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Abstract
Enhancer-blocking insulators are DNA elements that disrupt the communication between a
regulatory sequence, such as an enhancer or a silencer, and a promoter. Insulators participate in both
transcriptional regulation and global nuclear organization, two features of chromatin that are thought
to be maintained from one generation to the next through epigenetic mechanisms. Furthermore, there
are many regulatory mechanisms in place that enhance or hinder insulator activity. These modes of
regulation could be used to establish cell-type specific insulator activity that is epigenetically
inherited along a cell and/or organismal lineage. This review will discuss the evidence for epigenetic
inheritance and regulation of insulator function.
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Introduction
Chromatin organization in eukaryotic cells is regulated on both local and global levels by a
highly complex system of DNA elements and the proteins and RNAs that interact with them.
Insulators are regulatory DNA elements that create boundaries in chromatin, delineating the
ranges over which other regulatory influences take effect. There are two types of insulators:
enhancer-blocking insulators, which prevent communication between discrete sequence
elements (typically enhancers and promoters) when positioned between them, and barrier
insulators, which prevent the spread of heterochromatin (Gaszner and Felsenfeld, 2006). This
review will focus on enhancer-blocking insulators.

In Drosophila melanogaster there are multiple known insulators defined by their binding
proteins, Suppressor of Hairy Wing [Su(Hw)], Boundary Element Associated Factors
(BEAF-32A and BEAF-32B), Zeste-white 5 (Zw5), GAGA Binding Factor (GAF), and the
most recently identified, Drosophila CTCF (dCTCF). However, in vertebrates the only known
insulator protein is CCCTC-Binding Factor (CTCF) (Valenzuela and Kamakaka, 2006;
Wallace and Felsenfeld, 2007). It remains unknown whether the vertebrate CTCF fulfills the
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roles of all the insulator proteins found in Drosophila, or whether other vertebrate insulator
proteins are yet to be discovered.

Although previous work mainly focused on deciphering the mechanisms by which insulators
block the communication between an enhancer and a promoter, the field has recently shifted
to a more global view of insulators. Here we discuss what is known about the epigenetic
inheritance and regulation of insulator information, areas that must be understood in order to
place insulators in the context of a developmental system.

A role for insulators in nuclear organization
There are several models for how enhancer-blocking insulators disrupt communication
between enhancers and promoters. We will refer to them as the promoter decoy model, the
physical barrier model, and the loop domain model. The models are not necessarily mutually
exclusive, so potentially any insulator could employ one or a combination of mechanisms in
order to function properly. According to the promoter decoy model, an enhancer-blocking
insulator recruits components of the transcription machinery that cause it to resemble a
promoter at the molecular level. This resemblance allows it to compete with bona fide
promoters for interaction with enhancers (Geyer, 1997). This model is consistent with the fact
that enhancer DNA and insulator DNA have been observed to colocalize (Yoon et al., 2007;
Zhu et al., 2007). However, interaction between insulators and promoters themselves has also
been observed (Yoon et al., 2007), which could indicate that an alternative mechanism is
responsible for both observations. Additionally, promoter decoy is unlikely to be the only
mechanism underlying enhancer-blocking function, mainly because it does not explain the
directional nature of the enhancer-blocking effect – that is, why an enhancer would be trapped
by an insulator located in the same direction as the promoter, and not by an insulator the same
distance away, but in the other direction. The physical barrier model of insulator function
proposes that a molecular signal coming from the enhancer, such as a transcribing RNA
polymerase complex (Kong et al., 1997; Tuan et al., 1992), simply “runs into” the insulator
complex and is unable to progress further. Consistent with this mechanism is the observation
that insertion of a transcriptional terminator, the lacO/R complex, between an enhancer and a
promoter decreases enhancer function (Ling et al., 2004). Furthermore, when the chicken β-
globin 5′ HS4 (cHS4) insulator was placed between the human HS2 enhancer and its target
globin gene, RNA polymerase II accumulated at the insulator and reduced amounts at the gene
promoter, suggesting that the insulator blocks polymerase progression from the enhancer to
the promoter (Zhao and Dean, 2004). However, this might not be a universal mechanism of
insulation, as insulators located within introns can silence downstream enhancers without
truncating the gene product, implying that, at least in some cases, transcription complexes can
pass through functional insulators (Geyer and Corces, 1992). The basic premise of the loop
domain model is that insulator sites interact with each other and/or with other nuclear structures
to form chromatin loops. This idea is straightforward and well supported, and will be discussed
in detail below. However, the question of precisely how loop formation interferes with
enhancer function remains an active area of study.

A large body of evidence indicates that insulators form chromatin loops. Pairing of specific
insulator sites to form individual loops has been demonstrated, including the scs/scs’ insulator
pair that flanks the 87A7 heat shock puff in Drosophila polytene chromosomes. The scs
insulator is bound by the protein Zw5, whereas the scs’ insulator is bound by BEAF.
Chromosome conformation capture (3C) experiments showed that the two sites colocalize, and
coimmunoprecipitation assays demonstrasted that the two proteins interact, thus providing a
mechanism for anchoring the loop (Blanton et al., 2003). Similarly, in fly lines with two
insertions of the gypsy retrotransposon, which contains a Su(Hw) insulator, the chromosomal
insertion sites colocalize in the nucleus in a Su(Hw)-dependent manner significantly more
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frequently than in fly lines lacking one or both of the insertions (Gerasimova et al., 2000).
Furthermore, loops anchored by Su(Hw) insulators have been directly visualized in salt-
extracted nuclei using fluorescence in situ hybridization (Byrd and Corces, 2003). Functional
evidence supporting the idea that insulators form loops is provided by a study demonstrating
that a loop can act as an insulator (Ameres et al., 2005). HeLa cells were transfected with a
plasmid containing an enhancer and a promoter. The enhancer was flanked by arrays of tet
operators, and the cells were also transfected with a plasmid expressing a protein that first binds
the tetO arrays and then dimerizes. Presumably, this process should lead to interaction between
the tetO arrays and looping out of the enhancer. Indeed, silencing of enhancer-driven
expression was observed, but the effect could be reversed by conditions that caused the
dimerizing protein to dissociate from the tetO arrays. Additionally, an endogenous example of
functional loop formation has been found at the H19 imprinting control region (ICR) in mice,
which binds CTCF in an allele-specific manner (Kurukuti et al., 2006; Murrell et al., 2004;
Yoon et al., 2007). Yoon et al. suggest that the CTCF-bound ICR interacts with enhancer and
promoter elements, whereas Kurukuti et al. suggest that the CTCF-bound ICR interacts with
other DNA regulatory elements in the region, a matrix attachment region (MAR3) and a
differentially methylated region (DMR1). Although these studies disagree on the specific
interactions that are necessary for insulator function, both conclude that the CTCF-bound ICR
is involved in loop formation that is necessary to prevent enhancer communication with the
Igf2 promoter.

In addition to forming loops by interacting with one another, insulators might form loops by
tethering chromatin to various nuclear structures. In mammalian cells, CTCF interacts with
nucleophosmin, a protein that is enriched at the nucleolus. Also, transgenic loci with intact
CTCF binding sites localize to the nucleolus more often than transgenes harboring mutated
CTCF binding sites. Together, these results suggest that CTCF insulators form chromatin loops
by tethering chromatin to the surface of the nucleolus (Yusufzai et al., 2004). Studies like this
one, coupled with the observation that there are numerous endogenous insulator sites spread
throughout the genomes of various species, imply that insulators might play a major role in
global nuclear organization. This idea is further supported by observations in Drosophila
diploid cells. In this model system, there are thousands of Su(Hw) binding sites distributed
throughout the genome, but rather than the expected diffuse pattern of localization,
immunofluorescence analyses detect a much smaller number of distinct foci, ranging from less
than ten to a few dozen (Gerasimova and Corces, 1998). This finding has been interpreted to
mean that the sites cluster together, organizing the entire mass of chromatin into rosette-like
structures. Furthermore, most of these clusters are located at the nuclear periphery (Gerasimova
et al., 2000), where there are hints that they might interact with the nuclear lamina (Capelson
and Corces, 2005). This view is reinforced by a new study in human fibroblasts, which
demonstrates that CTCF is found at the boundaries of many lamin-associated domains
throughout the genome (Guelen et al., 2008). As peripheral vs. central positioning of genes in
the nucleus generally seems to be nonrandom, an additional layer of nuclear organization might
be orchestrated by insulators. Recently, dCTCF was found in the same clusters as Su(Hw) in
diploid cells. Interestingly, on polytene chromosomes, Su(Hw) and dCTCF do not seem to
colocalize. However, both proteins colocalize with a third protein, CP190, which is necessary
for both Su(Hw) and dCTCF insulator function, thus suggesting cooperation between various
classes of Drosophila insulators (Gerasimova et al., 2007; Mohan et al., 2007). If different
types of insulators have variations in their properties, then interactions between these elements
could permit an even finer level of control over the genome.

The role of insulators in epigenetic inheritance
Epigenetic information is not contained in the DNA sequence, but it is nevertheless inherited
from one cell generation to the next, and in some cases from one organismal generation to the
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next. An epigenetic system has two components: the signal that triggers an epigenetic change,
and the mark that maintains the change across cell divisions, more or less stably, unless and
until another signal arises to countermand it (Figure 1). If nuclear organization, as established
by insulators, contains any intrinsic information, at any point during development, rather than
merely responding to information encoded elsewhere, then insulators must have some
connection to an epigenetic system. Although this area of inquiry has not yet been heavily
researched, mounting evidence suggests that insulators can act as both an epigenetic mark and
an epigenetic signal.

Early studies of Mod(mdg4), a member of the Su(Hw) insulator complex, showed a strong
paternal effect on position effect variegation (PEV) (Dorn et al., 1993). PEV was assayed using
the In(1)wm4h rearrangement in which the white gene is placed in close proximity to
heterochromatin, leading to a variegated eye phenotype owing to varying amounts of
heterochromatin spreading, and, therefore, varying amounts of white gene expression. In this
system, mutations that enhance heterochromatin formation lead to a stronger white-eye
phenotype, whereas mutations that perturb heterochromatin formation lead to a stronger red-
eye phenotype. Mutations in the mod(mdg4) gene act as enhancers of PEV. Interestingly, male
progeny, from a mod(mdg4)neo129 heterozygous father, harboring two wild-type copies of the
mod(mdg4) gene show enhanced PEV. This effect is maintained through at least eleven
generations of wild-type male progeny, but is not observed in offspring from a mod
(mdg4)neo129 heterozygous mother. This paternal effect is also seen in eight other mod
(mdg4) mutations (Buchner et al., 2000). These findings suggest that Mod(mdg4) is necessary
to transmit epigenetic information, in this case, probably on the Y chromosome. However, such
studies cannot determine whether Mod(mdg4) is involved in the epigenetic signal that
establishes an epigenetic mark on the Y chromosome that then affects PEV, or if Mod(mdg4)
is directly involved in the maintenance of the epigenetic mark that if lost in one fly generation
is inefficiently re-established.

When considering mod(mdg4) mutations, it is important to note that this gene encodes at least
27 different isoforms generated by alternative splicing, and only one of these, called Mod
(mdg4)2.2 or Mod(mdg4)67.2, is known to be involved in insulator function. The mutations
analyzed in the PEV study mentioned above are all located within the common region of these
isoforms, and, therefore, Mod(mdg4)2.2 function cannot be isolated. However, the mod
(mdg4)u1 allele, which specifically affects the C-terminal region of Mod(mdg4)2.2, has also
been implicated in epigenetic inheritance. This mutation inhibits insulator function when a Su
(Hw) insulator is placed between an enhancer and the yellow gene promoter (Gerasimova et
al., 1995). A small percentage of heterozygous male progeny from a mod(mdg4)u1 homozygous
mother and a wild-type father show disrupted insulator function, whereas the reverse cross,
between a wild-type mother and mod(mdg4)u1 homozygous father, leads to wild-type insulator
function (Gerasimova and Corces, 1998). Therefore, there is a maternal effect that is retained
in the adult fly, indicating that the protein is necessary early on in development to set up a state
that is preserved through many cell divisions. As insulator function itself is the read-out in this
situation, the insulator must be part of the epigenetic mark. The presence of the protein later
on in development, after initiation of zygotic transcription, is not sufficient to restore normal
insulator function, suggesting that Mod(mdg4)2.2 is involved in the establishment of an early
embryonic epigenetic mark.

For something to act as an epigenetic mark, it must have some means of retaining its information
content despite all disruptions to chromatin. Such disruptions include transcription, DNA
replication, and chromatin compaction/decompaction during mitosis. Although much in this
area of inquiry remains unclear, evidence is beginning to emerge indicating that insulators meet
all three of these criteria. Proper function of the Drosophila Su(Hw) insulator is compatible
with transcription through the insulator site, as insertion of Su(Hw) binding sites into an intron
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of the yellow gene results in silencing of downstream enhancers without disruption of the gene
product (Geyer and Corces, 1992). In fact, the transcriptional machinery might pass through
Su(Hw) insulator complexes quite often as Su(Hw) consensus sites are frequently found within
introns (Ramos et al., 2006), although whether all of these sites are active insulators remains
to be determined. Additionally, mapping of Drosophila CTCF and human CTCF binding sites
via chromatin immunoprecipitation shows that a number of sites are located within introns
(Barski et al., 2007; Holohan et al., 2007; Kim et al., 2007), suggesting that coexistence with
transcription might be a common property of insulators, although it is also possible that these
CTCF sites play a different role in transcription.

There are hints that insulators are also functional during DNA replication. The Drosophila
chorion gene loci are amplified approximately 80-fold during oogenesis, but when randomly
inserted at other genomic sites, the level of amplification decreases dramatically. Flanking the
amplified locus with Su(Hw) insulators protects it against this position effect variegation (Lu
and Tower, 1997), whereas inserting an insulator between two required regulatory elements
abolishes amplification (Lu et al., 2001). These results suggest that the insulators might interact
with replication control mechanisms in a manner similar to that by which they interact with
transcriptional control mechanisms. It is plausible, therefore, that insulators could be involved
in delineating separate replication domains with distinct replication timing and regulation, a
role that would presumably entail maintenance of insulator function throughout S phase. It
remains unclear, though, precisely what happens when the insulator site itself is replicated.

During mitosis, however, there is more direct evidence that insulator proteins might help to
maintain epigenetic information. For instance, the Drosophila insulator protein BEAF remains
on chromosomes during mitosis (Hart et al., 1999), but does not appear to be required for the
mechanics of mitosis, suggesting that it might act as a placeholder to retain the molecular
memory of active insulator sites (Gilbert et al., 2006). Additionally, in HeLa cells, CTCF has
been observed on mitotic chromosomes; an examination of a subset of known interphase CTCF
binding sites revealed that the same sites are also bound during mitosis (Burke et al., 2005).
Another study verified this finding in a different cell line (Rubio et al., 2008). On the contrary,
two additional studies reported the opposite finding that CTCF does not remain bound to
chromatin during mitosis (Komura et al., 2007; Wendt et al., 2008). The maintenance of binding
is critical if CTCF truly acts as an epigenetic mark; however, this idea is still controversial in
the field.

A more subtle clue suggesting that insulators could be involved in the maintenance of
epigenetic states comes from studies of the relationship between CTCF and the related protein
BORIS (Brother of the Regulator of Imprinted Sites). BORIS contains a zinc finger domain
with sequence nearly identical to that of CTCF, and binds at the same loci, but it is only normally
expressed in the male germline at the developmental stage during which DNA methylation
marks are erased, a stage in which CTCF expression is dramatically downregulated (Loukinov
et al., 2002). Although indirect, this finding could indicate that if the absence of CTCF is
important for epigenetic marks to be reset, then its presence could play a role in their
maintenance.

To gain insight into the mechanisms through which insulator function is epigenetically
maintained, we can look at other proteins that are involved in epigenetic inheritance. TrxG and
PcG proteins are known to be involved in cellular memory of chromatin states (Grimaud et al.,
2006). Mutations in mod(mdg4) enhance trxG mutations and suppress PcG mutations, and
trxG mutations enhance the mod(mdg4) paternal effect described above. More importantly, the
maternal effect of the mod(mdg4)u1 mutation is also enhanced by trxG mutations and
suppressed by a PcG mutation, indicating that the epigenetic inheritance of insulator activity
is affected by cellular memory proteins (Gerasimova and Corces, 1998). Therefore, TrxG and
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PcG proteins and insulator proteins are interdependent on one another for proper function.
Although there is no evidence for direct interaction between these groups of proteins, they are
all thought to be involved in large-scale nuclear organization. This implies that part of the
information that is epigenetically retained from one generation to the next is the physical
organization of chromatin in the nucleus, and each of these proteins must be functional for this
process to occur properly.

Insulators modulate cell-type specific nuclear organization
If nuclear organization contains epigenetic information, then it can be inferred that it is cell-
lineage specific. Additionally, nuclear organization and transcriptional regulation are known
to be intimately related. The fact that gene expression patterns define cell identity also implies
that nuclear organization is cell-type specific. Therefore, elements, such as insulators, that are
involved in the establishment of nuclear organization and transcriptional regulation must be
regulated between cell types.

Here we focus on what is known about genome-wide cell-type specific insulator information.
However, the function of specific insulators which are known to be regulated between different
cell types, such as the CTCF insulator at the ICR in vertebrates and the insulators found in the
Drosophila Abd-B regulatory region, will be discussed in greater detail in a later section.
Looking globally, CTCF binding sites in the human genome were recently mapped using
chromatin immunoprecipitation followed by microarray analysis (Barski et al., 2007; Kim et
al., 2007). The analysis of two different cell types revealed differences in a small but
reproducible percentage of these sites, indicating that CTCF binding to DNA is partially cell-
type specific. However, when a small number of Su(Hw) binding sites were analyzed in
different Drosophila tissues little or no variation was observed (Adryan et al., 2007; Parnell et
al., 2006). This difference could indicate that the Su(Hw) insulator is only involved in static
nuclear architecture, although other Drosophila insulators might dictate cell-type specific
organization. Alternatively, there might be cell-type specific changes in Su(Hw) binding to
DNA that could not be resolved when comparing whole tissues that contain many different
cell types. A third possibility is that Su(Hw) insulator regulation of nuclear organization occurs
through the regulation of interactions between insulator proteins involved in loop formation
and not at the level of DNA binding. In support of this third possibility, during heat shock,
which causes the heat shock genes to be activated and transcription in the rest of the genome
to be turned off, Su(Hw) insulator bodies dissociate, but insulator proteins remain bound to
DNA (Gerasimova et al., 2000). Therefore, the massive change in gene expression patterns
that follows heat shock is accompanied by reorganization of the protein-protein interactions
between insulator proteins indicating that cell-type specific regulation of Su(Hw) insulators
might occur largely at the level of insulator clustering.

The nuclear lamina is involved in cell-type specific nuclear organization and gene expression
in Drosophila. As the Su(Hw) insulator interacts with the nuclear lamina, an interaction that
is necessary for proper insulator function, insulators might be involved in this process of cell-
type specific nuclear organization (Capelson and Corces, 2005; Gerasimova et al., 2000). In
vitro differentiation prompts a small number of genes to alter their association with the nuclear
lamina, and these nuclear rearrangements are accompanied by changes in gene expression
(Pickersgill et al., 2006). Although the role of insulators in this context has not been examined,
activation or inactivation of insulators could cause the chromatin to associate with or
disassociate from the nuclear lamina, leading to the observed changes in nuclear arrangement
and gene expression. Recently, lamina-associated domains were mapped throughout the entire
human genome, which revealed a strong enrichment for CTCF sites within 5–10kb of these
domains (Guelen et al., 2008). Although this analysis was limited to one cell type and therefore
does not provide insight into the role of the nuclear lamina or CTCF in cell-type specific nuclear
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organization, it does suggest conservation of the functional interaction between nuclear lamina
and insulator proteins in vertebrates. More thorough analysis is required to determine whether
insulators are in fact involved in cell-type specific nuclear organization.

The regulation of insulator activity
Given that the DNA sequences to which insulator proteins bind are present in all cells, but that
the functionality of specific insulator sites in specific cell types exhibits some variability, it
follows that there must be some means of regulating insulator protein behavior. This regulation
could take place either once in a lineage as part of a differentiation event, with the effect being
stably maintained by epigenetic mechanisms as discussed above, or as part of an ongoing
system of control that is continually reimposed (or permitted to lapse) in every cell generation.
Evidence exists for a variety of molecular mechanisms affecting insulator protein behavior at
multiple stages involved in insulator function (Figure 2).

A basic requirement for any kind of functional insulator protein complex is DNA-binding
activity. One method of modulating DNA-binding activity is covalent modification of the DNA
at the binding site. The classic example of this type of regulation is differential methylation of
the CTCF binding site between the H19 and Igf2 genes (Bell and Felsenfeld, 2000; Hark et al.,
2000). In this case, when CTCF is bound and the insulator is functional, only H19 is expressed;
this occurs on the maternal chromosome. On the paternal chromosome, the binding site is
methylated and CTCF is unable to bind, rendering the insulator inactive; only Igf2 is expressed.
This methylation mark is imposed during male germ cell development and stably maintained
thereafter. Another means of regulation is covalent modification of the proteins involved. It
appears that ubiquitination might play a role here, as the E3 ubiquitin ligase dTopors can affect
the Su(Hw) insulator in Drosophila (Capelson and Corces, 2005). Mutations in this gene reduce
insulator function, whereas dTopors overexpression can rescue insulator phenotypes that
already have reduced function and impaired DNA binding. A point mutation that abolishes
ubiquitin ligase activity also abolishes the rescue effect, suggesting that the enzymatic activity
is important; however, the identity of the enzyme’s target in this process remains unknown. A
third strategy for regulating DNA binding is protein-protein competition. The relationship
between BEAF and the transcriptional regulator DREF is a likely candidate for this form of
regulation (Hart et al., 1999). Both proteins bind the same DNA motif, but they do not interact
with each other, and electrophoretic mobility shift assays show that only one at a time can bind
to a specific site. On polytene chromosomes, they appear to overlap at many points, suggesting
that some copies of the chromosome might be bound by BEAF whereas others are bound by
DREF. The functional significance of this relationship, if any, has not been determined.

Given that the prevailing models of insulator function suggest that insulator sites interact with
one another to form chromatin loops, regulation of insulator activity at the level of protein-
protein interactions required to form these loops is also likely to be important. A probable
example of this type of regulation is modification of CTCF by poly(ADP-ribosyl)ation, or
PARlation (Yu et al., 2004). Chromatin immunoprecipitation experiments in murine cells
indicate that the PAR mark and CTCF overlap at numerous points in the genome, and in
vitro mobility shift assays demonstrate that PARlated CTCF retains its DNA-binding ability.
Together these results suggest that a large fraction of endogenous CTCF binding sites contain
PARlated protein. In this case, there are hints that the modification is a positive regulator of
insulator function, as treatment with 3-aminobenzamide, an inhibitor of PARlation, results in
loss of insulation. The idea that PARlation regulates CTCF insulation by promoting
interactions between insulator sites has not been shown conclusively but appears likely, as
PARlation seems to promote protein-protein interactions in other contexts (Reale et al.,
2000). Another case of insulator regulation by modulation of protein-protein interaction is the
modification of Mod(mdg4)2.2 and CP190 in the Drosophila Su(Hw) insulator complex by
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addition of SUMO (Small Ubiquitin-like Modifier) (Capelson and Corces, 2006). As is the
case for PAR, SUMO colocalizes with insulator proteins at a number of sites throughout the
genome, as demonstrated via immunostaining of polytene chromosomes. However, unlike
PAR, SUMO appears to be a negative regulator of insulator activity, as mutations in the
SUMOylation pathway result in strengthened insulator function. Furthermore, the
overexpression of SUMOylation machinery components disrupts the appearance of punctate
insulator bodies in diploid nuclei from third instar larvae. This finding strongly suggests that
SUMOylation regulates insulator activity by interfering with the ability of insulator sites at
different locations to interact with one another. The RNAi machinery also appears to play a
role in regulating interactions between insulator proteins (Lei and Corces, 2006). This role does
not seem to be a straightforward one, however, as different components of the machinery affect
insulator function in opposite ways. Based on loss-of-function and overexpression studies, the
helicase Rm62 opposes, whereas Argonaute proteins facilitate, insulator activity. The
interaction of insulator proteins with chromatin appears to be unaffected in any of these
conditions, again indicating that regulation occurs at the level of interaction between insulator
sites, rather than of proteins binding DNA at each site. The interaction between Rm62 and
CP190 is RNA-dependent, which brings up an interesting possibility. In addition to
determining simply whether or not a particular insulator site participates in interactions with
other insulators, one can also imagine that there might be modes of regulation that specify the
set of insulator sites that participate in each cluster. Potentially, the sequence specificity
afforded by the inclusion of RNA in an insulator complex might provide a means of
accomplishing this goal.

In addition to the regulatory mechanisms described above, there are other factors that affect
insulator activity for which the functional details are still unknown. One example comes from
the Drosophila Abdominal-B (Abd-B) locus. The Abd-B control region consists of a series of
developmentally regulated enhancers, silencers and insulators. How the correct enhancer
targets the Abd-B gene in a given cell type is an area of great interest. Interestingly, one of the
insulators in this region, Fab-7, consists of multiple sub-elements that exert their insulator
function either at different points during development or with different enhancer-promoter
combinations (Schweinsberg et al., 2004). This finding reveals the potential for specified
insulator activity that might elucidate some of the developmentally regulated gene expression
at this locus. Additionally, multiple insulators within the Abd-B control region have been
shown to exhibit insulator bypass, meaning that insulator activity is abrogated when two
insulators are placed near one another due to insulator pairing (Gruzdeva et al., 2005;
Kyrchanova et al., 2007; Kyrchanova et al., 2008; Rodin et al., 2007). Although insulator
bypass has not been shown at the endogenous locus, it is possible that this mechanism plays a
role in targeting specific enhancer elements to the promoter in the correct cell-type at the correct
developmental time-point. Another part of the explanation for the developmentally regulated
gene expression of the Abd-B gene comes from Promoter Targeting Sequences (PTS) that have
been found 3′ to two of the insulators, Fab-7 and Fab-8, and allow enhancers to overcome both
Drosophila CTCF and Su(Hw) enhancer-blocking activity in transgene assays (Chen et al.,
2005; Zhou and Levine, 1999). These PTSs target an enhancer to one, and only one, promoter
in a given cell lineage, suggesting that these sequences stabilize enhancer-promoter complexes
(Lin et al., 2003). Perhaps these enhancer-promoter complexes interfere with insulator loop
formation and in this way abrogate insulator activity.

Another example of nearby sequences affecting insulator activity is thyroid hormone response
elements (TREs), which are often found in close proximity to CTCF binding sites in vertebrates
(Arnold et al., 1996; Awad et al., 1999; Perez-Juste et al., 2000). Analysis of the relationship
between these two elements suggests that CTCF enhancer-blocking activity is reduced by both
the TRE found upstream of the chicken lysozyme gene and the TRE found upstream of the
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human c-myc gene in the presence of thyroid hormone (Lutz et al., 2003). CTCF remains bound
to the DNA in the presence of hormone, indicating that TREs must inactivate CTCF.

Additional modulation of CTCF activity comes from various interaction partners (Wallace and
Felsenfeld, 2007). Whereas Kaiso is thought to negatively regulate CTCF enhancer-blocking
activity, CHD8 enhances this function (Defossez et al., 2005; Ishihara et al., 2006). Recent
studies indicate that cohesin also interacts with CTCF. These reports demonstrated that CTCF
recruits cohesin to chromatin and that it is necessary for proper insulator function at both
transgenic and endogenous loci (Parelho et al., 2008; Rubio et al., 2008; Stedman et al.,
2008; Wendt et al., 2008). Although the effect of cohesion on CTCF association with DNA is
unclear due to conflicting data from these studies, Kaiso and CHD8 are not thought to have an
effect. Therefore, at least some CTCF interacting partners must affect insulator activity through
an alternative mechanism, such as promoting or hindering loop formation.

The vast number of regulatory mechanisms that exist to modulate insulator function implies
that insulator activity is dynamic. Separate mechanisms have been identified for the regulation
of insulator protein binding to DNA and protein-protein interactions leading to loop formation.
These strategies could be used for different degrees of regulation. Interference at the level of
DNA binding could be a more permanent form of regulation, whereas interference at the level
of loop formation could be more transient as the proteins could remain present and poised for
activation. Thus, for example, a cell could respond quickly to changes in its immediate
metabolic needs and its environment by altering its loop organization, while still retaining its
differentiated identity via DNA binding patterns. However, more work is needed to understand
when and how the cell uses these forms of insulator regulation.

Conclusions
At least some enhancer-blocking insulators seem to participate in epigenetic inheritance, and
many exhibit regulation of insulator activity. Each insulator site contains the potential for
regulation on many levels, including proteins binding to the insulator DNA, modifications to
these proteins, or nearby elements modulating activity of insulator complexes. As enhancer-
blocking insulators are found throughout the Drosophila and vertebrate genomes, a wealth of
potentially cell-type specific information exists that can be maintained throughout a cell and/
or organismal lineage. It is still unknown, however, how widely these forms of regulation are
used by a cell, and, therefore, it is unclear how much of the insulator activity in a given genome
is cell-type specific.

Although much work has been done to understand insulator function, the mechanisms through
which they function are still not well understood. It is also unclear whether the main function
of insulators is to act locally through enhancer-blocking, if their function in cis-regulation of
transcription simply reflects their role in global nuclear organization, or whether insulators
play an active role in both transcriptional regulation and nuclear organization. If their role in
nuclear organization is functional, it is possible that insulator-dependent nuclear organization
of chromatin contains epigenetic information that is important for cell differentiation.
Regulation of this organization by controlling insulator activity at specific genomic locations
might therefore be an important mechanism for the establishment and maintenance of specific
cell fates during development in higher eukaryotes.
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Figure 1.
The role of insulators in epigenetic memory. (A) Insulator protein binding could be an
epigenetic mark that is maintained through cell division. Locus A and Locus B represent two
different genomic loci that contain insulator elements. Locus A is bound by an insulator protein
that prevents transcription, whereas locus B is unbound and therefore able to produce a gene
product (pentagon). If insulator protein binding acts as an epigenetic mark, binding or lack of
binding is remembered after cell division. (B) An insulator could participate in an epigenetic
signal through regulating a gene that establishes an epigenetic mark. In this situation, loss of
insulator protein binding leads to production of a gene product (pentagon) that establishes an
epigenetic mark, here in Locus B. The epigenetic mark is maintained through cell division
regardless of the state of the insulator. Therefore, the insulator participates in the establishment
of the epigenetic mark, but is not the mark itself. Squares – enhancer binding proteins; Circles
– insulator proteins; Pentagons – gene products whose expression is regulated by insulators;
Ovals – epigenetic marks.
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Figure 2.
Regulation of insulator activity. (A) Insulator function could be regulated on the level of DNA-
binding activity. Regulation could be positive or negative and could occur by various molecular
mechanisms, including DNA modification, protein modification, protein-protein interaction,
and effects of nearby chromatin. (B) Insulator function could be regulated on the level of
protein-protein interaction. Again, regulation could be positive or negative. Molecular
mechanisms could include protein modification, protein-protein interaction, effects of nearby
chromatin, and interaction with small RNAs.
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