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ABSTRACT We use Monte Carlo simulations to analyze the simultaneous interactions of multiple proteins to a long DNA molecule.
We study the time dependence of protein organization on DNA for different regimes that comprise (non)cooperative sequence-
independent protein assembly, dissociation, and linear motion. A range of different behaviors is observed for the dynamics, final
coverage, and cluster size distributions. We observe that the DNA substrate is almost never completely covered by protein when
taking into account only (non)cooperative binding, because gaps remain on the substrate that are smaller than the binding site size of
the protein. Due to these gaps, the apparent binding size of a protein during noncooperative binding can be overestimated by up to
30%. During dissociation of cooperatively bound proteins, the dissociation curve can be exponentially shaped even when allowing
only end-dependent dissociation. We discuss the potential of our method for the analysis of a number of single-molecule experiments,
for example, the binding of the DNA-repair proteins RecA and Rad51 to DNA.

INTRODUCTION

In the last decade, new experimental techniques have opened

the way to study protein-DNA or protein-protein interactions

at the level of single molecules. In contrast to bulk experi-

ments, single-molecule experiments do not suffer from av-

eraging multiple events, thereby allowing much more

detailed characterization. The interaction between proteins

and DNA involves a variety of relevant processes, e.g.,

binding, dissociation, translocation, shape deformation, etc.

To describe the dynamic interactions between a protein and

DNA, one can study systems where the protein-DNA inter-

action is restricted to a specific site, e.g., a recognition se-

quence for a restriction enzyme (1). For this type of

experiment with a single protein interacting with DNA,

models were developed to extract the relevant kinetic inter-

action rates.

For proteins that bind nonspecifically to DNA, however,

the situation may be much more complex. Often, many

proteins interact with DNA and other proteins simulta-

neously. One approach to study these systems in detail has

been to avoid multiple events by severely reducing the

amount of target area. For example, the length of available

DNA substrate can be limited to only tens of bases, or the

concentration of protein present in the reaction can be sub-

stantially lowered with respect to the target area. Another

approach to study the dynamics of multiple nonspecific in-

teractions of proteins with DNA or other proteins is to de-

velop models that go beyond the description of single-entity

binding.

In the classic protein-binding model of McGhee and von

Hippel (MVH) (2), two cases of nonspecific protein-DNA

binding are addressed: noncooperative and cooperative

binding. In the former, proteins bind randomly to the lattice

without any preference to bind adjacent to an already bound

protein. In cooperative binding, however, a nucleation event

is followed by an extension phase where proteins preferably

bind next to an occupied lattice position (Fig. 1 A). In their

analytical approach, MVH assumed an infinite lattice to

which proteins can bind (non)cooperatively, without taking

into account disassembly. Depending on the protein con-

centration and the strength of the cooperativity, the fractional

final coverage was deduced at equilibrium—yielding a value

for the binding constant of the protein to the lattice.

Although this model is valuable and widely used to

determine the magnitude of cooperativity for a certain

protein-DNA system (3–5), it has certain limitations. In a

single-molecule experiment, one can measure the fractional

coverage as it develops in time. The approach of MVH does

not allow us to describe this dynamics or to extract kinetic

parameters from the experimental single-molecule data, be-

cause it restricts the description to the final equilibrated

system. Furthermore, the model proposed by MVH assumes

that for B proteins that bind noncooperatively to the lattice,

there are B 1 1 gaps of bare DNA in between the bound

proteins. This is a priori not true, because even in the non-

cooperative case, proteins can bind next to an already bound

protein. Finally, the obtained coverage for cooperative

binding in the MVH model is always complete. This outcome

is incorrect because gaps smaller than the binding size of the

protein remain on the lattice due to the random nucleation of

proteins along the lattice.

Recently, an analytical tool based upon hidden Markov

modeling was developed and applied to extract kinetic rates

from single-molecule fluorescence data (6,7) and ion-channel
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data (8,9). A regular Markov model consists of a series of

states where, at each time, the system may change from the

state it was in the moment before, or may stay in the same

state. These states are directly visible to the observer. In a

hidden Markov model, however, the model contains an un-

derlying stochastic process that is not observable (it is hidden)

(10). A correct interpretation of single-molecule data using

hidden Markov modeling depends on the number of states in

the model and the corresponding probabilities involved (11).

Furthermore, the states within the model should be inde-

pendent of each other. For example, hidden Markov model-

ing does not work well for RNA secondary-structure analysis

(10). Studying protein binding to a lattice using hidden

Markov modeling causes a similar problem, because an al-

ready bound protein can influence a different protein cluster.

Here, we develop a new analysis method based upon

Monte Carlo simulations that allows a description of both the

dynamics and the final states of systems with multiple pro-

tein-DNA or protein-protein interactions via nonspecific

target areas. In these Monte Carlo simulations, a Markov

chain of different states is calculated. The simulations allow

following the interaction of multiple proteins with a single

DNA or protein substrate modeled as a one-dimensional

lattice in time. We separately show the results for proteins

that bind noncooperatively or cooperatively, dissociate, or

reorganize along the DNA substrate. Furthermore, combi-

nations of these three different interaction modes are im-

plemented in the Monte Carlo simulations. The usefulness of

our method was recently illustrated with a comparison to the

interaction between the recombinase Rad51 with single- and

double-stranded DNA, where a fit of the model to the ex-

perimental data allows us to extract a variety of protein-DNA

interaction parameters that could not be obtained otherwise

(12). Finally, we suggest a number of different systems to

which this method can be applied.

Description of the model

We model protein-DNA interaction using Monte Carlo

simulations (13–16). In our Monte Carlo simulations, we

model the interaction between protein and DNA with a

Markov chain where the next state of the protein-DNA

complex depends on the current state. The transition proba-

bilities between different states are given, and a certain sto-

chastic pathway results. The Monte Carlo approach allows us

to study both the dynamics as well as equilibrium states.

We first describe the concept for simulating the simplest

two-state process that can be written as

A /
k1

B: (1)

The reaction rate k1 is coupled to a transition probability p1 in

a Markov Chain as

k1 ¼
p1

Dt
; (2)

where Dt is the duration of a single simulation step in the

Monte Carlo simulations. The duration of a simulation step is

taken such that 1), the transition probability within a single

simulation step is always much smaller than unity; and 2), the

chance of having two local transitions within a single sim-

ulation step is negligible. In the Monte Carlo simulations, a

transition to the new state occurs when the transition prob-

ability is larger than a random value extracted from a uniform

distribution between 0 and 1.

FIGURE 1 Schematic drawings of different pathways for protein-DNA

kinetics. (A) Assembly of a nonspecifically binding protein on its DNA

substrate can be divided into two modes, noncooperative and cooperative. In

the former (left panel), the protein binds randomly, whereas, in the latter

(right panel), a preference exists to bind next to an already bound protein.

(B) Disassembly of bound proteins can also be divided into two different

modes, end-dependent and position-independent dissociation. In the first

case (left), only proteins located at the end of a protein complex can

dissociate, whereas, in the second case (right), all bound proteins, regardless

of their position within the protein complex, have the same probability to

dissociate. (C) Linear motion of a protein patch can be described by either a

diffusive (left) or a unidirectional (right) mode. In the mode depicted at the

bottom of the panel, end-bound monomers are allowed to detach from a

protein patch and move diffusively toward a neighboring protein patch.
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The interaction between proteins and DNA is implemented

as follows in the Monte Carlo simulations (for details, see

Methods). The DNA substrate is represented as a long one-

dimensional array with the number of elements equivalent

to the number of nucleotides or basepairs available. Upon

binding, a protein occupies a certain number of elements

corresponding to its binding site size corresponding to the

most simple model of irreversible adsorption known as ran-

dom sequential adsorption. The random sequential adsorp-

tion model has proven to be quite successful in describing a

number of systems (17), lattice and continuum limits have

been studied (18,19). Subsequently, the protein can dissoci-

ate or move along the substrate, respectively freeing or oc-

cupying other elements of the array. The protocol for binding,

dissociating, and moving is repeated for each protein inter-

acting with the DNA. Monitoring the transitions in time can

be done by evaluating observables such as the lattice occu-

pancy, contour length, or stepping of a single labeled protein.

METHODS

Binding of protein onto a DNA substrate was modeled using Monte Carlo

simulations implemented in Interactive Data Language (RSI, Boulder, CO).

A one-dimensional array was used to represent the DNA substrate containing

a number of elements equivalent to the number of nucleotides or basepairs of

the DNA molecule of interest. Simulations were done with various binding

sizes for the protein. Cooperative binding was described by nucleation fol-

lowed by growth that extended the nucleation point, whereas noncooperative

binding involved nucleation only.

Nucleation was allowed to occur at any point along the entire molecule. In

the Monte Carlo simulations, the nucleation step was simulated as follows: a

value was randomly extracted from a uniform distribution yielding a value

between 0 and 1. If this value was smaller than a given threshold corre-

sponding to the set nucleation rate for the entire molecule, a protein was

bound. The binding location was deduced from a second random number

between 0 and 1, which was extracted from a uniform distribution that was

multiplied by the number of elements in the one-dimensional array. Binding

occurred only when this site plus the following n – 1 sites were not covered

by another protein, to account for the fact that each protein covers n nucle-

otides or basepairs.

For cooperative binding, we evaluated all nucleation sites where protein

patch extension could occur. For each site, a value was extracted from a

uniform distribution and compared to a given threshold corresponding to the

set rate of extension for a single protein patch. If this value was smaller than

the threshold, the protein patch was extended if the next n nucleotides or

basepairs were not already covered by protein. Extension was only permitted

into the direction of higher numbers in the one-dimensional array.

The probabilities for nucleation and growth per time step were taken so

small, that the chance of two binding events within a single Monte Carlo step

was negligible. For comparison to experiments, the threshold values, which

are rates expressed in units (Monte Carlo step)�1, can convert into kinetic

rates expressed in s�1 by adjusting the time axis of the Monte Carlo growth

curve to the experimental growth data. Whereas our simple modeling in-

volved protein patch extension and disassembly in a unidirectional fashion,

the model can be extended using protein patch extension and/or disassembly

in both directions. Essentially the same results are found if extension and

disassembly occur in both directions, albeit with two slightly different values

for the rates that change by a factor up to 2.

In those cases where disassembly was considered, we additionally al-

lowed dissociation to occur after the protein patch extension step. At each

end of a protein patch (i.e., a protein cluster consisting of m protein mono-

mers, with m $ 1) opposite to the protein-patch-extension end (i.e., toward

lower numbers in the array), a value was extracted from a uniform distri-

bution and if this value was smaller than the threshold set by the dissociation

rate, the protein dissociated and a vacancy was created. In the case of dif-

fusion of these end-bound monomers, the protein remained bound to the

lattice. Alternatively, a second route was considered where dissociation was

allowed at all monomer sites i.e., also in the middle of protein patches. Here,

the above procedure was extended to all bound proteins.

Reorganization of individual proteins or protein patches along the DNA

substrate was incorporated as follows: a value was randomly extracted from a

uniform distribution yielding a value between 0 and 1. If this value was

smaller than a given threshold corresponding to the reorganization rate, a step

of the protein patch was made of one nucleotide or basepair. For unidirec-

tional translocation, the direction was chosen uniformly, toward lower

numbers in the array. For diffusive motion, the stepping direction was ran-

domly toward higher/lower numbers in the array, when an extracted value

from a uniform distribution was larger/smaller than 0.5. Diffusive motion of

end-bound monomers after detachment was done similarly. Upon collision

with individual proteins or protein patches, the diffusive motion was stopped.

To ensure the robustness of the code, all simulations were run a number of

times (with different seeds) to validate that the outcome was similar for

different runs. Typical data of the different scenarios is shown in the corre-

sponding figures.

RESULTS

We modeled the interaction between proteins and DNA for a

variety of processes, i.e., binding, dissociation, reorganiza-

tion, and combinations of these. Protein-DNA binding can be

divided into two different schemes—noncooperative and

cooperative binding (see Fig. 1 A) (20–23). We first present

the results for noncooperative binding of proteins to DNA.

Noncooperative binding

Noncooperative binding of proteins to a DNA molecule is

modeled in the Monte Carlo simulations as random binding to

a one-dimensional lattice. Upon binding, the protein covers a

binding site of multiple nucleotides or basepairs. First, only

binding is considered; i.e., once bound, a protein does not

disassemble or rearrange. The occupancy of the lattice is fol-

lowed in time (see Fig. 2 A). The resulting protein coverage

displays an exponential growth profile, independent of the

binding site size of the protein (see Fig. 2 B). The final occu-

pancy, however, varies with respect to the chosen size of the

binding site of the protein (see Fig. 2 D). For a binding site size

of 1 nt, full occupancy is obtained, as expected. However, the

fractional occupancy decreases for an increasing binding site

size, reaching a plateau of ;0.76 (Fig. 2 D). Due to the finite

size of the binding site, gaps of unoccupied lattice elements

with a size smaller than the binding site remain throughout the

lattice (see bottom panel in Fig. 2 A for an example). The actual

number of bound proteins to the lattice is therefore smaller

than when all proteins would mutually align such that no gaps

would remain on the lattice. Division of the length of the lattice

by the number of bound proteins yields the apparent binding

size for the protein, which is larger than its intrinsic binding

size due to the existence of gaps. This leads to an increase in
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the apparent binding size of 29.5 6 0.2% compared to the

actual binding size (see Fig. 2 E).

The kinetics of simple noncooperative binding can be

described analytically as follows (21). The binding process is

limited by the amount of free basepairs available on the DNA

molecule (see Fig. 2 A). During growth the amount of free

basepairs Nfree decreases according to dNfree/dt ¼ �aNfree,

where a is the binding rate of the protein to the lattice, which

together with the boundary condition of Nfree(0) ¼ N yields

Nfree ¼ Ne�at. The time-dependent occupancy u becomes

uðtÞ[ NboundðtÞ
N

¼ 1� e
�at
; (3)

showing an exponential binding profile in excellent agree-

ment with the profiles obtained in the Monte Carlo simula-

tions (see black lines in Fig. 2 B).

The final occupancy depends on the binding size n of the

protein. A lattice that consists of N possible binding sites

allows binding up to (N/n) proteins. During a noncooperative

binding process, gaps of size i (1 # i # n – 1) are created

throughout the entire lattice reducing the final amount of

proteins on the DNA. For the final state, an effective binding

size n* ¼ n 1 sgap can be defined, where sgap is the average

gap size between proteins. This average gap size between

proteins is not equivalent to 1
2
ðn� 1Þ but instead sgap ¼

+n�1

i¼1
(i/n1i). When the binding size increases, the possible

gap sizes increase accordingly. Therefore, one needs to take

into account the actual number of proteins with an adjacent

gap size i that is bound to the lattice decreasing as (n 1 i)�1

and not as n�1. Together, this yields for the fractional oc-

cupancy

u ¼ N=n
�

N=n
¼ n

n 1 +
n�1

i¼0

i

n 1 i

; (4)

which can be simplified into

u ¼ 1

2�Cð2nÞ1 CðnÞ; (5)

where CðxÞ ¼ (G9(x)/G(x)) and G(x) is the g-function. This

relation between fractional coverage and binding site indeed

describes the observed behavior from our Monte Carlo

simulations well; see the solid red line in Fig. 2 D. The

fractional coverage for a protein covering two sites (n¼ 2) is

0.857, close to the result of 0.865 derived by Flory (24) using

combinatorial techniques. For large binding sites, noncoop-

erative binding is similar to the car-parking problem, where

one-dimensional cars are parked randomly in a linear array

(25,26). Equation 5 yields a fractional coverage of 0.765 for

n / N in fairly good agreement with the result of 0.748

obtained for the car-parking problem (25).

Cooperative binding

Cooperative binding of proteins to a DNA molecule is

modeled in the Monte Carlo simulations in two steps: nu-

cleation followed by extension. ‘‘Nucleation’’ denotes pro-

tein binding at an unoccupied DNA position not adjacent to

already bound proteins, whereas we define ‘‘extension’’ as

binding to a site directly adjacent to one that is already oc-

cupied. We can follow the binding process to the lattice in the

Monte Carlo simulations in time by visualizing the binding of

FIGURE 2 Noncooperative binding. (A) Snapshots of the DNA occupa-

tion by proteins at different times during a Monte Carlo simulation for

noncooperative protein binding. This simulation is carried out for k ¼ 5 3

10�6 site�1 (MC step)�1. As a protein covers 3 nt or 3 bp upon binding,

binding can only occur if sufficient space is available. In the bottom panel,

the simulation has reached its final state since no further proteins can bind.

Gaps of 1 or 2 nt/bp are clear. (B) Time-dependent binding profiles are

simulated for different binding sizes, i.e., n ¼ 1, 3, and 10 (respectively red,

green, and blue lines), showing an exponentially shaped growth curve (red
line). Only for n¼ 1, full coverage is obtained. (C) The protein-patch length

distribution of bound proteins in the saturated state has a maximum around a

dimeric protein-patch length. The solid black line denotes the fit of Eq. 6

yielding a cooperativity number of 1.0 6 0.3. (D) After protein coverage has

saturated, the final occupancy of the substrate was determined. With

increasing binding site size of the protein, the final occupancy decreased

and finally reaches a plateau of ;76%. The dependence is quite well

described by Eq. 5 (red line). The dashed red line indicates the dependence

when the gap size corresponds to 1
2
ðn� 1Þ;which clearly fails to describe the

data. (E) The apparent binding site size of the protein can deviate from the

actual binding site size due to the existence of gaps between bound proteins.

In the Monte Carlo simulations the apparent binding site size is equivalent to

the real size (red line). The obtained values in the MVH model overestimate

the actual value by ;30% (black line).
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every individual protein (or protein cluster if binding occurs

via multimers); see Fig. 3, A and B. Using these simulations,

we obtained lattice occupancy profiles at different ratios

between extension and nucleation (Fig. 3, C and D). Different

qualitative behavior is observed, depending on the ratio be-

tween rates for extension and nucleation, henceforth called

the cooperativity number v. For a high cooperativity number

(i.e., when nucleation is rare; see solid line in Fig. 3, A and B),

nothing happens until a first nucleation event occurs, after

which the coverage of the DNA molecule increases linearly

due to the extension of the protein patch. By contrast, at low

cooperativity numbers, many nucleation loci are created

followed by extension into multiple protein patches. The

process ends when the molecule has no more free binding

sites that are large enough to accommodate binding of an-

other protein or protein cluster. With increasing cooperativity

numbers, the obtained time-dependent binding profiles

change from an exponential (for a ratio of zero, equivalent to

noncooperative binding) to a linear relationship (for ratios

.106) (see Fig. 3, C and D). The final fractional coverage of

the lattice increases for increasing cooperativity values, be-

cause the final amount of gaps is reduced (Fig. 3 G) (20,27).

Although extension can be orders-of-magnitude larger than

nucleation, full coverage is hardly ever obtained for n $ 2.

The final distribution of protein clusters along the lattice can

be quantified. Different protein-patch length distributions can

be obtained depending on the size of the protein cluster that

binds during nucleation and extension and the ratio between

nucleation and extension rate (see Fig. 3, E and F). For the

noncooperative case, the distribution of protein patch sizes

peaks around the size of the binding unit with a long tail to-

ward longer protein patches (see Fig. 2 C). An analytical

FIGURE 3 Cooperative binding. (A) Snapshots of the DNA occupation

by protein at different times during a Monte Carlo simulation for cooperative

protein binding. This simulation is carried out for knucl ¼ 1 3 10�6 site�1

(MC step)�1, kext¼ 5 3 10�5 (MC step)�1, and a binding size n¼ 1. Due to

the fast nucleation rate, multiple protein patches are formed along the DNA

substrate. Because the protein covers only a single nucleotide or basepair,

the final state (bottom panel) is a fully saturated lattice. (B) For a binding size

.1, here n ¼ 5, a similar intermediate state is observed for equivalent

binding rates, but the final state contains gaps since no further proteins can

bind. (C) Time-dependent lattice occupancy profiles are obtained from the

simulations for different levels of cooperativity. If only random binding

(nucleation) occurs along the contour length of the DNA molecule (non-

cooperative binding; see top left), an exponential lattice occupancy profile

is obtained. However, if protein-patch extension is fast compared to

nucleation, e.g., for a ratio .106 (strong cooperative binding; see bottom

right), the lattice occupancy profile becomes linear and the molecule can be

fully covered by the protein. For intermediate ratios between protein-patch

extension and nucleation, sigmoidally shaped lattice occupancy profiles are

observed. All lattice occupancy profiles reach complete saturation because

the binding site size of the protein is one nucleotide or basepair in this case.

(D) For n ¼ 5 a similar change in binding profiles is observed, but complete

saturation is not obtained. (E) The protein patch-length distribution for a

protein with a binding-site size of three nucleotides or basepairs at a

cooperativity number of vin ¼ 100. The solid line denotes the best fit

obtained with Eq. 6, yielding a cooperativity vout of 2.3 6 0.3. (F) Similar

scheme, but for a protein with a binding site size of 15 nucleotides or

basepairs, yielded a cooperativity number of 10.8 6 1.0 using Eq. 6. (G)

Final occupancy of the substrate for varying numbers of cooperativity. If the

binding site size is one nucleotide or basepair, full coverage is always

obtained. For larger binding site sizes, the final occupancy increases with the

applied cooperativity number approaching the full 100% at very high kext/

knucl. (H) Apparent cooperativity number vout versus actual cooperativity

number vin. For varying cooperativity numbers (vin), the protein patch-

length distribution is determined for n ¼ 3. Subsequently, the simulated

distributions are fit with Eq. 6 to obtain a measure for the apparent

cooperativity number (vout). For nucleation-driven reactions (vin ¼ 1), the

fit yields a value close to 1. For extension-driven reactions where the

cooperativity number is .1, however, the obtained value vout deviates

significantly from the input value vin.
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expression for the protein-patch-length distribution Fc has

been proposed by (27)

Fc ¼ 1�
1� ðn� 2v 1 1Þu

n
� R

2u

n
ðv� 1Þ

2
64

3
75

3
1� ðn� 2v 1 1Þu

n
� R

2u

n
ðv� 1Þ

2
64

3
75

c�1

; (6)

where

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðn 1 1Þu

n

� �2

1
4vu

n
ð1� uÞ

s
; (7)

and c the length of the protein patch. In the saturated state

(u ¼ 1), the cluster size approaches infinity, independent

of the binding site of the protein (27). This prediction for the

noncooperative case of v ¼ 1 is not in agreement with the

observed behavior where the distribution shows a Poissonian

profile (see Fig. 2 C) due to the existence of gaps. We can fit

the distributions for n $ 2 with Eq. 6, where one can reduce

the number of free parameters to one, i.e., the cooperativity

number v, because the relative coverage u is given by
1
N

+N

c¼1
bcc with bc the number of appearances of a protein

patch with length c. Protein patch length distributions for n¼
3 were fit for varying cooperativity numbers (vin) with Eq. 6 to

obtain an apparent value for the cooperativity number (vout).

Interestingly, the fits yield significant differences—even by

orders of magnitude—between the values entered (vin) and

obtained after fitting (vout) for the cooperativity number (see Fig.

3 H). Due to the finite lattice length and incomplete coverage, the

fit severely underestimated the cooperativity number in all cases.

Multimeric binding and Hill coefficient

In the MVH model, it is assumed that the binding unit of the

protein during nucleation and extension is the same. Both

processes, however, in principle, can involve different pro-

tein multimers. The binding unit can be determined from

concentration-dependent binding reactions where the bind-

ing rate in either nucleation or extension, is determined with

respect to the protein concentration (see Fig. 4 A). This be-

havior can be described by the Hill equation

ki ¼
ki;max½A�nH

S
nH

0:5 1 ½A�nH
; (8)

where nH is the Hill coefficient and S0.5 the concentration

where half-maximum activity occurs. The Hill coefficient

can be interpreted as the minimal size of the binding unit, i.e.,

for nH ¼ 1, the protein binds as a monomer to the lattice,

whereas for larger values of nH, the protein binds as a nH-mer

(28). This coordination between proteins, for example by

binding of preformed multimers, is sometimes called coop-

erative binding, but this is entirely unrelated to the cooper-

ative binding defined above (the ratio between extension and

nucleation in protein patch formation). Within the Monte

Carlo simulations, the binding unit in nucleation and exten-

sion can be varied independently. In the case where the

binding units for nucleation and extension are equivalent, i.e.,

when the Hill coefficients are identical, the lattice occupancy

profiles remain the same independent of protein concentra-

tion. On the other hand, if the binding units are not equiv-

alent, the growth profiles and final occupancy change

depending on the protein concentration (see Fig. 4 C).

Dissociation

In the above binding schemes, the binding was taken to be

irreversible. However, proteins bound to a lattice can have a

FIGURE 4 Influence of the Hill coefficient on the kinetic interaction

between protein and DNA. (A) Concentration dependence of the binding

rates. If the protein interacts as a monomer with the DNA substrate, the curve

follows a Michaelis-Menten dependence (black). However, for larger

complexes (Hill coefficient nH $ 2), the profiles become sigmoidal (red

and green for, respectively, a dimer and pentamer). (B) The ratio between

extension and nucleation is concentration-dependent when the Hill coeffi-

cients differ for extension and nucleation. Blue and magenta denote the ratio

between pentameric-monomeric and monomeric-pentameric binding units,

respectively. (C) At three different concentrations (in order of increasing

concentrations denoted by 1, 2, and 3 in the inset of panel A), the lattice

occupancy profiles for the three independent cases are depicted. The black

curves for nH ¼ 2 (middle panel) in both nucleation and extension are the

same for various protein concentrations. The magenta and blue curves, for

next: nnucl ¼ 1:5 and 5:1, respectively, are protein-concentration dependent.

It is clear that the lattice occupancy profiles change when the ratio is not

constant in the applied concentration regime.
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probability to detach from the lattice, i.e., they dissociate

(22). Two different scenarios can be envisioned (see Fig.

1 B). As longer protein patches are formed on the lattice, 1),

only proteins located at an end of a patch are allowed to

dissociate (29,30); or 2), all proteins are allowed to dissociate

regardless of their position within the patch (31). For the

latter, the Monte Carlo simulations show an exponentially

shaped disassembly curve (see red line in Fig. 5), as ex-

pected. This dissociation behavior is independent of the as-

sembly history. Dissociation is, however, linear when

dissociation occurs only at the end of a single protein patch

(see black line in Fig. 5). If growth has resulted in a multitude

of small patches, end dissociation, however, also leads to an

exponentially shaped profile (see green line in Fig. 5) (30).

These observations can be understood straightforwardly.

For noncooperative binding, bound proteins do not gain from

protein-protein interactions and equivalently, once bound,

every protein has an equal probability to dissociate. Fol-

lowing a similar reasoning as above for binding (Eq. 3), this

yields an exponential dissociation profile, in agreement with

the Monte Carlo simulations. In the case of cooperatively

bound proteins, dissociation results in a linear profile only if a

single protein patch exists on the lattice, because the proteins

can only dissociate from one end, as indeed observed in the

Monte Carlo simulations. Multiple patches result in multiple

end-dissociation points, and the broad size distribution of the

patches then leads to an approximately exponential dissoci-

ation curve (29,30).

Rearrangements

We also consider in our simulations the spatial rearrangement

of proteins on the DNA, where bound proteins can move

linearly along the DNA. This is modeled by three different

pathways (see Fig. 1 C): 1), the protein cluster moves dif-

fusively; or 2), the protein cluster translocates unidirection-

ally along the DNA molecule; or 3), end-bound monomers

detach and move diffusively toward the neighboring protein

cluster. Diffusive movement of the protein leads to a random

walk in the Monte Carlo simulations (Fig. 6 B). Unidirec-

tional motion leads to an approximately linear relation be-

tween traveled distance and time, as expected (see Fig. 6 A).

Unidirectional motion is of course only possible at the ex-

pense of an available energy source, e.g., ATP hydrolysis.

One-dimensional diffusive motion of a protein cluster

along the lattice can be written as Æx2æ ¼ 2Dt, where Æx2æ is

the average mean-square displacement, D the diffusion co-

efficient, and t the time that the protein is moving along the

lattice. As shown in Fig. 6 C, the average mean-square dis-

placement of a single protein over a given time window in-

deed follows this relation.

So far, we have considered that, upon dissociation, an end-

bound monomer detaches from the protein cluster on the

DNA and vanishes to bulk solution. Instead of dissociation

into the bulk solution, the detached monomer can also remain

bound to the DNA molecule as sketched in scenario 3 (lower
mode in Fig. 1 C). After end detachment, the monomer dif-

fuses freely between two protein clusters (32). When the

monomer reaches either protein cluster, it will bind.

Combination of processes

Above we have shown different interaction modes for a

protein with the DNA substrate, i.e., (non)cooperative

binding, dissociation, and reorganization. In the simulations,

FIGURE 5 Protein dissociation. After proteins have formed a single con-

tinuous filament on the DNA substrate, a linear decrease is observed when the

protein disassembles from one end with kdis ¼ 0.2 (MC step)�1 (black line).

When all bound proteins have the same probability to dissociate irrespective of

their position in the protein complex, an exponentially shaped disassembly

curved is obtained with kdis¼ 6.7 3 10�4 (MC step)�1 (red line). If the proteins

form multiple short protein patches on the DNA substrate with bare DNA in

between, end-dependent disassembly shows again an exponentially shaped

disassembly profile with kdis ¼ 2.2 3 10�3 (MC step)�1 (green line).

FIGURE 6 Linear motion of a pro-

tein. (A) The position of a protein bound

to the DNA substrate is followed while

allowing unidirectional motion with

kuni ¼ 0.01 (MC step)�1. This yields

an approximately linear decrease in time.

(B) For a diffusive process with kdif ¼
0.01 (MC step)�1, the position of the

protein along the DNA substrate dis-

plays a random walk. (C) As expected

for a diffusive process, the mean-square displacement of a protein increases approximately linearly in time. The obtained diffusion constant is 0.0049 nt2 (MC

step)�1 in excellent agreement with the expected rate of diffusion, D ¼ 1
2

kdif ¼ 0:005 nt2 (MC step)�1.
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these modes can be combined in various ways to sort out the

different processes that contribute to the occupancy of the

lattice. Combination of these pathways can yield very dif-

ferent results. Here, we visualize these using kymographs,

graphs that represent the one-dimensional lattice occupancy

on one axis and time on the other (33).

Fig. 7 A shows a kymograph for cooperative binding,

where the final lattice is not completely covered because gaps

between protein clusters remain on the lattice. The grayscale

in the kymographs indicate protein-bound (open) and pro-

tein-free (solid) DNA substrate. The permanent gaps in Fig.

7 A thus are seen as the solid horizontal lines that persist over

time. Cooperative binding in the presence of end-dependent

disassembly yields a different behavior (Fig. 7 B). As can be

seen in Fig. 7 B, protein patches appear and disappear in time

at different positions on the lattice. The dissociation rate is

chosen such that the fractional coverage on the lattice re-

mains approximately constant in time.

Upon allowing reorganization of detached end-bound

monomers or bound protein patches either by diffusive or

unidirectional motion, a completely covered lattice is ob-

tained (see Fig. 7, C, E, and G, respectively). Unidirectional

movement of the protein patches is observed in the kymo-

graphs by linear stripes in the downward direction (Fig. 7 G),

which represent protein patches that shift and fuse with other

patches at the bottom. Diffusive motion of monomers or

protein patches leads to a more strongly fluctuating behavior

(Fig. 7, C and E). Also, upon combining all three modes—

cooperative growth, rearrangement, and end-dependent

disassembly—the final lattice is completely covered (Fig. 7,

D, F, and H). Note that the timescale now has significantly

increased due to the presence of protein dissociation before

saturation is obtained. The downward motion observed for

one-dimensional diffusion is caused by protein monomers

that erode from patches and after a diffusive walk, end up at

the next patch. A similar behavior is observed in Fig. 7 B.

DISCUSSION

Using Monte Carlo simulations, we have modeled different

interactions between protein and DNA, i.e., (non)cooperative

binding, dissociation, and reorganization. The flexibility of

the Monte Carlo simulations allows our using different

binding-site sizes of the protein during nucleation, filament

extension, or dissociation. The Monte Carlo simulations of

the different interactions yielded interesting results. First, the

DNA substrate is almost never completely covered by protein

when taking binding only, into account. Gaps remain on the

substrate smaller than the binding site size of the protein.

Second, the apparent binding size of a protein during non-

cooperative binding can be overestimated by up to 30% due

FIGURE 7 Kymographs for various combinations of protein-DNA inter-

actions. (A) Cooperative protein binding is visualized in time, where open

representation corresponds to proteins occupying lattice sites and solid

representation denotes unoccupied lattice positions. The simulation is car-

ried out for n¼ 3, knucl¼ 3 3 10�5 site�1 (MC step)�1, and kext¼ 5 3 10�4

(MC step)�1. In the final saturated state, gaps remain smaller than the

binding size of the protein. (B) In the presence of end-dependent disassem-

bly, kdis¼ 7 3 10�4 (cluster end)�1 (MC step)�1, protein patches appear and

disappear on the lattice. (C) Cooperative binding and diffusive motion of

detached end-bound monomers, kdet ¼ 0.01 (MC step)�1, and kstep ¼ 0.1

(MC step)�1, yields a completely covered lattice. (D) In the presence of

dissociation of detached monomers, kdis¼ 7 3 10�4 (detached monomer)�1

(MC step)�1, a combination of cooperative binding, dissociation, and

diffusive motion of detached end-bound monomers also yields a completely

covered lattice albeit on a longer timescale. (E) Cooperative binding and

diffusive motion of protein patches, kdif ¼ 0.01 (MC step)�1, yields a single

continuous protein complex. (F) A combination of cooperative binding,

dissociation, and diffusive motion leads to the formation of single contin-

uous protein complex albeit on a longer timescale. (G) A similar saturated

end state is observed for cooperative binding and unidirectional motion of

protein patches, kuni ¼ 0.01 (MC step)�1. (H) Same as panel F, but with

unidirectional instead of diffusive motion. This also eventually leads to the

formation of a single continuous protein complex.
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to the existence of gaps. Furthermore, the fractional coverage

increases for higher numbers of cooperativity. Finally, the

dissociation behavior of cooperatively bound protein can

lead to an exponentially shaped dissociation curve even when

allowing only end-dependent dissociation (30,31).

We can compare the benefits of our Monte Carlo simulations

to the MVH model and hidden Markov modeling. MVH de-

rived equations to describe the binding of a protein to a lattice

while taking into account cooperativity. This model has been

applied numerous times in equilibrium studies to extract

binding constants and the cooperativity number. The model

fails, however, to address the kinetics of individual proteins

when dissociation and translocation of bound proteins are rel-

evant. Furthermore, the final occupancy of the lattice is (in-

correctly) always complete despite the finite binding site size of

the protein involved. Indeed, our Monte Carlo results show that

the MVH cooperativity number extracted from filament length

distributions did not correspond to the input value. Finally, the

binding site sizes of the protein during nucleation and protein

patch extension in the original MVH model are identical,

whereas in an experiment they can be different.

In contrast to the MVH model, hidden Markov modeling

allows addressing the reaction kinetics. Due to the modular

setup of a Markov chain, different interaction pathways can

be modeled. However, hidden Markov modeling cannot cope

with systems where different pathways influence the out-

come of each other.

With Monte Carlo simulations, protein-DNA interactions

can be followed in time for each protein involved. A disad-

vantage is that it takes a fair amount of computational power

to simulate the kinetics of complex pathways in Monte Carlo

simulations, but not unreasonably so. (The current results

were obtained on a PC with an integrated computation time

of three weeks.)

Application of Monte Carlo modeling

The Monte Carlo simulations described here can be applied

to a variety of experimental systems. We briefly mention a

few examples. A system to which this method was applied,

was the interaction between the RecA-like recombinase

RAD51 and DNA (12) (see Fig. 8 A). Using magnetic

tweezers, the end-to-end distance of a tethered DNA mole-

cule was followed in time while RAD51 was allowed to bind

forming a nucleoprotein filament. Upon binding to the DNA

substrate, RAD51 induces a change in end-to-end distance

yielding a measure for the lattice occupancy. The induced

changes in end-to-end distance were fit with Monte Carlo

simulated binding profiles yielding all relevant single

RAD51 (dis)assembly rates.

Another useful application would be RNA-dependent RNA

polymerases. These polymerases can either generate template-

long duplexes by synthesizing full-length RNA chains in one

run, or generate many short duplexes by synthesizing short

complementary RNA oligonucleotides scattered along the

RNA template, known as abortive initiation (see Fig. 8 B) (34).

The former is a highly cooperative binding mode, whereas

abortive initiation corresponds to a low-cooperative binding

mode. This can be experimentally measured because the cre-

ation of duplex RNA from a single strand template increases

the stiffness of the RNA molecule yielding a change in end-to-

end distance of a tethered molecule in, e.g., a tweezers setup.

These changes in end-to-end distance can be analyzed with the

Monte Carlo simulations yielding values for the rates of ini-

tiation and duplex extension.

Other protein-DNA binding reactions can be analyzed as

well. The case of single-stranded binding proteins like SSB

and RPA, or nucleosome binding to DNA, is conceptually

very similar to the RAD51 binding that we have already

described. Another example is structural maintenance of

chromosome (SMC) proteins, which are the central compo-

FIGURE 8 Different biological systems to which the current Monte Carlo

simulations can be applied. (A) The interaction between the RecA-like

recombinase RAD51 and DNA was successfully modeled using the analysis

described. This showed that RAD51 binds cooperatively to DNA forming

short nucleoprotein filaments (12). (B) RNA polymerase transforms a single-

stranded template into a double-stranded substrate in the presence of free

nucleotides. Two different pathways exist. In the most common pathway,

the polymerase creates full-length templates, whereas in the other case,

known as abortive initiation, the polymerase forms short oligomers. The

pathways are similar to, respectively, a high- and low-cooperative binding

mode. (C) Structural maintenance of chromosomes (SMC) proteins form

condensed DNA structures by binding cooperatively to DNA holding two

DNA molecules in close proximity.
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nents of several multiprotein complexes that help to organize

chromosomes throughout the cell cycle (35) (Fig. 8 C). The

analysis presented here provides a basis for quantification of,

for example, the binding size, the presence of any coopera-

tivity involved, or possible reorganization during binding of

SMC proteins with DNA.

CONCLUSION

To overcome certain limitations of the classic MVH model

and the hidden Markov model, we have used Monte Carlo

simulations to model ligand-lattice interaction. These Monte

Carlo simulations allow determination of protein-related

binding rates even when multiple proteins interact simulta-

neously with the lattice. This tool was applied to understand

RAD51-DNA interaction. Application of this analytical tool

can be extended to other systems where cooperativity plays a

crucial role, like single-stranded binding proteins, polymer-

ases, and SMC proteins.
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