncoating in vivo.  
HEK293T cells, either mock transfected or 
transfected with rab5 S34N , were incubated with 
Texas red Tfn for 5 min at 37 ° C. After fi xation, 
the surface Texas red Tfn was removed by 
acid stripping and AP2 was visualized using 
the mAb AP.6. (A) Representative images of 
mock-transfected cells or cells overexpressing 
rab5 S34N  labeled with Texas red Tfn and AP.6. 
The arrowheads indicate an overlap between 
the two shown enlarged in the inset. Bars, 6  μ m. 
(B) Quantifi cation of the degree of overlap of 
Texas red Tfn with AP.6 in mock-transfected 
cells and those overexpressing rab5 S34N . The 
degree of overlap between the two markers 
was set at 1 in mock-transfected cells. Results 
are expressed as the fold change in overlap 
compared with mock-transfected cells and are 
the mean  ±  SEM of three experiments where at 
least 25 cells were analyzed for each condition 
in each experiment. Values are signifi cantly dif-
ferent at P  <  0.01 (**). (C) Electron micrograph 
of a clathrin-coated pit labeled with 10-nm 
gold – conjugated B3/25 antibodies recog-
nizing the ectodomain of TfnR. Bar, 50 nm. 
(D) The number of gold-labeled particles per pit 
was counted in untransfected HEK293T cells 
or those transfected with rab5 wt , rab5 Q79L , and 
rab5 S34N . Results are expressed as particles per 
pit as a percentage of the total number of pits 
counted. 100 coated pits were counted in each 
sample. (E) Quantitation of the number of coated 
pits per profi le in untransfected HEK293T cells 
and those transfected with rab5 wt , rab5 Q79L , 
and rab5 S34N . Results are expressed as a per-
centage of pit number per profi le in untrans-
fected cells. For each population, at least 60 
cell profi les were counted. (F) Representative 
image of mock-transfected HEK293T cells and 
those transfected with rab5 S34N , which were 
incubated with Texas red Tfn, acid stripped, 
and then stained for clathrin using mAb X22. 
The arrowheads indicate an overlap between 
the two shown enlarged in the inset. Bars: (top) 
7  μ m; (bottom) 6  μ m. (G) The degree of overlap 
of clathrin, measured by immunofl uorescence 
using mAb X22, with Texas red Tfn was mea-
sured in mock-transfected HEK293T cells or 
those transfected with rab5 S34N . The degree of 
overlap between X22 and Texas red Tfn was set 
at 1 in mock-transfected cells and the results are 
expressed as the fold change in overlap com-
pared with mock-transfected cells and are the 
mean  ±  SEM of two experiments where at least 
25 cells were analyzed in each experiment.   



503RAB5 REGULATES AP2 UNCOATING  • Semerdjieva et al. 

siRNA (2  ±  0.14-fold compared with 1  ±  0.1-fold for control-

treated and 0.89  ±  0.11-fold for rabex-5-treated cells;  Fig. 4, 

B and C ). This was comparable to, or greater than, the effect 

seen upon overexpression of rab5 S34N  and contrasted with the lack 

of a signifi cant effect seen upon rabex-5 knockdown. To elimi-

nate the possibility that the effect of hRME-6 on AP2 uncoating 

was caused by an indirect effect of rab5 acting later in the endo-

cytic pathway, we compared overexpression of HA – hRME-6 

and rabaptin5. Overexpression of rabaptin5 (Fig. S3, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200806016/DC1; 

 Stenmark et al., 1995 ), rab5 Q79L  (Fig. S3;  Stenmark et al., 1994b ), 

or rabex-5 ( Zhu et al., 2007 ) resulted in enlarged endosome for-

mation. In contrast, there was no apparent endosomal enlargement 

in the presence of overexpressed HA – hRME-6 (Fig. S3). These re-

sults support the hypothesis that hRME-6 rather than rabex-5 is 

the relevant GEF for rab5-mediated AP2 uncoating. 

 hRME-6 recruitment results in  � 2 
dephosphorylation 
  � 2 phosphorylation is maintained by a balance of kinase (AAK1) 

and phosphatase activities ( Jackson et al., 2003 ). Although 

hRME-6 can displace AAK1 from the ear of  � -adaptin in vitro, 

higher concentration of the GAPex5 VPS9 domain, which notably 

was not activated by the presence of ATP or ear (unpublished 

data). Importantly, addition of  � -adaptin ear and ATP had no effect 

on hRME-6 F1487A  exchange activity, which lacks the  � -adaptin 

ear binding motif ( Fig. 3 E ). These data suggest that hRME-6 is 

inactive outside of coated pits and only activates rab5 upon 

binding to  � -adaptin during or after coated pit formation. 

 hRME-6 is the rab5 GEF that regulates 
AP2 uncoating 
 Our results indicated that hRME-6 might be the relevant GEF 

for rab5-mediated uncoating but that hRME-6 and rabex-5 are 

functionally interchangeable in in vitro uncoating assays. 

To address which GEF is necessary in vivo, we used siRNAs 

to knockdown either hRME-6 or rabex-5 in HEK293T cells, 

resulting in 78 and 63% knockdown, respectively ( Fig. 4 A ). [ID]FIG4[/ID]  

We then asked what effect knockdown of these GEFs had on as-

sociation of AP2 with endocytic vesicles as described for  Fig. 2 . 

As before, we expressed degree of overlap of AP2 with Tfn as 1 

in control-treated cells. We found that hRME-6 knockdown re-

sulted in signifi cant enhancement in AP2 colocalization with 

endocytic vesicles compared with cells transfected with control 

 Figure 3.    hRME-6 acts as a rab5GEF through 
interactions with clathrin-coated pit components.  
(A, top) Immobilized GST –  � -adaptin ear was 
incubated with HEK293T cytosol and increas-
ing amounts of HEK293T cytosol prepared from 
cells overexpressing HA – hRME-6 wt  as indicated 
with the total amount of cytosol being main-
tained constant (120  μ g). Bound proteins were 
detected by Western blotting using anti-HA 
and anti-AAK1 antibodies. (bottom) Quantitation 
of HA – hRME-6 versus AAK1 bound proteins. 
Results are the mean  ±  the range of three ex-
periments where the values are expressed as 
a percentage of the maximum HA – hRME-6 
and AAK1 bound proteins. (B) Immobilized 
GST –  � -adaptin ear was incubated with cytosol 
prepared from HEK293T cells overexpress-
ing HA-tagged hRME-6 wt  or hRME-6 F1487A . 
The specifi c binding of both proteins to GST – 
 � -adaptin ear was quantifi ed from Western blots 
using anti-HA antibodies. Results are the mean 
and standard deviation of four experiments 
where the values are expressed as a percent-
age of the maximum binding of HA – hRME-6 wt . 
 Asterisk indicates that values are signifi cant 
at P  <  0.05. (C) Immobilized GST –  � -adaptin 
ear was incubated with brain-purifi ed AAK1 
(0.75  μ g), HEK293T cytosol, or HEK293T cy-
tosol prepared from cells overexpressing HA –
 hRME-6 wt , preincubated for 15 min at 30 ° C in 
the presence (phospho conditions) or absence 
(dephospho conditions) of 2 mM MgATP, 1  μ M 
microcystin, and 1 mM sodium vanadate. 
Bound proteins were detected using anti-AAK1 
and anti-HA antibodies. (D) SDS gel stained 
with Sypro Ruby of HA – hRME-6 wt  and HA –
 hRME-6 F1487A  affi nity purifi ed from HEK293T 
cells. (E) GEF assays were performed in the 
presence of 1 mM ATP (regenerating system), 
2  μ M GST –  � -adaptin ear, 8.8 nM HA – hRME-6 wt  
or HA – RME-6 F1487A , and 120 nM GAPex5 
VPS9 domain as indicated. Results are the 
means  ±  SD of at least two experiments per-
formed in duplicate.   
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unphosphorylatable and phosphomimetic  � 2 mutants both in-

hibit Tfn internalization, the underlying mechanisms are distinct, 

and that inhibition of endocytosis in the presence of HA � 2 T156D  

must occur after cargo recruitment during the CCV cycle. 

To test this, we measured the degree of colocalization of AP2 

with endocytic vesicles labeled with Texas red Tfn in cells overex-

pressing either HA � 2 wt  or HA � 2 T156D  ( Fig. 5, D and E ). Expres-

sion of the phosphomimetic form resulted in an enhancement in 

colocalization of AP2 with endocytic vesicles (1.55  ±  0.19-fold 

vs. 1  ±  0.11-fold), indicating that dephosphorylation of  � 2 is 

indeed a prerequisite for effi cient AP2 uncoating. 

 If hRME-6 acts to displace AAK1, modulation of hRME-6 

levels should affect the steady-state levels of phospho- � 2. We com-

pared phospho- � 2 levels in cells where hRME-6 had been depleted 

using siRNA with mock-depleted cells and found a signifi cant in-

crease in the amount of phospho- � 2 in depleted cells ( Fig. 5 F ). 

Similarly, cells overexpressing hRME-6 wt  showed a signifi cant re-

duction in the amount of phospho- � 2 compared with control cells 

and those expressing hRME-6 F1487A  ( Fig. 5 G ). These data provide 

in vivo support for our in vitro data, strongly suggesting that  � 2 

dephosphorylation is regulated by recruitment of hRME-6. 

 Modulation of rab5 activity affects 
PtdIns(4,5)P 2  levels during AP2 uncoating 
 PtdIns(4,5)P 2  is the primary determinant for recruitment of AP2 

to the plasma membrane ( Honing et al., 2005 ;  Motley et al., 

2006 ). Given the specifi city of rab5 for the regulation of AP2 

uncoating compared with clathrin, we investigated whether 

PtdIns(4,5)P 2  levels were altered in CCVs in cells overexpressing 

rab5 S34N . Using the approach described in  Fig. 2 , we asked whether 

this would be physiologically relevant only if the activity of 

AAK1 is continuously required during coated pit assembly and 

if  � 2 phosphorylation affects the rate of AP2 uncoating. We fi rst 

asked whether AAK1 continues to be active in a CCV. CCVs 

were incubated in the presence of MgATP and the level of phos-

pho- � 2 measured using phosphospecifi c antibodies ( Jackson et al., 

2003 ). As expected, isolated CCVs contain signifi cant amounts 

of phospho- � 2, which increased in a time-dependent manner 

upon incubation ( Fig. 5 A ), indicating that AAK1 continues to 

be active in CCVs. [ID]FIG5[/ID]  

 Our previous studies demonstrated that replacement of 

endogenous  � 2 by overexpression of a mutant form of  � 2 that 

cannot be phosphorylated (HA � 2 T156A ) results in inhibition of 

Tfn internalization ( Olusanya et al., 2001 ). Overexpression of 

a phosphomimetic form of  � 2 (HA � 2 T156D ) results in similar 

inhibition (unpublished data). To investigate how these mutants 

inhibit internalization, we analyzed cargo recruitment using 

the electron microscopy assay described in  Fig. 2  (C and D). 

The amount of cargo per coated pit was estimated by labeling the 

TfnR ectodomain with 10-nm gold – conjugated B3/25. Cells ex-

pressing HA-tagged proteins were identifi ed using 5-nm gold –

 conjugated anti-HA antibodies ( Fig. 5 B ). Expression of HA � 2 T156A  

resulted in a dramatic reduction in cargo recruitment into clathrin-

coated pits, demonstrating in vivo that  � 2 phosphorylation does 

indeed enhance recruitment of cargo such as TfnR as suggested 

by in vitro studies ( Olusanya et al., 2001 ;  Ricotta et al., 2002 ; 

 Collins et al., 2002 ;  Honing et al., 2005 ). In contrast, expression 

of HA � 2 T156D  had no signifi cant effect on the ability of coated 

pits to recruit TfnR compared with cells expressing HA � 2 wt  or 

untransfected cells ( Fig. 5 C ). These data indicate that, although 

 Figure 4.    hRME-6 acts as a GEF for rab5 during AP2 
uncoating.  (A) Western blots of HEK293T cells treated 
with control siRNA and siRNAs directed against hRME-6 
and rabex-5. (B) Representative images of siRNA-treated 
cells incubated with Texas red Tfn and, after acid strip-
ping, stained for AP2 using AP.6 mAb. The arrowheads 
indicate an overlap between the two shown enlarged in 
the inset. Bar, 10  μ m. (C) Quantitation of the degree of 
overlap between AP2 and Texas red Tfn in cells treated 
with control siRNA and siRNA against hRME-6 and rabex-5. 
The degree of overlap between AP.6 and Texas red Tfn 
was set at 1 in control cells. Results are expressed as the 
fold change in overlap compared with control cells  ±  SEM 
and are the results of three experiments where at least 25 
cells were analyzed. Values are signifi cant at P  <  0.01 
(**) for control versus hRME-6 knockdown and rabex-5 
versus hRME-6 knockdown.   
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 We also tested whether hRME-6 –  or rabex-5 – depleted 

cells showed altered PtdIns(4,5)P 2  levels. Cells treated with 

siRNA against hRME-6, but not rabex-5, showed enhanced 

colocalization of PtdIns(4,5)P 2  with internalized TfnR (1.45  ±  

0.09-fold compared with 1  ±  0.09-fold for control siRNA and 

1.1  ±  0.06-fold for rabex-5 siRNA;  Fig. 6, D and E ). Thus, in-

terfering with rab5 activity, using either dominant-negative rab5 S34N  

or hRME-6 depletion, results in alterations in PtdIns(4,5)P 2  

turnover and increased steady-state levels of AP2 associated 

with endocytic vesicles. Collectively, these data strongly sug-

gest that hRME-6/rab5 regulates AP2 uncoating by modulating 

PtdIns(4,5)P 2  turnover. 

 Discussion 
 Rab5 is a key regulator of the early endocytic pathway and con-

trols multiple steps of the CCV cycle, endosomal fusion, motil-

ity, and signaling ( Zerial and McBride, 2001 ). In this study we 

overexpression of rab5 S34N  altered the degree of colocalization of 

PtdIns(4,5)P 2  with endocytic vesicles labeled with a Tfn pulse. 

To measure PtdIns(4,5)P 2  levels, we used 2C11, an antibody spe-

cifi c for PtdIns(4,5)P 2  ( Thomas et al., 1999 ;  Hammond et al., 

2006 ). We further confi rmed its specifi city by labeling cells with 

2C11 in the presence of an excess of a GST fusion protein includ-

ing 2xFYVE domains (recognizing PtdIns3P;  Pattni et al., 2001 ) 

or the pleckstrin homology domain of PLC �  (specific for 

PtdIns(4,5)P 2 ;  Balla, 2005 ). We found that the latter, but not the 

former, was capable of competing out the immunofl uorescence 

signal seen with 2C11 ( Fig. 6 A ). [ID]FIG6[/ID]  In control cells,  < 20% of 2C11-

positive puncta colocalized with internalized Tfn. In cells overex-

pressing rab5 wt  and rab5 S34N , there was significantly more 

colocalization of PtdIns(4,5)P 2  with Tfn-positive endocytic vesi-

cles in the presence of overexpressed rab5 S34N  compared with 

cells overexpressing rab5 wt  (1.38  ±  0.08-fold vs. 1  ±  0.07-fold; 

 Fig. 6, B and C ). These data indicate that interfering with rab5 ac-

tivity in vivo affects PtdIns(4,5)P 2  turnover in endocytic vesicles. 

 Figure 5.     � 2 dephosphorylation is required for ef-
fi cient AP2 uncoating.  (A) AAK1 is active in CCVs. 
CCVs were incubated in the presence of ATP for vari-
ous times as indicated. Samples were centrifuged and 
pellets (containing CCVs) and supernatants were as-
sayed for phosphorylated  � 2 using phosphospecifi c 
antibodies. (B and C) HEK293T cells were either mock 
transfected or transfected with HA- � 2 wt , HA- � 2 T165A , 
or HA- � 2 T156D . After fi xation, cells were colabeled with 
10-nm gold – conjugated anti-TfnR antibodies (B3/25) 
and 5-nm gold – labeled anti-HA antibodies. (B) Repre-
sentative example of a labeled coated pit showing the 
anti-HA antibodies labeling the inner surface of the 
plasma membrane (arrow) and the anti-TfnR antibod-
ies (arrowhead) marking the extracellular leafl et. Bar, 
50 nm. (C) Anti-TfnR gold particles were counted in 
HA-positive pits. More than 50 pits were counted for 
each condition. Results are expressed as the number 
of pits counted containing zero, one, two, or three 
gold particles. (D) Cells were transfected with either 
HA- � 2 wt  or HA- � 2 T156D  and incubated with Texas red 
Tfn for 5 min at 37 ° C. After fi xation and acid stripping 
of the surface Tfn, cells were labeled with anti-HA an-
tibodies (green). Bar, 7  μ m. (E) Quantitation of the 
overlap of HA with Texas red Tfn. The degree of over-
lap between HA and Texas red Tfn was set at 1 in HA-
 � 2 wt  cells. Results are expressed as the fold change 
in overlap compared with HA- � 2 wt  cells and are from 
two experiments and are signifi cant at P  <  0.05 (*). 
(F) Western blot comparing the levels of  � 2 and phos-
pho- � 2 in mock-treated cells and those treated with 
siRNA against hRME-6. Histogram shows the quan-
tifi cation of the ratio of phospho- � 2/ � 2  ±  the range 
of two experiments. (G) Western blot comparing the 
levels of  � 2 and phospho- � 2 in cells overexpressing 
HA – hRME-6 wt  and HA – RME-6 F1487A  compared with 
mock-transfected cells (Con). Histogram showing the 
quantifi cation of the ratio of phospho- � 2/ � 2  ±  SEM 
from three experiments.   
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 A novel role for rab5 in AP2 uncoating 
 Rab5 has been shown to generate specifi c membrane domains 

that are important for its cellular functions, such as endosome 

fusion and signaling ( Zerial and McBride, 2001 ). The novel role 

of rab5 in mediating AP2 uncoating may be a prerequisite for 

the generation of a fusion-competent domain on endocytic vesi-

cles. Although our evidence strongly supports hRME-6 as the 

relevant GEF for regulation of AP2 uncoating, earlier studies 

have demonstrated that rabaptin5, and presumably rabex-5, can 

be recruited to CCVs to promote effi cient fusion in vitro ( Rubino 

et al., 2000 ). Recruitment of rabaptin5 – rabex-5 and generation 

of a  “ fusion domain ”  may occur downstream of hRME-6 activity. 

Therefore, functionally distinct pools of rab5 may be sequen-

tially activated on endocytic vesicles by the coordinated action 

of different GEFs. 

 Our in vivo data demonstrate that rab5 S34N  expression causes 

a 50% increase in AP2 steady-state levels associated with 

endocytic vesicles. Previous experiments demonstrated  � 50% 

reduction in Tfn uptake in cells expressing another dominant-

negative form of rab5 (rab5 N133I ;  Bucci et al., 1992 ). If these re-

sults suggest that rab5 is limiting in clathrin-mediated uptake, 

have identifi ed a further novel role for rab5 and its GEF, hRME-6, 

in the specifi c regulation of AP2 uncoating from CCVs. In vitro ,  
we show that the extent of AP2 uncoating from CCVs is depen-

dent on the level of functional rab5. Overexpression of rab5 S34N , 

or siRNA-mediated depletion of hRME-6, but not rabex-5, in 

intact cells resulted in increased steady-state levels of AP2 

associated with endocytic vesicles, which is consistent with 

reduced effi ciency of uncoating. We demonstrated in vitro that 

GEF activity of full-length hRME-6 requires hRME-6 binding 

to  � -adaptin ear, which displaces the ear-associated  � 2 kinase 

AAK1 and that, in intact cells, depletion of hRME-6 increases 

phospho- � 2 levels whereas overexpression of hRME-6 reduces 

phospho- � 2 levels. The contribution of  � 2 dephosphorylation 

to effi cient uncoating was shown by expression of a phosphomi-

metic mutant of  � 2, which increases levels of endocytic vesicle-

associated AP2. Depletion of hRME-6 or rab5 S35N  expression 

also increases the levels of PtdIns(4,5)P 2  associated with endo-

cytic vesicles. These data are consistent with a model in which 

hRME-6 and rab5 regulate AP2 uncoating in vivo by coordi-

nately regulating  � 2 dephosphorylation and PtdIns(4,5)P 2  lev-

els in CCVs ( Fig. 7 ). [ID]FIG7[/ID]  

 Figure 6.    Rab5 regulates AP2 uncoating via modu-
lation of PtdIns(4,5)P 2  levels.  (A) Immunofl uorescence 
images of HEK293T cells labeled with the anti-
PtdIns(4,5)P 2  antibody 2C11 (left) or with 2C11 in 
the presence of excess GST-2xFYVE (middle) or GST 
pleckstrin homology domain of PLC �  (right). Bar, 
7  μ m. (B) Representative image of HEK293T cells 
transfected with rab5 wt  or rab5 S34N , which were in-
cubated with Cy5-Tfn, acid-stripped, and then stained 
for PtdIns(4,5)P 2  using mAb 2C11. The arrowheads 
indicate an overlap between the two shown enlarged 
in the inset. Bar, 9  μ m. (C) Quantitation of the over-
lap between PtdIns(4,5)P 2  and Cy5-Tfn in HEK293T 
cells overexpressing rab5 wt  or rab5 S34N . The degree 
of overlap between 2C11 and Cy5-Tfn was set at 1 in 
rab5 wt -transfected cells. Results are expressed as the 
fold change in overlap compared with rab5 wt -trans-
fected cells and are the mean  ±  of three experiments 
where at least 25 cells were counted for each condi-
tion and are signifi cant at P  <  0.01 (**). (D) Repre-
sentative images of siRNA-treated cells incubated with 
Cy5-Tfn and, after acid stripping, stained using 2C11. 
The arrowheads indicate an overlap between the two 
shown enlarged in the inset. Bar, 10  μ m. (E) Quantita-
tion of the degree of overlap between PtdIns(4,5)P 2  
and Cy5-Tfn in cells treated with control siRNA and 
siRNA against hRME-6 and rabex-5. The degree of 
overlap between 2C11 and Cy5-Tfn was set at 1 in 
control-treated cells and the results are expressed as the 
fold change in overlap compared with control and are 
the mean of three experiments  ±  SEM where at least 
25 cells were analyzed. Values are signifi cant at 
P  <  0.01 (**) for control versus hRME-6 knockdown and 
P  <  0.05 (*) for rabex 5 versus hRME-6 knockdown.   



507RAB5 REGULATES AP2 UNCOATING  • Semerdjieva et al. 

AP2 uncoating. Third, in contrast to overexpression of rab5 Q79L  

or rabaptin5, overexpression of hRME-6 did not result in enlarged 

endosomes, a phenomenon that is also observed on overexpres-

sion of rabex-5 ( Zhu et al., 2007 ). Disruption of endosomal dy-

namics by modulation of rabex-5 levels might be predicted to have 

indirect effects on the extent of recycling of components required 

at the plasma membrane. Rabex-5 knockdown did not have any 

appreciable effect on AP2 uncoating or PtdIns(4,5)P 2  levels on 

endocytic vesicles although we cannot rule out the possibility 

that the knockdown was not suffi ciently complete. However, the 

effects observed after hRME-6 knockdown are comparable 

to those seen on expression of rab5 S34N , which argues against 

 redundancy of rabex-5 and hRME-6. Fourthly, rab11 S25N  over-

expression, which inhibits recycling, had no signifi cant effect on 

AP2 uncoating. Finally, because PtdIns(4,5)P 2  and  � 2 phosphor-

ylation promote AP2 assembly, it is reasonable that the dis-

assembly process might occur by a reversal of these processes. 

 Although live cell imaging has revealed that clathrin and 

AP2 are apparently removed from endocytic vesicles with simi-

lar kinetics ( Ehrlich et al., 2004 ), a variety of in vitro studies 

have indicated that uncoating of each has distinct requirements 

( Chappell et al., 1986 ;  Ungewickell et al., 1995 ;  Hannan et al., 

1998 ;  Ghosh and Kornfeld, 2003 ). Consistent with these obser-

vations, we found that expression of rab5 S34N  interfered with AP2 

but not clathrin uncoating in intact cells, suggesting that in wild-

type cells, despite identical kinetics, there is no interdependence 

of clathrin and AP2 uncoating. It is unclear why clathrin and 

AP2 uncoating are independently regulated although there are 

at least two possible explanations. First, clathrin participates in 

several traffi cking steps, including formation of TGN-derived 

CCVs for lysosomal enzyme transport and coated vesicles that 

bud from recycling endosomes. hRME-6/Rab5 – mediated regu-

lation of AP2 uncoating could be a refl ection of rab5 specifi city 

in the early endocytic pathway. A second possibility, consistent 

with previous suggestions ( Traub, 2003 ), is that although clath-

rin is a component of all CCVs, AP2 acts as the major adaptor 

complex for a subset of cargo only in HEK293T cells. It follows 

that distinct mechanisms would therefore operate to uncoat clath-

rin and specifi c adaptor complexes and the role of rab5 is re-

stricted to AP2. 

 hRME-6 is an exchange factor for rab5 
in CCVs 
 The recruitment of rab5 to CCVs is affected by its plasma 

membrane – specifi c GEF, hRME-6. Knockdown of hRME-6 but 

not rabex-5 resulted in enhanced colocalization of AP2 and 

PtdIns(4,5)P 2  with endocytic vesicles. In contrast to rabex-5 

( Mattera et al., 2003 ), hRME-6 binds  � -adaptin ear. Although 

the C-terminal VPS9 domain has been shown to have specifi c 

GEF activity against rab5 ( Hunker et al., 2006 ), we were unable 

to detect any signifi cant GEF activity in the purifi ed full-length 

protein. However, inclusion of both ATP and  � -adaptin ear domain 

resulted in enhancement of hRME-6 GEF activity in the wild-type 

protein but not in hRME-6 F1487A , which is defective in AP2 binding, 

strongly suggesting that GEF activity requires a conformational 

change, perhaps to relieve autoinhibition. Rabex-5 shows a similar 

requirement to fully activate its GEF activity ( Delprato et al., 2004 ) 

subsequent in vivo studies have proven controversial with cases in 

which rab5 is clearly limiting and others in which it is not, sug-

gesting that rab5 may play a regulatory role in the early steps of 

endocytosis in a cell type – specifi c manner ( Barbieri et al., 

2000 ;  Dinneen and Ceresa, 2004 ). Because rab5 is likely to mod-

ulate the rate of AP2 uncoating via interactions with downstream 

effectors, including lipid and protein kinases and phosphatases, 

regulation of the activities of these effectors may be depen-

dent on cellular context. 

 Because rab5 acts at multiple stages on the endocytic path-

way, it can be diffi cult to assign direct rather than indirect effects 

to a particular event in vivo. For example, enhanced association 

of AP2 with endocytic vesicles in the presence of rab5 S34N  could 

also result from reduced cargo recruitment into coated pits. Quan-

titative electron microscopy allowed us to eliminate this possibility 

by demonstrating that neither overexpression of rab5 wt , rab5 Q79L , 

nor rab5 S34N  affected cargo recruitment into clathrin-coated pits. 

Although it is possible that observed effects on  � 2 dephosphory-

lation and PtdIns(4,5)P 2  could be a consequence of a generalized 

delay in endocytosis when rab5 activity is inhibited, several lines 

of evidence support the model whereby increased  � 2 phosphor-

ylation and PtdIns(4,5)P 2  directly contribute to reduced AP2 un-

coating. First, overexpression of rab5 S34N  did not affect clathrin 

uncoating, which argues against a global disruption of the endo-

cytic pathway. Second, expression of a  � 2 phosphomimetic mutant 

also resulted in delayed AP2 uncoating, thus providing in-

dependent evidence for  � 2 dephosphorylation promoting  effi cient 

 Figure 7.    Model for the role of rab5 in AP2 uncoating.  Rab5 acts at mul-
tiple steps of the clathrin-coated vesicle cycle (red arrows). PtdIns(4,5)P 2  
is the primary determinant for the recruitment of AP2 to the plasma mem-
brane during coated pit assembly and this process is enhanced by  � 2 
phosphorylation, effected by AAK1 (1). Clathrin activates AAK1 to maxi-
mize cargo recruitment (2). After coated vesicle scission (3), clathrin is 
removed by the combined action of Hsc70 and auxilin. Recruitment of 
hRME-6 displaces AAK1, resulting in net  � 2 dephosphorylation. Rab5 
mediates PtdIns(4,5)P 2  turnover, resulting in effi cient removal of AP2 and 
generation of an uncoated endocytic vesicle (4). There is therefore a 
mechanistic symmetry between AP2 assembly that requires PtdIns(4,5)P 2  
and  � 2 phosphorylation and disassembly that is mediated by  � 2 dephos-
phorylation and a reduction in PtdIns(4,5)P 2 . Both the latter processes are 
modulated by hRME-6/rab5.   
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action and demonstrated that  � 2 phosphorylation facilitates AP2 

binding ( Motley et al., 2006 ). We suggest that AP2 dissociation 

from CCVs occurs by a reversal of this process, i.e., by modula-

tion of  � 2 dephosphorylation and by reduction of PtdIns(4,5)P 2  

levels in CCVs in a rab5-dependent manner. These data are con-

sistent with studies in knockout mice lacking synaptojanin. These 

mice show an increase in PtdIns(4,5)P 2  levels and in the number 

of CCVs in neurons ( Cremona et al., 1999 ). Live-cell imaging 

has revealed that the longer synaptojanin isoform SJ1-170, which 

has clathrin, and AP2 interaction domains appear to be re-

cruited early during coated pit formation. In contrast, a shorter 

form (SJ1-145) only binds during CCV scission ( Perera et al., 

2006 ). The mass action effect of this latter recruitment might be 

expected to promote PtdIns(4,5)P 2  dephosphorylation and con-

sequent productive uncoating ( di Paolo and de Camilli, 2006 ; 

 Perera et al., 2006 ). Reduction in PtdIns(4,5)P 2  levels can occur 

either as a result of the action of lipid kinases or phosphatases 

( Shin et al., 2005 ). Interestingly, in this context, rab5 interacts 

with several lipid kinases and phosphatases ( Simonsen et al., 

1998 ;  Christoforidis et al., 1999 ;  Shin et al., 2005 ;  Hyvola et al., 

2006 ). Future studies will be required to establish which, if any, 

of these are relevant for AP2 uncoating. 

 In conclusion, we have presented data whereby the uncoat-

ing of AP2 is modulated by rab5 and its exchange factor hRME-6 

and we provide evidence for a mechanism that displays an ele-

gant symmetry to that involved in assembly of AP2 onto the 

plasma membrane during coated pit formation ( Fig. 7 ). 

 Materials and methods 
 Antibodies, constructs, and proteins 
 AP.6, X22, B3/25, and 9E10 hybridoma cells were obtained from American 
Type Culture Collection and secreted antibodies were harvested by centrifu-
gation. Phospho- � 2 antibodies were produced as previously described 
( Jackson et al., 2003 ). Anti-AAK1 antibodies were generated in sheep by 
injection of two peptides corresponding to amino acids 2 – 18 and 36 – 55 of 
the human protein. Antibodies were affi nity purifi ed on peptide columns. The 
anti-PtdIns(4,5)P 2  mAb 2C11 was prepared and used as previously described 
( Thomas et al., 1999 ;  Hammond et al., 2006 ). An IgG fraction of anti – hRME-6 
antibodies was prepared from serum isolated from rabbits inoculated with 
a synthetic peptide (CMQFTAAVEFIKTIDDRK) conjugated to KLH. 

 The following commercially available reagents were used in this 
study: anti –  � -adaptin mAb clone 100/2 and anti –  � -adaptin mAb clone 
100/3 (Sigma-Aldrich); anti-HA mAb 16B12 (Abcam); anti-rabaptin5, 
anti – rabex-5, and anti- � 2 (BD Biosciences); mouse anti-clathrin heavy 
chain and clone CHC 5.9 (MP Biomedicals); Immuno-Pure rabbit anti –
 mouse IgM ( �  chain specifi c), HRP-conjugated anti – rabbit and anti – mouse 
IgG (Thermo Fisher Scientifi c); Texas red Tfn, Cy5-Tfn, Alex Fluor 488 goat 
anti – mouse IgM ( �  chain specifi c), and ProLong Gold antifade reagent 
(Invitrogen); FITC-conjugated goat anti – mouse (Jackson ImmunoResearch 
Laboratories); PP2A (Millipore). 

 eGFP – rabaptin5 and eGFP-rab11 S25N  were gifts from M. Zerial (The 
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 
Germany) and M. McCaffrey (University College Cork, Cork, Ireland). 
Hsc70 was prepared from porcine brain as described previously ( Schloss-
man et al., 1984 ). AAK1 was purifi ed from porcine brain as described 
previously ( Pauloin and Thurieau, 1993 ). HA – hRME-6 was prepared by 
large scale transfection of HEK293T cells, followed by immunoprecipita-
tion using 16B12 anti-HA antibody and elution of the protein using the HA 
peptide as previously described ( Zhou et al., 1992 ). A GST fusion protein 
including the VPS9 domain of GAPex5 (a gift from A. Saltiel, University of 
Michigan, Ann Arbor, MI) was purifi ed on glutathione agarose. 

 Cloning of hRME-6 
 A full-length human RME-6 cDNA was cloned into the Gateway cloning 
system (Invitrogen) after fusion PCR of two overlapping but incomplete 

and precedents for ATP-dependent conformational changes in 

other GEFs have been reported ( Amarasinghe and Rosen, 2005 ). 

Our demonstration that  � -adaptin ear is required for hRME-6 

activation suggests that, in vivo, hRME-6 would only be active 

after its recruitment to coated pits by AP2, thus providing tight 

spatiotemporal control of rab5 function. 

 hRME-6/Rab5 modulates  � 2 
dephosphorylation and affects 
PtdIns(4,5)P 2  levels during AP2 uncoating 
 Previous studies have indicated that AP2 disassembly requires 

an additional cytosolic factor, distinct from Hsc70 and auxilin 

( Hannan et al., 1998 ). Consistent with studies using liver CCVs 

( Ghosh and Kornfeld, 2003 ), we found that the phosphatase 

PP2A was suffi cient to uncoat both AP2 and AP1 from brain 

CCVs. Thus, PP2A is likely to antagonize the activity of AAK1, 

which is active in CCVs, to regulate  � 2 phosphorylation during 

cargo recruitment into newly formed clathrin-coated pits ( Jackson 

et al., 2003 ). To reduce the affi nity of Yxx �  sorting motifs for 

AP2 during uncoating, the equilibrium of kinase and phospha-

tase activity would need to be shifted in favor of the latter. In vitro ,  
addition of excess PP2A will therefore be suffi cient to uncoat 

AP2, as found experimentally ( Ghosh and Kornfeld, 2003 ). More-

over, the protein phosphatase inhibitor okadaic acid has been 

shown to inhibit Tfn internalization but only if cells are preincu-

bated with the inhibitor for at least 10 min ( Beauchamp and 

Woodman, 1994 ), which is signifi cantly longer than the CCV 

cycle (30 – 90 s). Because okadaic acid is a lipophilic drug that 

would be expected to have immediate access to its target 

( Haystead et al., 1989 ), these data argue against phosphatase 

activity being the driving force for uncoating. This is further sup-

ported by the observation that whereas PP2A can uncoat AP1 as 

well as AP2 in vitro, the effect of rab5 is specifi c for AP2 only. 

 Our study demonstrates that AAK1 and hRME-6 show mu-

tually exclusive binding to  � -adaptin ear. Recruitment of hRME-6 

therefore provides an effective mechanism to favor  � 2 dephos-

phorylation by dissociation of AAK1. A prediction of this model 

is that modulation of hRME-6 levels will affect the levels of  � 2 

phosphorylation, and, indeed, hRME-6 appears to be a limiting 

factor on the endocytic pathway. Its overexpression resulted 

in reduced levels of phospho- � 2, whereas overexpression of 

hRME-6 F1487A  had no effect on  � 2 phosphorylation. Knockdown 

of hRME-6 resulted in increased levels of phospho- � 2. These 

data provide a strong in vivo correlation for our in vitro data. 

The recruitment of hRME-6 must be temporally regulated be-

cause the activity of AAK1 is required early in coated pit formation 

during cargo recruitment. In this regard, we have observed that 

recruitment of hRME-6 to  � -adaptin ear is negatively regulated 

by phosphorylation. 

 Here we present evidence that overexpression of rab5 S34N  

or depletion of hRME-6 enhances the steady-state levels of 

PtdIns(4,5)P 2  in endocytic vesicles. The primary determinant for 

the recruitment of AP2 to Yxx � -containing liposome mem-

branes is PtdIns(4,5)P 2  and this is signifi cantly enhanced by  � 2 

phosphorylation ( Honing et al., 2005 ). In vivo studies using mu-

tant forms of AP2 lacking the PtdIns(4,5)P 2  binding site on the 

 � -adaptin subunit have confi rmed the importance of this inter-
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sure complete removal of surface-bound Tfn. Subsequently, the cells were 
fi xed in 4% PFA/PBS, pH 7.4, at 37 ° C for 20 min. PFA was quenched by 
washing three times in 50 mM NH 4 Cl in PBS. Cells were then permeabi-
lized by incubation in 0.1% Triton X-100 in 0.1% BSA/PBS for 5 min at RT. 
After blocking with 2% fi sh skin gelatin in 0.1% BSA/PBS and incubation 
with primary and secondary antibodies as indicated, the coverslips were 
mounted on slides in ProLong Gold antifade reagent. 

 Labeling of PtdIns(4,5)P 2  with 2C11 antibody 
 Cells were incubated with 25  μ g/ml Cy5-Tfn for 5 min at 37 ° C and acid 
stripped as described in the previous paragraph. Cy5-Tfn was used in this 
series of experiments because its fl uorescent signal was more strongly main-
tained compared with Texas red Tfn throughout the fi xation procedures. All 
subsequent procedures were carried at 4 ° C as described previously 
(  Hammond et al., 2006 ). In competition experiments with GST fusion pro-
teins including the pleckstrin homology domain of PLC �  or 2xFYVE domain, 
the relevant fusion protein was included in the blocking solution at a con-
centration of 400  μ M. 

 Specimens were imaged using the DeltaVision RT system based on 
a microscope (IX71; Olympus) at 100 ×  UPlan Apo NA 1.4 oil objective. 
Stacks of images were collected at room temperature with 0.2- μ m z-step 
from the bottom to the top of the cells, using a camera (Coolsnap-HQ ver-
sion I; Roper Scientifi c). The images were then deconvolved using the con-
servative ratio of deconvolution of the in-built algorithm of the DeltaVision 
system. Deconvolved images were transferred to the Volocity 3.7.1 soft-
ware (ImproVision). Two classifi ers were applied selecting either red- or 
green-labeled objects. The lower limit of fl uorescence intensity was based 
on values taken for at least fi ve different pixels in an area of the cell with 
background staining. The high limit of fl uorescence intensity was set at vir-
tual infi nity. Colocalization was determined using Volocity software. Statis-
tical analysis was performed using either Microsoft Excel or SPSS11 for 
Mac OS X and applying the independent samples  t  test. The degree of co-
localization of AP2 and Tfn or PtdIns(4,5)P 2  and Tfn in control cells (mock 
treated) was set at 1. Representative images have been included in the 
manuscript but it is important to note that the differences caused by modu-
lation of rab5 activity are not obvious in images from single planes and re-
quire quantitation of the extent of overlap over the whole cell. 

 siRNA procedures 
 siRNA was performed in HEK293T cells essentially according to the 
method of  Motley et al. (2003) , with the following modifi cations. Cells 
were plated overnight so that they reached 30% confl uency on the day of 
transfection (day 1). siRNAs against hRME-6, rabex-5, or luciferase (as a 
control) were added to the cells at a concentration of 0.2  μ M. The follow-
ing day (day 2) the cells were split so that again they would be 30% confl u-
ent on day 3 when the same concentration of siRNA was added to the 
cells. Cells were processed for microscopy or Western blotting on day 4. 
siRNAs (Thermo Fisher Scientifi c) had the following sequences: HRME-6, 
5 � -P.UAUCGAUUGGCCACUUCUUUU-3 � , 5 � -P.UUAGAAUAGUGGUGC-
GUUAUU-3 � , 5 � -UAAUCGUAGAGCACAUUCUUU-3 � , 5 � -P.AUCAUCGCU-
AUCUUUGCGUUU-3 � ; RABEX-5, 5 � -P.UGAUUCGGAGCUUAAUUUUU-3 � , 
5 � -P.GAUUGAUCCACAUGAAUUCUU-3 � , 5 � -P.CACGAGUUUGCAUCCU-
UUCUU-3 � , 5 � -P.UCUUUCUGGAGGCACUUUCUU-3 � . 

 Electron microscopy 
 B3/25 and 16B12 antibodies were conjugated to colloidal gold according 
to standard procedures ( Griffi ths, 1993 ). Samples were coded and ana-
lyzed  “ blind ”  until all of the data were collected. HEK293T, grown in 6-well 
dishes to a confl uency of 70 – 80%, were prefi xed at RT in 4% PFA for 
30 min. After three washes in 50 mM (NH 4 ) 2 SO 4  in PBS, cells were incubated 
with gold-labeled antibodies for 45 min at room temperature. After three 
washes in PBS, cells were scraped from the dish and collected by centrifuga-
tion in a rotor (GH-3.8 swing-out; Beckman Coulter) at 1,500  g . The super-
natant was removed and 1% glutaraldehyde containing 2% tannic acid was 
layered gently on the top of the pellet. Samples were incubated at room tem-
perature for 30 min. After dehydration in a graded series of ethanol solu-
tions, pellets were embedded in epon and sectioned using an Ultracut E 
microtome (Reichert-Jung). Specimens were visualized at 80 kV and images 
were captured using a transmission electron microscope (CM10; Philips). 
Negative images were converted into positive digital images by scanning 
into Photoshop (version 7.0; Adobe). For experiments with rab5 constructs, 
cells were cotransfected with CD8 and selected by FACs cell sorting using a 
MoFlo cell sorter (Dako). Roughly 10 6  cells were recovered per transfection 
and replated on a 6-well dish. Cells were allowed to recover overnight and 
were then labeled with B3/25 gold. 

cDNAs from the IMAGE consortium (3355777 and 3451647). The result-
ing clone, pDONR201-hRME-6, was sequenced and found to contain four 
nucleotides differing from the genomic sequence of hRME-6, produced by 
the human genome project, that were predicted to alter the coding region. 
Each of these reverse transcription and/or PCR errors was corrected by 
site-directed mutagenesis using the QuikChange kit according to the manu-
facturer ’ s instructions (Stratagene). The fi nal cDNA was fully verifi ed by 
DNA sequencing and transferred by Gateway LR reaction to mammalian 
expression vectors based on pCDNA3.1 modifi ed in house with 2X-HA or 
3X-Flag epitope tags and Gateway attR1/attR2 cassettes. 

 Preparation of cytosols 
 Cytosol from HEK293T cells and from HEK293T cells transfected with myc-
tagged rab5 wt , rab5 Q79L , rab5 S34N , rab1 wt , and HA-tagged hRME-6 was 
prepared by freeze-thawing cells resuspended in 20 mM Hepes, NaOH, 
pH 7.4, 150 mM KCl, and 1 mM MgCl 2 , containing EDTA-free protease 
inhibitor cocktail. Transfections were performed using calcium phosphate 
as described previously ( Sambrook et al., 1989 ). The levels of overexpres-
sion were determined by Western blotting. Rab5 wt  and Rab5 Q79L  were 
over expressed by approximately ninefold whereas Rab5 S34N  was overex-
pressed by approximately three- to ninefold relative to the endogenous pro-
teins. hRME-6 wt  and hRME-6 F1487A  were overexpressed by four- to fi vefold. 
For additions to uncoating assays, cytosols were preloaded with 0.6 mM 
of the relevant nucleotide (GDP or GTP) for 1 h at 4 ° C. Control experiments 
indicated that addition of GTP or GDP alone did not affect the extent of 
uncoating. Cytosols were normalized for the level of expression of the rele-
vant construct using cytosol prepared from untransfected HEK293T cells to 
balance protein levels. 

 Preparation of CCVs 
 CCVs were isolated from porcine brain that had been frozen on dry ice 
as soon as possible after slaughter. A crude CCV fraction was prepared 
by differential centrifugation as described previously ( Campbell et al., 
1984 ). The CCVs were collected by centrifugation at 85,000  g  for 45 min 
and resuspended in a small volume of homogenization buffer (100 mM 
MES, pH 6.5, 0.5 mM MgCl 2 , 1 mM EDTA, 1 mM DTT, and 0.1 mM 
PMSF). 5 – 6 ml were layered over 6 – 7 ml of 8% sucrose-D 2 O solution in 
homogenization buffer and centrifuged at 80,000  g  in a rotor (SW40; 
Beckman Coulter) for 2 h at 20 ° C as described previously ( Nandi et al., 
1982 ). The pellet containing CCVs was collected, washed, and resus-
pended in homogenization buffer. The suspension was spun at 20,000  g  
for 10 min and the supernatant containing CCVs was snap frozen in ali-
quots and stored at  – 80 ° C. 

 GEF assays 
 GEF assays were performed as described previously ( Hama et al., 1999 ). 

 Uncoating assays 
 Uncoating assays were performed essentially as previously described 
( Ghosh and Kornfeld, 2003 ). Typically 5 – 6  μ g of purifi ed CCVs were incu-
bated with different cytosols in the presence of an ATP-regenerating system 
(0.8 mM ATP, 5 mM of creatine phosphate, and 0.2 IU of creatine phos-
phokinase) in a fi nal volume of 50  μ l of the following buffer: 10 mM am-
monium sulfate, 20 mM Hepes, pH 7.0, 2 mM magnesium acetate, and 
25 mM KCl. Assay mixtures were supplemented with 1.3  μ g Hsc70 and 
were incubated for 10 min at 25 ° C. The reaction was stopped by transfer-
ring the assay mixtures to ice and centrifuging them at 100,000  g  for 
10 min at 4 ° C in a rotor (TLA 100; Beckman Coulter). Supernatant and 
pellet were resolved by SDS-PAGE and Western blotting was performed 
according to standard procedures. 

 Microscopy and quantitative analysis 
 HEK293T cells seeded on coverslips coated with poly- L -lysine were trans-
fected using Superfect transfection reagent (QIAGEN) according to the 
manufacturer ’ s protocol. Superfect was used for microscopy experiments 
rather than calcium phosphate as it resulted in a consistently higher level 
( � 90%) of transfection. 16 h after transfection the cells were fi xed accord-
ing to one of the following methods. 

 Labeling AP2 with AP.6 antibody 
 Cells were incubated for 20 min in serum-free DME. Subsequently 5  μ g/ml 
of Texas red Tfn was internalized at 37 ° C for 5 min. After transfer to ice, 
surface TfnR was acid stripped by washing twice with ice cold PBS, fol-
lowed by addition of 50 mM glycine-HCl, pH 3.0, 2 M urea, and 100 mM 
NaCl (ice cold) for 5 min. This procedure was repeated three times to en-
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