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ABSTRACT We present a new method for multiple sequence alignment (MSA), which we call MSACSA. The method is based
on the direct application of a global optimization method called the conformational space annealing (CSA) to a consistency-based
score function constructed from pairwise sequence alignments between constituting sequences. We applied MSACSA to two
MSA databases, the 82 families from the BAliBASE reference set 1 and the 366 families from the HOMSTRAD set. In all 450
cases, we obtained well optimized alignments satisfying more pairwise constraints producing, in consequence, more accurate
alignments on average compared with a recent alignment method SPEM. One of the advantages of MSACSA is that it provides not
just the global minimum alignment but also many distinct low-lying suboptimal alignments for a given objective function. This is due
to the fact that conformational space annealing can maintain conformational diversity while searching for the conformations with
low energies. This characteristics can help us to alleviate the problem arising from using an inaccurate score function. The method
was the key factor for our success in the recent blind protein structure prediction experiment.

INTRODUCTION

Multiple sequence alignment (MSA) is a fundamental prob-

lem in computational biology and bioinformatics, where ei-

ther related proteins from the same organism or similar

proteins from different organisms are examined to determine

their relationship. Such information can then be used to assess

the shared evolutionary origins of the sequences and the ex-

tent to which functions of related proteins overlap. In addi-

tion, MSA is used to model three-dimensional structures of

proteins. However, MSA, especially in the context of protein

structure prediction, is a nontrivial problem. Reliable protein

modeling via MSA depends on three fundamental elements:

proper selection of template proteins, the accuracy of a score

function for MSA, and the optimization of the score function

(1). To obtain biologically meaningful alignments of multiple

sequences, we have to deal with these three problems si-

multaneously.

When we assume that template sequences are already

provided, MSA suffers from the following two major obsta-

cles: First, currently there are no ideal score functions that

fulfill biologically meaningful applications. In practice, ob-

jective functions based on the sum-of-pair scores (2), and their

variants (3) have been used widely in the literature. Recent

progress has focused on the design of consistency-based ob-

jective score functions based on a library of local segments of

matches from pairwise alignments where the goal is to find an

alignment maximally satisfying the restraints of the library

that was implemented in COFFEE score for the first time (4).

Second, even with a perfect objective function to be opti-

mized, finding the optimal alignment of given sequences is

known as a nondeterministic polynomial-time (NP)-complete

problem (5). Exact optimization by dynamic programming

(6–8) requires O((2L)N) time complexity (N is the number of

sequences, and L the average sequence length) and O(LN)

memory complexity. Therefore, carrying out MSA by dy-

namic programming becomes practically intractable as the

number of sequences increases.

Due to these difficulties of rigorous optimization in MSA,

practically all current methods in use, employ heuristic

strategies such as the progressive alignment. Popular methods

include Pileup based on Feng and Doolittle algorithm (9) and

ClustalW (10). Progressive alignments align two sequences at

a time, and add these alignments to the set of already-aligned

sequences based on a guide tree and a reduced pairwise match

score. One of the disadvantages of progressive alignments is

that errors possibly occurred at early stages of the alignment

cannot be fixed at later stages. Various attempts to improve the

quality of progressive alignment have been reported by ap-

plying progressive alignments iteratively such as in Prrp (11),

DiAlign (12), and MUSCLE (13).

More recently, variant methods based on progressive

alignment and the consistency-based score functions are

proposed (e.g., T-COFFEE (14), ProbCons (15), and SPEM

(16)). For example, SPEM combines a profile-profile align-

ment method called SP2 (17) using secondary structure in-

formation, with a consistency-based refinement for pairwise

alignment and a progressive algorithm. SPEM is one of the

top MSA methods outperforming other popular methods (16).

Among all these efforts, it would be interesting to attempt

more rigorous optimization of the consistency-based score

function instead of the heuristic progressive alignment ap-

proach. In relation to this, we are particularly interested in

exploring the relationship between the optimization of the

score functions and the alignment accuracy.
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In terms of finding the optimal alignment through global

optimization (18–21), there have been some earlier attempts

to find the global minimum of an objective function for MSA.

For example, simulated annealing (SA) was applied to the

sum-of-pair score function (22–24). Similarly a genetic al-

gorithm (SAGA) (25) was also applied to these score func-

tions.

One of the simplest algorithms for unbiased global opti-

mization is the SA method, which has been used most widely.

Although the SA is very versatile in that it can be easily ap-

plied practically to any problem, the drawback is that its ef-

ficiency is usually lower than problem-specific algorithms.

This is especially problematic for hard optimization prob-

lems. For this reason, it is important to find an algorithm that is

as general as SA, and yet competitive with problem-specific

ones.

In this study, we apply a global optimization method called

conformational space annealing (CSA) (26,27) to MSA for a

direct optimization of a consistency-based score function.

CSA combines the essential ingredients of the three tradi-

tional methods of global optimization methods, i.e., SA

(28,29), genetic algorithm (GA) (30,31), and Monte Carlo

with minimization (MCM) (32). The unique strength of CSA

comes from introducing a distance measure between two

conformations that makes it possible to systematically control

the diversity of sampling.

We show that, by applying CSA to MSA with a consistency

score function, the method can find alignments that are more

consistent with the library of pairwise alignments and con-

sequently more accurate alignments, compared with existing

progressive methods. It should be emphasized that our ap-

proach should be contrasted with those popular heuristic ap-

proaches based on the progressive alignment in that our

approach searches for the optimal alignment in a direct

manner.

In addition, our method can provide alternative alignments

that might correspond to more biologically meaningful

alignments, therefore possibly alleviating the problem arising

from an inaccurate objective function.

METHODS

Fig. 1 illustrates the flow diagram of CSA applied to MSA (MSACSA). In

MSACSA, we need a series of new concepts. They are: 1), a local minimizer

of a given alignment; 2), ways to combine two parent alignments to generate

a daughter alignment; 3), a distance measure between two alignments; and 4),

an energy function to minimize. Details on these four concepts and the

procedures of CSA are described in the following.

Local minimization of a given multiple alignment

Throughout the optimization process, CSA keeps in storage (that we call the

bank) only locally minimized alignments (i.e., local minima), and explores

the phase space within the neighborhood of existing alignments. Local en-

ergy minimization is carried out by stochastic quenching. For a given

alignment, a series of new potential alignments are generated by perturba-

tions. Whenever the energy of a new alignment is more favorable than that of

the old one, the old is replaced by the new. A way to carry out stochastic

quenching is to repeat the above procedure until one fails to find a better

solution for N times in a row. Typically, one sets N as a multiple of system

size and we set N¼ 10NLmax. N is the number of sequences to align, Lmax is

the largest sequence length. For convenience, the maximum number of at-

tempts is set to 100N. Perturbations are generated by local moves that are

either horizontal or vertical ones (23,24) both consisting of random insertion,

deletion, and relocation of gap(s). Vertical moves are identical to the hori-

zontal ones other than they are applied simultaneously to two or more se-

quences that share gap(s) at selected columns.

How to combine two multiple alignments

To explore the phase space in a neighborhood of a parent alignment P1, we

generate a daughter alignment A by replacing a part of P1 by the corre-

sponding part of another parent alignment P2 in the bank. First we set A¼ P1,

and randomly remove a number of consecutive columns from A. Denote the

FIGURE 1 Flow diagram of MSACSA is shown. MSACSA

runs until the bank size becomes 100 and seed resetting

is carried out twice (see Methods).
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set of removed residues by r. Find r in P2 and construct the minimal rectan-

gular-shaped partial alignment p, which contains r in the shape of P2 and a

number of gaps to fill up the rectangle. Note that the shape of r in P2 may be

rugged. Finally, insert p to complete A.

Distance between two multiple alignments

The distance measure between two multiple alignments is a central notion

that enables MSACSA to keep diverse alignments in the bank. We count the

number of residue mismatches in all pairwise sequence alignments between

two given multiple sequence alignments. More precisely, for a given align-

ment A with N sequences and M aligned columns, we define the set P(A) of

aligned residues including gap-residue matches, but no gap-gap matches for

all pairwise matches as follows:

PðAÞ ¼ fðrikðAÞ; rjkðAÞÞj1 # i; j # N; i , j

k ¼ 1; � � �;M and ðrikðAÞ; rjkðAÞÞ 6¼ ð�;�Þg; (1)

where rik (A) is the identity of the residue/gap at the ith row and at the kth

column of A. Now for two given alignments A and B, the distance is defined as

dðA; BÞ ¼ NððPðAÞ � PðBÞÞ [ ðPðBÞ � PðAÞÞÞ; (2)

where N(X) is the number of elements in the set X.

Objective function

To define the objective score function, we need a library that is the set of

pairwise aligned residues for all pairs of sequences. Typically, the set of

pairwise alignments between constituting sequences is used to generate the

library. The idea of a consistency-based score function is to give a higher

score to a multiple alignment if more pairwise-aligned residues in it are

observed in the library. The score function is designed to give the perfect

score to the realization of a multiple alignment if all pairwise restraints in

the library are satisfied by the multiple alignment. However, generally

speaking, there exist frustrations between pairwise alignment restraints in

the library that makes it impossible to satisfy all restraints in the library

simultaneously.

For a given third-party alignment method we construct a library of pair-

wise constraints by performing pairwise alignment for all combinations of

sequence pairs. To each aligned residue pair, we assign a weight w, the

correlation coefficient between two profiles from the residue pair. Profiles are

generated by PSI-BLAST (33). In practice, some w can have negative value,

but all matched constraints in the library should contribute positively to an

alignment, w is linearly rescaled so that 0.01 # w # 1.0. The small positive

value 0.01 maximizes the range of w. The library is now a collection of

aligned residue pairs with positive weights. We denote the sum of all weights

by +w and define the energy of an alignment A with N sequences and M

aligned columns as:

EðAÞ ¼ �100 3 +
N

i;j¼1;i,j

+
M

k¼1

w
k

ijd
k

ijðAÞ=+w; (3)

where, dk
ij ¼ 1 if the aligned residues between the ith and the jth sequences at

the kth column are in the library, otherwise dk
ijðAÞ ¼ 0. wk

ij is the

corresponding weight of the aligned residue pair from the library. For a

position corresponding to a gap where the profile column is not defined, we

use wk
ij ¼ 0, which is equivalent to considering only aligned residues (not

including gaps) in the library. The consistency-based energy function (4) of

Eq. 3 gives a lower energy to an alignment if more pairwise constraints are

satisfied. The energy function gives a perfect score—100 if all constraints are

satisfied. However, in general, as mentioned above there are conflicts

between constraints or frustration giving an optimization problem on a

complex landscape.

Conformational space annealing

The CSA method searches the whole conformational space in its early stages

and then narrows the search to smaller regions with low energy as the dis-

tance cutoff, Dcut, which defines a (varying) threshold of the similarity be-

tween two alignments, is reduced. As in genetic algorithms, MSACSA starts

with a pre-assigned number (50 in this work) of randomly generated and

subsequently energy-minimized alignments. This pool of alignments is

called the bank. At the beginning, the bank is a sparse representation of the

entire conformational space.

A number of dissimilar alignments (30 in this work) are then selected

from the bank, excluding those that have already been used; they are

called seeds. Each seed alignment is modified by replacing parts of the

seed by the corresponding parts of randomly selected alignment from

either the first bank, or the bank. Each alignment is energy-minimized by

the stochastic quenching to give a trial alignment. Twenty trial alignments

are generated for each seed (a total of 600 alignments). This is the most

time-consuming part of the computation, but it is highly suitable for

parallel computing, because the local minimizations are independent of

each other.

For each trial alignment, a, the closest alignment A from the bank (in terms

of the distance d(a, A)) is determined. If d(a, A) # Dcut (Dcut being the current

cutoff criterion), a is considered similar to A; in this case a replaces A in the

bank, if it is also lower in energy. If a is not similar to A, but its energy is lower

than that of the highest-energy alignment in the bank, B, a replaces B. If

neither of the above conditions holds, a is rejected. The narrowing of the

search regions is accomplished by setting Dcut to a large value initially

(usually one-half of the average pair distance, Dave, in the bank), and gradually

reducing it as the search progresses. (It is reduced by a fixed ratio after the

bank is updated until it becomes Dave/5.)

Special attention is paid to selecting seeds that are far from each other.

One round of the procedure is completed when there is no seed to select (i.e.,

all alignments from the bank have already been used). The round is repeated

a predetermined number of times (twice in this work). If necessary, more

random alignments (50 in this work) that are subsequently energy-minimized

are added to the bank. One resets Dcut to one-half of the average pair distance

in the bank and the whole procedure is repeated. In this study, the CSA search

stops after complete procedure is finished with 50 1 50 bank conformations.

More details can be found elsewhere (26,34–37). The algorithm can be easily

parallelized with high parallel efficiency (38).

RESULTS

We applied MSACSA to two manually maintained data sets.

One is the BAliBase (39) reference set 1, which contains 82

reference alignments with average sequence identity (ASI) of

31.5%. The other is the HOMSTRAD (40) structural align-

ment data set of March 1, 2006. There are 368 MSA families

with at least three sequences including 129 families with

ASI , 30%. We were able to apply MSACSA to 366 families

(due to the enormous computational resources necessary,

we failed to apply MSACSA to two cases, alpha-amylase and

alpha-amylase_NC families). For energy function Eq. 3, pair-

wise constraint library of each problem in two data sets is

generated by SPEM.

The results are analyzed in three ways: i), the quality of the

energy function is assessed by examining energy landscapes;

ii), the level of energy optimization is compared with SPEM in

terms of average energy and consistency with the pair-wise

constraint library; and iii), the alignment accuracy based on

the reference alignments are assessed.
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Energy landscape and the quality of the
energy function

We analyzed the quality of the energy function by examining

energy landscapes. Fig. 2 shows two examples of the energy

landscape. The first one is the Rhodanese family that exhibits

a relatively high correlation between the energy and the

alignment accuracy. We found that most of the cases exhibit

features similar to this one (see below for more detailed sta-

tistics). On average, alignments of lower energies are of

higher accuracies. However, the lowest energy alignment is

not always the best one because in the case of Rhodanese we

find six alignments in the bank that are slightly more accurate.

This means that MSACSA provides alternative alignments

and, apparently, the energy function used in this study is not

perfect.

As a rare extreme case of the energy landscape, we can take

the DUF170 family for which the energy landscape is shown

in Fig. 2 exhibiting a fork-like structure, where we observe

four alignments with quite low energies that are separated by a

wide gap of alignment accuracy. Although the lowest-energy

alignment has the highest accuracy of 85.2%, the accuracy of

the second lowest energy alignment is only 61.2%. This

means that the two alignments are quite different from each

other, with the energy difference of only 0.0008. Therefore,

for more decisive differentiation of good alignments from less

accurate ones in this case, the energy function needs to be

improved.

Fortunately, however, this landscape is one of a few ex-

treme cases. Similar fork-like landscape structure was found

in only about four families out of the whole 366 HOMSTRAD

families. For further analysis of the energy landscape statis-

tics, we compared the minimum-energy alignments against

the alignments with the highest accuracies (in the bank) in

terms of the difference in the accuracies. For ;92% of the 366

HOMSTRAD families, the minimum-energy alignments

showed a relatively high correlation between energy and

alignment accuracy (similar to the case of Rhodanese family)

in which the accuracy of the best alignment did not exceed that

of the minimum energy alignment by .4% (0.04). For the

remaining cases of ;7%, the minimum-energy alignments

showed lower alignment accuracies by .4% compared with

the best alignment, resulting in low correlation between the

energy and the accuracy.

From these analyses, we can conclude that, despite some

limitation, the consistency-based score function for MSA is

quite meaningful in terms of biological applications in the

sense that the optimal alignment with respect to the consis-

tency score function is, in almost all cases, also nearly con-

sistent with the manually-constructed reference alignment.

Energy optimization: energy and consistency
with the library

Table 1 shows the average energy, the number of satisfied

pairwise constraints from the minimum energy alignments

of MSACSA and the corresponding values from MSA using

SPEM. The energy from Eq. 3 corresponds to the level of

consistency of constraints with appropriate weights. The

average energies obtained by MSACSA are lower than

those by SPEM. Moreover, the energy of the minimum

energy alignment by MSACSA is lower than or equal to that

by SPEM for all cases. On average, alignment by MSACSA

satisfies more pairwise constraints than the SPEM align-

ment. For BAliBase (HOMSTRAD 366), alignments by

MSACSA satisfies 170 (1578) more constraints than those

by SPEM.

FIGURE 2 Two energy landscapes of MSACSA are shown. The lowest-

energy alignments are indicated by arrows.

TABLE 1 Average energy and number of matches shared in

the library

Constraints in the library

Sets Methods Eave Ntotal Ncom Ncomple

BAliBase SPEM �94.43 161,692 159,736 1956

Reference set 1 CSA �95.20 161,862 2126

HOMSTRAD SPEM �96.28 1,206,070 1,194,228 11,842

(366) CSA �96.81 1,207,711 13,483

Total matches (Ntotal) consist of common (Ncom) and complementary (Ncomple)

matches. The total number of constraints for BAliBase (HOMSTRAD) is

169,797 (1,268,069).
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Alignment accuracies

Accuracies of MSACSA are compared with those of SPEM.

The sum-of-pair score (SPS) provided by BAliBase (39) is

used for evaluation. SPS counts all correct matches in an

alignment relative to the reference with SPS ¼ 100. Accura-

cies of SPEM and MSACSA are shown in Table 2. SPS-

values are averaged over all families considered. MSACSA

(CSAm) according to the lowest energy alignment outper-

forms SPEM. Moreover, by choosing the best of the alter-

native alignments in the bank, the results (CSAb) improve

significantly.

To check whether this kind of improvement in accuracy is

statistically meaningful or not, we calculated the so-called P
values (41). For BAliBase, we obtain the P ’ 0:2357 whereas

for the case of HOMESTRAD, we get P ’ 1:6 3 10�8. The

relatively larger value of P (.0.05) for the case of BAliBase

indicates that the better average accuracies of MSACSA over

SPEM is not significant in terms of statistics. We note that

BAlibase is a relatively easy benchmark set for MSA

methods. On the other hand, for the case of HOMSTRAD, we

see clearly that MSACSA outperforms SPEM in a statistically

meaningful way.

Running time and computational efficiency

We note that there are 368 families in the original HOMSTRAD

set. Out of these, we were successful in applying MSACSA to

366 families. In terms of overall running time, 300 families out

of the 366 families took ,1 day using 128 central processing

units (CPUs) (AMD Opteron 2 GHz). The remaining 66 fam-

ilies took ;1 week. As a typical case, the Rhodanese family,

which consists of six sequences with 150 residues on average,

took;30 s with 128 CPUs. In terms of the number of sequences

(in the case of HOMSTRAD set) the maximum number of se-

quences for which MSACSA was applied was the case of glob

family with 41 sequences (average sequence length ;150) that

took 14 h using 128 CPUs.

In terms of the average number of residues per sequence,

the maximum average number of residues (for which

MSACSA was applied) was the case of rhv family with 854

residues per sequence and Ald_Xan_dh_2 family with 804

residues per sequence and both with six sequences, which

took 29 min and 26 min, respectively using 128 CPUs.

It should be noted that, even for families with similar

number of sequences as well as similar length of residues per

sequence, the running time varied significantly depending on

the complexity of the alignments. This is due to the fact that

CSA depends greatly on the complexity of the energy land-

scape rather than the number of the degrees of freedom. This

makes it difficult to analyze the running time systematically

only based on the number of sequences and the average

number of residues per sequence.

To provide an idea about the computational limitation of

MSACSA, we sorted the families of HOMSTRAD in terms

of the number of sequences (L) times the average number

(N) of residues per sequence (i.e., L 3 N), that is, the total

number of residues in a family. In this way, we could see that

the two families (alpha-amylase and alpha-amylase_NC)

ranked highest (with L 3 N ¼ 11,615 and L 3 N ¼ 13,524

respectively). These two families are those to which we failed

to apply CSA due to the computational limitation. It seems

that L 3 N ; 10,000 is an approximate bound for which

MSACSA may take longer than a few days depending on the

complexity of the alignment.

Large alignment sets out of the 366 HOMSTRAD families

where MSACSA is applied, include the cases of aat (N¼ 10,

L� 421), glob (N¼ 41, L� 158), and sermam (N¼ 27, L�
220) families. These families took much more computational

resources than the others, ranging from ;16 min for aat

family, 14 h for glob family, to 34 h for sermam family (all

with 128 CPUs).

As mentioned above, due to the computational limitation,

we were not able to apply MSACSA to two cases, alpha-

amylase and alpha-amylase_NC families. The average se-

quence lengths are L¼ 402 and L¼ 486 respectively, and the

total number of sequences is N¼ 23 for both cases. Each of the

two families is expected to take longer than 2 weeks with 128

CPUs based on the partial running time for part of the com-

putation.

Although MSACSA has such a limitation due to the heavy

computational requirement, we believe, it can be still useful

for many practical problems such as protein structure pre-

diction. Moreover, in this work, we are mainly interested in

investigating the consequence of rigorous optimization of a

score function for the improvement of the alignment accura-

cies at the cost of the significant computation resources for

MSA.

CONCLUSION

In conclusion, we have presented a new method for MSA

based on thorough optimization of a consistency based energy

function. The method can be applied to any given library of

pairwise frustrated constraints provided by a third party

alignment method, thus providing additional improvement to

existing and future alignment methods. MSACSA finds

alignments whose energy values are always less than or equal

to those from a progressive method, showing that thorough

TABLE 2 Alignment accuracies

Sets Scores SPEM CSAm CSAb Reference

BAliBase SPS 90.91 91.07 92.37 100.0

Reference set 1 Nmatches 111,012 111,222 111,750 117,558

HOMSTRAD SPS 86.40 86.85 88.17 100.0

(366) Nmatches 1,029,191 1,032,783 1,040,771 1,163,915

SPS is the average sum-of-pair score (%). The total number of correctly

aligned matches is also shown. CSAm indicates the lowest-energy align-

ment from MSACSA, and CSAb indicates the best alignment in the bank.
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optimization is accomplished. Consequently, on average,

alignment by MSACSA satisfies more consistency conditions

of the constraint library. Unlike existing progressive methods,

MSACSA can provide alternative alignments as a way to

alleviate the problem arising from using an inaccurate energy

function. This is important as currently available energy

functions for MSA are not perfect and biologically mean-

ingful alignments do not necessarily correspond to the global

minimum of current energy functions. Thorough optimization

of a consistency-based energy function is shown to provide

better alignments on average than the progressive alignment

method at the expense of computation time.

The method was implemented in the recent blind protein

structure experiment (42) and was a key factor for the most

successful protein structure modeling in the high-accuracy

template based modeling category (43).

We thank J. M. Kosterlitz and S. Gross for useful discussions and critical

comments. Computation was carried out using Korea Institute for Ad-

vanced Study supercomputers.

REFERENCES

1. Notredame, C. 2002. Recent progress in multiple sequence alignment:
a survey. Pharmacogenomics. 3:131–144.

2. Altschul, S. F. 1989. Gap costs for multiple sequence alignment.
J. Theor. Biol. 138:297–309.

3. Altschul, S. F., R. J. Carroll, and D. J. Lipman. 1989. Weights for data
related by a tree. J. Mol. Biol. 207:647–653.

4. Notredame, C., L. Holm, and D. G. Higgins. 1998. COFFEE: an
objective function for multiple sequence alignments. Bioinformatics.
14:407–422.

5. Wang, L., and T. Jiang. 1994. On the complexity of multiple sequence
alignment. J. Comput. Biol. 1:337–348.

6. Carrillo, H., and D. Lipman. 1988. The multiple sequence alignment
problem in biology. SIAM J. Appl. Math. 48:1073–1082.

7. Needleman, S. B., and C. D. Wunsch. 1970. A general method
applicable to the search for similarities in the amino acid sequence of
two proteins. J. Mol. Biol. 48:443–453.

8. Smith, T. F., and M. S. Waterman. 1981. Identification of common
molecular sub sequences. J. Mol. Biol. 147:195–197.

9. Feng, D. F., and R. F. Doolittle. 1987. Progressive sequence alignment
as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25:351–360.

10. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL
W: improving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucleic Acids Res. 22:4673–4680.

11. Gotoh, O. 1996. Significant improvement in accuracy of multiple
protein sequence alignments by iterative refinement as assessed by
reference to structural alignments. J. Mol. Biol. 264:823–838.

12. Morgenstern, B., A. Dress, and T. Werner. 1996. Multiple DNA and
protein sequence alignment based on segment-to-segment comparison.
Proc. Natl. Acad. Sci. USA. 93:12098–12103.

13. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Res. 32:1792–1797.

14. Notredame, C., D. G. Higgins, and J. Heringa. 2000. T-COFFEE: a
novel method for fast and accurate multiple sequence alignment.
J. Mol. Biol. 302:205–217.

15. Do, C. B., M. S. Mahabhashyam, M. Brudno, and S. Batzoglou. 2005.
ProbCons: probabilistic consistency-based multiple sequence align-
ment. Genome Res. 15:330–340.

16. Zhou, H., and Y. Zhou. 2005. SPEM: improving multiple sequence
alignment with sequence profiles and predicted secondary structures.
Bioinformatics. 21:3615–3621.

17. Zhou, H., and Y. Zhou. 2005. Fold recognition by combining sequence
profiles derived from evolution and from depth-dependent structural
alignment of fragments. Proteins. 58:321–328.

18. Rajgaria, R., S. R. McAllister, and C. A. Floudas. 2006. A novel high
resolution Calpha–Calpha distance dependent force field based on a
high quality decoy set. Proteins. 65:726–741.

19. McAllister, S. R., R. Rajgaria, and C. A. Floudas. 2007. Global
pairwise sequence alignment through mixed-integer linear program-
ming: a template-free approach. Optimization Methods and Software.
22:127–144.

20. McAllister, S. R., R. Rajgaria, and C. A. Floudas. 2007. A template-
based mixed-integer linear programming sequence alignment model. In
Modeling and Algorithms for Global Optimization, Nonconvex Opti-
mization and Its Applications. T. Torn and J. Zilinskas, editors,
Springer-Verlag, New York. 343–360.

21. McAllister, S. R., R. Rajgaria, and C. A. Floudas. 2008. A path selection
approach to global pairwise sequence alignment using integer linear
optimization. Optimization. 57:101–111.

22. Ishikawa, M., T. Toya, M. Hoshida, K. Nitta, A. Ogiwara, and M.
Kanehisa. 1993. Multiple sequence alignment by parallel simulated
annealing. Comput. Appl. Biosci. 9:267–273.

23. Kim, J., S. Pramanik, and M. J. Chung. 1994. Multiple sequence
alignment using simulated annealing. Comput. Appl. Biosci. 10:419–
426.

24. Hernández-Guı́a, M., R. Mulet, and S. Rodrı́guez-Pérez. 2005. Simu-
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