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Abstract

Signals produced in leaves are transported to the

shoot apex where they cause flowering. Protein of the

gene FLOWERING LOCUS T (FT) is probably a long

day (LD) signal in Arabidopsis. In the companion

paper, rapid LD increases in FT expression associated

with flowering driven photosynthetically in red light

were documented. In a far red (FR)-rich LD, along with

FT there was a potential role for gibberellin (GA). Here,

with the GA biosynthesis dwarf mutant ga1-3, GA4-

treated plants flowered after 26 d in short days (SD) but

untreated plants were still vegetative after 6 months.

Not only was FT expression low in SD but applied GA

bypassed some of the block to flowering in ft-1. On

transfer to LD, ga1-3 only flowered when treated

simultaneously with GA, and FT expression increased

rapidly (<19.5 h) and dramatically (15-fold). In contrast,

in the wild type in LD there was little requirement for

GA for FT increase and flowering so its endogenous

GA content was near to saturating. Despite this

permissive role for endogenous GA in Columbia, RNA

interference (RNAi) silencing of the GA biosynthesis

gene, GA 20-OXIDASE2, revealed an additional, direct

role for GA in LD. Flowering took twice as long after

silencing the LD-regulated gene, GA 20-OXIDASE2.

Such independent LD input by FT and GA reflects their

non-sympatric expression (FT in the leaf blade and GA

20-OXIDASE2 in the petiole). Overall, FT acts as the

main LD floral signal in Columbia and GA acts on

flowering both via and independently of FT.

Key words: Arabidopsis, far-red light, flowering, FT,

gibberellin, c long day.l.

Introduction

Recent studies of floral signalling in Arabidopsis (Corbesier
et al., 2007; Jaeger and Wigge, 2007; Mathieu et al., 2007),
Cucumis spp (Lin et al. 2007), and rice (Tamaki et al.,
2007) have indicated that FLOWERING LOCUS T (FT)
could be involved in long day (LD) floral signalling, its
protein acting as a signal transported from the photoinduced
leaves to the shoot apex where it evokes flowering (see
reviews in Kobayashi and Weigel, 2007; Turck et al., 2008).
The nature of the LD photoresponse(s) can be critical for

understanding FT regulation of flowering. As documented
in the companion paper (King et al., 2008), in a high light
intensity LD from red light (R)-rich lamps, photosynthesis
up-regulates FT expression and causes flowering of
Arabidopsis. In contrast, an LD from far-red-rich lamps
(LD-FR) up-regulates FT, causes flowering, and, in
addition, increases biosynthesis of the gibberellin (GA)
class of plant growth regulator (Xu et al., 1997; Gocal
et al., 2001; Hisamatsu et al., 2005). Comparable FR-
regulated LD increases in GA content have been widely
reported for other species (see reviews by Garcı́a-Martı́nez
and Gil, 2002; King and Evans, 2003) so GA could act as
an additional LD signal.
For the LD grass, Lolium temulentum, both GA and FT

may regulate its flowering (King et al., 2006), but genetic
analysis has not been possible. For Arabidopsis, in con-
trast, genetic studies do not implicate GA in the LD
response but show that it is needed for flowering in short
days (SD) (see reviews in Boss et al., 2004; Searle and
Coupland, 2004; Imaizumi and Kay, 2006). The evidence
of large increases in shoot tip GA during the transition to
flowering in SD (Eriksson et al., 2006) is consistent with
the genetic evidence, but none of these studies rule out
a role for GA in LD flowering.
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Here the contribution of FT and GA to LD flowering of
Arabidopsis has been examined. Using genetic and molec-
ular approaches, the potential for FT and GA to act both
independently and interactively in LD floral signalling is
documented.

Materials and methods

Plant material, growing conditions, and LD treatment

Plants of Arabidopsis thaliana (L.) Heynh., ecotype Columbia,
mutants and RNA interference (RNAi) silencing lines were grown
vegetatively for 5 weeks in 8 h SD at 22 �C under an irradiance of
100 lmol m�2 s�1 from fluorescent lamps. In the case of the ga1-3
mutant, it was grown in these SD conditions for 3 months. When
exposed to an LD for floral induction, the main 8 h light period was
extended by 16 h to give a total of 24 h light. This single LD was
at a low intensity (10 lmol m�2 s�1) from incandescent bulbs (FR-
enriched light; LD-FR) or from R-rich fluorescent lamps (LD-lR). In
a few instances the LD exposure was for two cycles and involved
a low intensity FR-rich LD or an LD from R-rich fluorescent lamps
at 100 lmol m�2 s�1 (LD-R). Treatments where LD was for more
than one cycle enhanced the response somewhat. More details of
such LD treatments and responses are given in the companion
paper. Plants of Columbia retained in SD remained vegetative for at
least another 6 weeks, whereas those of ga1-3 were still vegetative
3 months later.
Mutants and gene silencing lines were all in ecotype Columbia.

The ga1-3 mutant from Landsberg erecta had been backcrossed six
times into Columbia (Tyler et al., 2004). The GA 20-OXIDASE1 T-
DNA insert null mutant, ga5-3, and RNAi silencing lines for GA
20-OXIDASE2 were described in Hisamatsu et al. (2005). Sub-
sequently this ga5-3 mutant has been renamed by Rieu and co-
workers (2007) as ga20ox1-3 but, for continuity, the original
terminology has been retained here. The ft-1 mutant is described in
the companion paper.

Chemical treatments

GA4 (1 mM) was applied either as a 10 ll drop to three leaves or as
a spray to run off. Response was similar in these treatments, and
this is in accordance with the known transport of GA4 in
Arabidopsis (Ericksson et al., 2006). Control plants were treated
with the same aqueous solvent containing 20% ethanol and 0.02%
Tween-20. A commercially available GA biosynthesis inhibitor,
paclobutrazol ([2S,3S; 2R,3R]-1-[4-chlorophenyl]-4,4-dimethyl-2-
[1,2,4-triazol-l-yl] pentan-3-ol), was applied as a 6 ml pot drench at
a dose of 0.05 mg ml�1 in water.
Errors are shown as means 6SE. In many instances the error was

smaller than the symbol and is not evident in the figures. All
experiments reported here were repeated at least once.

Quantitative real-time PCR analysis of gene expression

Conditions, primers, and materials for gene expression studies were
as documented in the companion paper and previously by
Hisamatsu et al. (2005).

Results

In the companion paper we detailed distinct LD light
responses which trigger rapid and obligate flowering in
Arabidopsis, ecotype Columbia. Briefly, in a high light
intensity, R-rich LD, photosynthesis up-regulated FT ex-

pression and flowering while at a 10-fold lower intensity,
an FR-rich LD acting independently of photosynthesis
rapidly up-regulated FT and induced flowering. Plants in
a low light intensity R-rich LD or in SD showed weak FT
expression and remained vegetative for >6 weeks.
Because an FR-rich LD activates GA biosynthesis in the

petioles of Columbia (Gocal et al., 2001; Hisamatsu et al.,
2005), three approaches have been used to examine po-
tential GA/FT regulation of flowering. First, to determine
if FT and endogenous GA might act in concert, GA bio-
synthesis has been blocked in a mutant or with a GA bio-
synthesis inhibitor. Secondly, GA regulation of flowering
has been examined in application studies with Columbia
and the ft-1 mutant. Lastly, the role of GA biosynthesis in
LD flowering has been examined by silencing a GA 20-
OXIDASE genes along with analysis of tissue specificity
of gene expression patterns.

Inhibition of GA synthesis, LD flowering, and a role for
FT

The GA1 gene of Arabidopsis regulates an early step of
GA biosynthesis (Zeevaart and Talon, 1992), and the ga1-
3 mutant is dwarfed and flowers late in SD unless treated
with GA over many weeks (Koorneef and van der Veen,
1980; Wilson et al., 1992; Putterill et al., 1995; Reeves
and Coupland, 2001; Ericksson et al., 2006; Rieu et al.,
2008). In LD, ga1-3 can flower reasonably rapidly al-
though with some delay relative to GA-treated LD plants
(Koorneef and van der Veen, 1980; Wilson et al., 1992;
Putterill et al., 1995; Reeves and Coupland, 2001;
Ericksson et al., 2006; Rieu et al., 2008).
In the present studies, ga1-3 in Columbia was vegeta-

tive and severely dwarfed after 6 months in 8 h SD (cf.
Fig 1). It also failed to flower when exposed at 3 months
to 30 LD either from FR-rich incandescent lamps or at
a high intensity from R-rich fluorescent lamps (data not
shown). However, for plants grown for 3 months in SD,
the non-flowering, dwarf phenotype of ga1-3 was com-
pletely and rapidly reversed by applying GA4 twice over
consecutive days with plants both held in SD and
transferred to one or two LD (Fig 1). The same response
was obtained after a single GA4 application (not shown).
Within 16 h of the first GA applications, the stem,
petioles, and leaf blades began to elongate (not shown)
and flower buds were visible within 7–9 d in LD and at 15
d in SD (photographed at 10 d in Fig. 1). This rapid
response contrasts with findings with a ga1 T-DNA
mutant in Columbia which took 90 d to flower in SD
when treated twice weekly with GA (Ericksson et al.,
2006).
The present results also contrast with the rapid, GA-

independent flowering of ga1-3 exposed to LD from
germination (Koorneef and van der Veen 1980; Wilson
et al., 1992; Putterill et al., 1995; Reeves and Coupland,
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2001; Rieu et al., 2008). GA3 applied for germination of
ga1-3 may carry over to the plant (Y Kamiya, Riken,
Kanagawa, Japan, personal communication) but probably
not for the less stable GA4 used here for germination.
Furthermore, Reeves and Coupland (2001) and Rieu et al.
(2008) showed that carryover was not important when

they used seed coat removal, not GA, for germination. All
the responses reported here for ga1-3 were completely re-
producible and there does not appear to be an explanation
for the non-flowering in LD, but this may relate to en-
vironmental differences and the age of plants when first
treated with GA or exposed to LD.
To examine the effect of GA on FT expression, leaf

blades were harvested 19.5 h after GA4 application, a time
which matches high LD expression of FT in Columbia
(see the companion paper). In LD, GA treatment increased
FT expression 15-fold (Fig. 1B) and the plants flowered.
In SD, flowering induced by GA was associated with
a much smaller increase in FT (3.5-fold). Comparable
responses were found for harvests at 16 h (not shown)
A crucial clue to explaining the GA effects on FT in LD

is provided by comparison of its expression in ga1-3 with
that in Columbia (Fig. 1B versus C). LD up-regulation of
FT in ga1-3 required GA application, but an LD alone
was sufficient for Columbia. The quite small increase in
FT when GA was applied to Columbia in LD (35% in-
crease) contrasts with the large increase in ga1-3 (15-fold).
Apparently, the high endogenous GA level in Columbia
(>10 times that in ga1-3; Zeevaart and Talon, 1992; Xu
et al., 1997) permits FT expression in LD whereas the low
GA level in ga1-3 almost completely blocks FT expres-
sion.
In further support of a permissive role for GA in LD-

regulated FT expression in Columbia (Fig. 1), a single
application of paclobutrazol, an inhibitor of GA bio-
synthesis (Rademacher, 2000), completely blocked flow-
ering in an FR-rich LD (Fig. 2). Paclobutrazol action was
GA specific as its inhibition of flowering was completely
reversed by a simultaneous application of GA4 (data not
shown).
Flowering was only inhibited when paclobutrazol was

applied before the LD (Fig. 2) so GA is required for flow-
ering; however, this evidence does not imply an LD in-
crease in GA biosynthesis. Of the two LD light conditions
used in this experiment, only the FR-rich LD increases
GA biosynthesis (Hisamatsu et al., 2005); however,
flowering in high light, R-rich LD was also substantially
inhibited by paclobutrazol yet this LD does not increase
GA biosynthesis (Hisamastsu et al., 2005) but acts by
photosynthetic amplification of FT expression in the leaf
blade (cf. companion paper).
As an aside, for a harvest of ga1-3 at the same time that

it was found that GA4 increased FT expression (Fig. 1),
there was no promotion of SOC1 expression in the leaf
blade (Fig. 3). Compared with the substantial GA/LD ef-
fect on FT, there were only small GA-dependent increases
in CONSTANS (CO) expression and they were similar
across all daylength and light quality conditions (Fig. 3
and data not shown). Nevertheless, the positive GA respon-
siveness of CO is consistent with its role in activation of
FT. Circadian regulation of CO message and protein

Fig. 1. GA4 applied to ga1-3 shows an FT-independent effect on
flowering in SD and a permissive effect involving FT expression in LD.
A 10 ll drop of GA4 [1 mM in 20% ethanol:water (v:v)] was applied to
each of three leaves on consecutive days either in SD or at the start of
a far-red-rich LD (LD-FR). Plants of ga1-3 flowered, bolted, and leaves
grew (A). Its FT expression increased most after GA treatment in LD
(B), and (C) shows the effect of GA4 on FT expression in Columbia.
Prior to treatment, the plants of ga1-3 had been grown in SD for 12
weeks and those of Columbia for 5 weeks. The low intensity FR-rich
LD exposure was for 2 d. GA4 was applied 8 h after starting the day,
and leaf blades were harvested 19.5 h later for assays of FT expression
(leaves harvested at 16 h showed similar increases; not shown). There
was no effect of solvent application on flowering or gene expression
(not shown). All FT expression was normalized to the value in SD
without GA application. The means and SE were based on three
replicates for FT assays and 10 replicates for flowering time.
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abundance may influence the extent of this GA regula-
tion,c but such a study was beyond the scope of this work.

FT-independent regulation of flowering by GA

GA4 promoted flowering of Columbia in all daylengths
(Fig. 4). In SD, whereas 50% of the GA4-treated plants
had flowered after 42 d, only 12% of untreated plants had
flowered by 52 d (Fig. 4A).This GA4-reguated flowering
in SD should be independent of FT because FT levels are
low and GA4 had little immediate effect on FT expression
(Fig. 1C). The enhanced flowering with GA4 treatment in
LD (Fig. 4) might also be FT independent because there
was only a small GA-induced FT increase (35%; Fig. 1).
A more compelling argument for FT-independent action
of GA is seen in the GA4 reversal of the block to
flowering in ft-1. In SD, 17% of GA4-treated ft-1 plants
had flowered by 33 d, whereas all untreated plants were
still vegetative (Fig. 4B). In LD, the effect of GA4 on

flowering of ft-1 was even more dramatic; all treated
plants had flowered by 15 d but none of the untreated ft-1
controls in LD had flowered by 33 d. It is not clear why in
SD GA4-treated ft-1 plants flowered earlier than GA4 -
treated plants of Columbia.
Taken together, these studies along with those with ga1-3

(Fig. 1) highlight a complex coupling between daylength,
GA, FT, and flowering. Below, to examine this coupling
further, lines with restricted GA biosynthesis were used to
examine LD-specific GA input.

Endogenous GA contributes to flowering in LD

To define the link between GA biosynthesis and flowering
in an FR-rich LD, two LD-specific GA 20-OXIDASE2
gene silencing lines were used and, as a negative control,
a daylength-insensitive GA 20-OXIDASE1 T-DNA mutant
was used. These 20-oxidases control an important step in
GA biosynthesis (Thomas and Hedden, 2006).
In the two GA 20-OXIDASE2 RNAi silencing lines,

flowering was delayed on exposure to two LD from FR-
rich incandescent lamps (Fig. 5A, B). These two lines

Fig. 3. Effect of daylength and GA on expression of CO and SOC1 in
the leaf blade of the Arabidopsis ga1-3 mutant. A 1 mM solution of
GA4 was applied to the leaf blade of ga1-3. These assays were from the
same experiment reported in Fig. 1. Comparable results were obtained
in a second sample harvested at 16 h (not shown).

Fig. 2. Flowering is blocked by a GA biosynthesis inhibitor, paclobu-
trazol (PAC), if it is applied prior to an LD exposure. PAC was applied
once as a soil drench at various times before or after the plants were
exposed to: (A) a single FR-rich LD from incandescent lamps (LD-FR);
or (B) two LD at high intensity from fluorescent lamps (LD-R). The
shaded bar shows the LD exposure. The horizontal lines indicate
flowering times of untreated plants exposed to one or two LD. The SD
plants were vegetative when the experiment was terminated. The means
and SE were based on 14 replicates in (A) and 16 in (B).
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show ;55% (hpAtGA20ox2#2) and 90% (hpAtGA20ox2#3)
reduction in 20-OXIDASE2 expression (Hisamatsu et al.,
2005) and, in parallel, they inhibit a GA-regulated, LD
increase in petiole elongation (Fig. 4C; Hisamatsu et al.,
2005). An additional RNAi line (hpAtGA20ox2#12) was
included as a control for transformation effects; it showed
normal 20-OXIDASE2 expression (Hisamatsu et al., 2005)
and there was neither a delay in its flowering nor
a reduction in LD promotion of its petiole elongation
(Fig. 5). The GA 20-OXIDASE1 null mutant, ga5-3, al-
though dwarfed in its growth (not shown, but see Rieu

et al., 2008), showed normal LD flowering and LD
increase in petiole elongation (Fig. 5).
A repeat study with T4 progeny of the most effective

RNAi silencing line (hpAtGA20ox2#3-6) confirmed the

Fig. 4. Flowering of Columbia or the ft-1 mutant after a single GA
treatment to the leaves of plants in SD or exposed to LD. GA4 (1 mM in
20% ethanol) or the solvent alone was applied as a spray to run off.
There were 12–17 plants per treatment. In (A) only 12% of the
Columbia plants had flowered in SD at 52 d when the experiment was
terminated compared with 50% flowering 42 d after GA treatment. In
LD, all Columbia plants flowered after exposure to a single low-
intensity, FR-rich LD (LD-FR) or two cycles of a high intensity R-rich
LD (LD-R). In (B) the experiment was terminated at 3s d when the only
flowering in SD was 17% for GA-treated ft-1 plants. In LD, all
Columbia plants had flowered after 33 d, 82% of the GA-treated ft-1
plants, and none of the untreated ft-1 plants.

Fig. 5. Silencing GA 20-OXIDASE2 expression delays flowering of
Arabidopsis exposed to a single FR-enriched LD from incandescent
lamps. Comparisons involve two GA 20-OXIDASE2 silencing lines,
hpAtGA20ox2#2 (open square) and #3 (open triangle); the wild type,
Columbia (open circle); a non-silenced transgenic line #12 (inverted
open triangle); and ga5-3 (filled circle), a null mutant recently renamed
as ga20ox1-3. There was no flowering in SD plants at 30 d as indicated
by the horizontal line. In (B) days to flowering is shown as the mean
and SE at 50% flowering (n¼10–14). The LD effect on petiole
elongation of the same plants is redrawn with the permission of
Hisamatsu et al. (2005).
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delay of flowering in LD-FR. Columbia flowered after
16.860.6 d but hpAtGA20ox2#3-6 flowered significantly
later at 20.160.6 d (P <0.001). As a negative test for up-
regulation of GA biosynthesis, a high light intensity R-
rich LD does not increase GA biosynthesis (Hisamatsu
et al., 2005), and LD flowering of Columbia and
hpAtGA20ox2#3-6 was not significantly different (Colum-
bia 20.261.4 d; hpAtGA20ox2#3-6 22.560.9 d; ga5-3
21.060.6 d, and the SD controls were still vegetative at
40 d). Recently Rieu et al. (2008) reported a very slight
delay of flowering in a T-DNA mutant of 20-OXIDASE2,
and this supports the present findings; however, it is
difficult to draw any conclusions from their study. The LD
was at a high light intensity from lamps with an R/FR
output of ;2.2, so flowering of both the mutant and wild
type will be affected by photosynthesis, along with
uncertain effects of lamp spectral composition on GA 20-
OXIDASE2 expression in the non-mutant line.

In parallel with delayed flowering and reduced petiole
elongation in the GA 20-OXIDASE2 silencing lines (Fig.
5), expression of this 20-oxidase increased when plants of
Columbia were transferred to LD (Fig. 6). In other studies,
the increase in gene expression in the petiole was 10-fold
to 100-fold over the first 2–3 h of starting the LD, and
then expression declined (Hisamatsu et al., 2005).
On a point of technique, it can be expected that, in

precisely controlled conditions, the oscillation in gene
expression over any one diurnal cycle of an SD will be the
same as for the next day. This has been confirmed
(Hisamatsu et al., 2005) in a parallel study where petiole
GA 20-OXIDASE1 expression was followed for 48 h (i.e.
over two SD). Therefore, here, the gene expression
patterns found over an SD have been extended to indicate
the probable oscillation over the following SD.
Surprisingly, the 20-OXIDASE2 gene is only expressed

in the petiole and shoot tip and not in the leaf blade

Fig. 6. Effect of LD on expression of two GA 20-oxidase genes in the leaf blade, petiole, and shoot tip of Arabidopsis. Gene expression was
analysed for plants of Columbia held in SD (filled circle) or shifted to LD (open circle). The values of the second SD cycle are those of the first day
as previously very little difference across days was found (Hisamatsu et al., 2005). The shaded areas show when the ‘overnight’ 16 h light or dark
treatments were imposed. There was no detectable expression of GA 20-OXIDASE2 in the leaf blade. All values are means 6SE (n¼3). Error bars
when not evident were smaller than the symbol.
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(Fig. 6). In contrast, all three tissues clearly expressed the
closely related GA 20-OXIDASE1 gene (Fig. 6), and its
absolute level of expression was comparable in all three
tissues although slightly lower than for 20-OXIDASE2 in
the shoot tip and petiole (not shown). In addition to 20-
OXIDASE1, ACTIN was effectively detected in all leaf
blade samples where 20-OXIDASE2 was not detected.
Thus, the possibility of failed assays can be excluded;
there is a true lack of expression of the 20-OXIDASE2
gene in the leaf blade. Differences in tissue expression
patterns of GA 20-oxidases have been reported previously
for rice (Kaneko et al., 2003).
The diurnal periodicity shown for GA 20-OXIDASE1

expression (Fig. 6) reveals circadian regulation based on
cycling continuing over 48 h in constant conditions in-
volving high intensity white light (Hisamatsu et al., 2005).
Thus, in much the same way as the circadian rhythm in
CO expression (Suarez-Lopez et al., 2001) modulates the
effect of light on FT (Valverde et al., 2004), GA synthesis
could be regulated by a circadian clock. Specifying how
light and rhythms regulate flowering is tangential to the
analysis, but the characterization of diurnal changes in
gene expression is important for any integrated analysis of
responses to a LD.
In contrast to 20-OXIDASE2, FT expresses most in the

leaf blade (;70-fold more than in the petiole: data not
shown). Previous studies showed a similar pattern, with
the highest FT promoter::GUS expression in the leaf
blade, very little in petioles (Yamaguchi et al., 2005; Yoo
et al., 2005), and, based on in situ expression assays, none
in the shoot apex (Kardailsky et al., 1999).
Overall, because of their non-sympatric expression, GA

and FT might act as independent LD signals but with
a dominant role for FT.

Discussion

Floral signalling in LD plants may involve leaf to shoot
apex transport of the FT protein (Turck et al., 2008) and/
or the GA class of plant hormones (King and Evans,
2003). The role of the FT protein as a transported floral
signal has been highlighted in a number of recent genetic/
molecular studies with Arabidopsis, rice, and cucumber
(Corbesier et al., 2007; Jaeger and Wigge, 2007; Lin et al.
2007; Mathieu et al., 2007; Tamaki et al., 2007).
Although the response to ft mutants shows that FT plays
a dominant role in LD flowering, GA contributes to
flowering of Arabidopsis in LD (Figs 5, 6) and in SD (see
Ericksson et al., 2006).
Based on evidence presented here and in the companion

paper, Fig. 7 summarizes the ways that LD light might
regulate FT, GA, and flowering. The complete block by ft-
1 of flowering of Arabidopsis exposed to a high light
intensity, R-rich LD shows the dominance of photosyn-

thesis in FT up-regulation. In contrast, at low, non-photo-
synthetic intensities involving FR-rich LD, phytochrome
is the primary step of regulation of flowering and of FT
expression (Goto et al., 1991; Reed et al., 1994; Bagnall
and King, 2001; Cerdän and Chory 2003; Halliday et al.,
2003). Interestingly, ft-1 incompletely blocked flowering
in response to an FR-rich LD (see companion paper).
Therefore, there could be an additional FT-independent
LD input and, potentially, via GA since FR-rich con-
ditions up-regulate GA biosynthesis in Arabidopsis plants
(Xu et al., 1997; Gocal et al., 2001; Hisamatsu et al.,
2005) as also in other species (reviewed in Garcı́a–
Martı́nez and Gil, 2002; King and Evans, 2003).
Two potential actions of GA on flowering are indicated

in Fig. 7, namely that GA acts on FT signalling in LD and
that LD increases GA content in the petiole, this GA
acting as a second floral signal. Based on the present
findings, the extremely low levels of GA in ga1-3 (see
Zeevaart and Talon, 1992; Xu et al., 1997) allowed the
demonstration of GA regulation of FT expression (Fig. 1)
whereas with Columbia its endogenous GA levels were
apparently close to sufficient for LD up-regulation of FT
expression and flowering. Thus, GA plays an important
permissive role for FT up-regulation and LD flowering.
Previously the possibility of GA induction of flowering

by up-regulation of FT was discounted because plants of
ecotype Landsberg erecta flowered early when ga1-3 was
crossed with a line overexpressing FT under the control of
the 35S promoter (Blázquez et al., 2002). However, the

Fig. 7. Summary of findings here and in the companion paper of
positive effects (arrows) on flowering and CO/FT for two commonly
used LD photoresponses. This schematic incorporates effects on FT and
flowering of: mutants; gene silencing; change in light intensity; and
a block to photosynthesis. Predominantly, in LD, photosynthetic
sucrose amplifies CO/FT expression (see companion paper) while
phytochrome acts directly and also via GA, which plays a permissive
and, often, non-limiting role. There is also a direct but lesser LD-
mediated increase in GA supply via the petiole response to FR-rich
light. A dashed arrow indicates a potential step of regulation, and
weaker responses are indicated by thinner arrows. The electronics
symbol for a speaker is used to show sucrose amplification of CO/FT
expression.
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FT promoter contains three GA response elements and
a nearby pyrimidine box which could be sufficient for GA
to regulate FT transcriptionally. Use of the constitutively
expressed 35S promoter to control FT would not reveal
such potential for GA regulation of FT.
Considering the role of GA as a second LD floral

signal, flowering was inhibited when GA biosynthesis was
blocked in ga1-3 or by application of paclobutrazol (Figs
1, 2). Conversely, GA application caused rapid flowering
and reversed the dwarfing effect of ga1-3. Predominantly
these responses to applied GA involve FT up-regulation
(see above). However, GA enhanced flowering even in
SD where FT is only weakly expressed (Fig. 1) and, more
cogently, GA dependent FT-independent flowering was
demonstrated by application of GA to the ft-1 mutant in
SD or LD (Fig. 4).
This claim that GA can act endogenously as a floral

signal is supported by earlier evidence that an FR-rich LD
up-regulates GA biosynthesis in the petiole via a specific
GA 20-OXIDASE2 gene (Hisamatsu et al., 2005) and that
there are associated increases in endogenous GA content
(Gocal et al., 2001). Interestingly, this 20-OXIDASE2 is
not expressed in the leaf blade (Fig. 6) and, conversely,
FT is expressed in the leaf blade and not the petiole
(Kardailsky et al., 1999; Yamaguchi et al., 2005; Yoo
et al., 2005; Hisamatsu unpublished data). Lastly, the
inhibition of LD flowering on silencing GA 20-OXI-
DASE2 expression confirms that endogenous GA plays
a small role in flowering in an FR-rich LD (Fig. 5).
Although the effect of applied GA on flowering in SD

or LD is only weak (Figs 1, 4; and see Gocal et al., 2001;
Ericksson et al., 2006), a role for GA is consistent with
recent evidence of a large increase in endogenous GAs as-
sociated with very late SD flowering (Ericksson et al.,
2006). However, the site of action of LD-generated GA is
unclear. Despite evidence for GA4 transport from the leaf
blade to the shoot tip of Arabidopsis (Ericksson et al.,
2006), GA sourced from the LD petiole could be
transported to and act in either or both the leaf blade and
the shoot apex.
At the molecular level, in the leaf blade GA acts in an

as yet unknown way on FT expression. At the shoot apex
there is evidence that GA activates a GAMYB (Blázquez
and Weigel, 2000; Gocal et al., 2001) which up-regulates
expression of the floral regulator gene, LEAFY (Blázquez
et al., 1998). Although the focus in the present study was
on early response to GA, it also enhances later, visible,
stem elongation (bolting) of Arabidopsis (Xu et al., 1997).
Such GA action on later steps of floral development/stem
bolting might explain the more rapid visible flowering
after GA treatment (Fig. 4A; 6–10 d earlier). An equally
plausible explanation, but one not generally considered,
involves a common action of GA on both floral initiation
and later floral development. Some common actions are
likely since, within 48 h of exposure of Arabidopsis to

a single LD, there are large increases in shoot apex height
(Gocal et al., 2001).
Although direct GA regulation of flowering is weak in

Arabidopsis, its extent varies across plant species and,
possibly, inversely with the role played by FT. Unlike
Arabidopsis, in L. temulentum, leaf-applied GA causes
substantial and rapid flowering in SD despite the low level
of expression of LtFT in SD (King et al., 2006). More
cogently, GA is an important floral signal in L. temulen-
tum because it is also effective when supplied directly to
isolated shoot tips in culture (reviewed in King and Evans,
2003). Evidence of rapid increases in endogenous GAs
first in the LD leaf blade and then in the shoot apex
further supports direct GA signalling, as does evidence of
a relationship between GA dose, flowering, and transport
of intact tetradeuterated GA from the leaf to the apex
(King et al., 2001, 2006). In these studies there was also
little or no effect of increased or decreased GA on the LD
increase in FT expression (King et al., 2006). This latter
result contrasts with evidence for Arabidopsis where
flowering and FT expression are restricted when GA
synthesis is blocked in ga1-3 (Fig. 1) or, probably, with
the use of paclobutrazol to inhibit flowering (Fig. 2).
Overall, the focus of the present study was on FT and

GA, but the findings emphasize the importance of treating
the photoperiodic regulation of flowering as a complex of
interacting responses. As summarized in Fig. 7, FT plays
a dominant role in floral signalling in Arabidopsis, and its
protein (An et al., 2004; Corbesier et al., 2007; Turck
et al., 2008) or some closely linked factor is the primary
leaf-sourced factor transported to the shoot apex where it
evokes flowering. LD up-regulate FT expression whether
by phytochrome or by photosynthesis, but in the latter
instance FT expression may involve an additional action
of a blue or red photoreceptor. However, although it is
considered that GA and photosynthetically generated
sucrose up-regulate FT expression, they may also play
direct, albeit small, roles as mobile floral signals.

Acknowledgements

Dr Tai-ping Sun provided seed of ga1-3. Drs Lloyd Evans and
Masumi Robertson (CSIRO) provided valuable comment on the
manuscript.

References
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