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Abstract

Extracellular ATP (eATP) is a novel signalling agent,

and nitric oxide (NO) is a well-established signal

molecule with diverse functions in plant growth and

development. This study characterizes NO production

induced by exogenous ATP and examines its relation-

ship with other important signalling agents, Ca2+ and

H2O2 in Salvia miltiorrhiza hairy root culture. Exoge-

nous ATP was applied at 10–500 mM to the hairy root

cultures and stimulated NO production was detectable

within 30 min. The NO level increased with ATP dose

from 10–100 mM but decreased from 100–200 mM or

higher. The ATP-induced NO production was mimicked

by a non-hydrolysable ATP analogue ATPgS, but only

weakly by ADP, AMP or adenosine. The ATP-induced

NO production was blocked by Ca2+ antagonists, but

not affected by a protein kinase inhibitor. ATP also

induced H2O2 production, which was dependent on

both Ca2+ and protein kinases, and also on NO bio-

synthesis. On the other hand, ATP induced a rapid

increase in the intracellular Ca2+ level, which was

dependent on NO but not H2O2. The results suggest

that NO is implicated in ATP-induced responses and

signal transduction in plant cells, and ATP signalling is

closely related to Ca2+ and ROS signalling.

Key words: Ca2+, extracellular ATP, hairy roots, nitric oxide,

reactive oxygen species, Salvia miltiorrhiza.

Introduction

ATP is the ubiquitous energy source in all living organisms,
and also plays other important roles in several physiological

processes. In animal systems, extracellular ATP (eATP) is
well-established as a signal molecule implicated in a number
of cellular responses such as neurotransmission, the
immune response, and apoptosis (Zheng et al., 1991; Bours
et al., 2006). The eATP signal is transmitted across the
plasma membrane through specific receptors, namely the
P2 family of purinoceptors including the ligand-gated ion
channel P2X receptors and the G-protein-coupled P2Y
receptors (Ralevic and Burnstock, 1998).
The role of eATP as a signal agent in plant cells had not

drawn much attention until recently, however, it was first
proposed by Demidchik et al. (2003) based on the finding
that exogenous ATP applied to Arabidopsis roots induced
rapid and transient increase in the cytosolic Ca2+ concen-
tration. Two later studies in Arabidopsis seedlings (Jeter
et al., 2004; Song et al., 2006) showed several other
important events in stress response and signalling induced
by exogenous ATP, including the production of reactive
oxygen species (ROS), the transcription of mitogen-
activated protein kinases (MAPKs), lipoxygenase (LOX,
a key enzyme for JA biosynthesis), and ACS6 (a key
enzyme for ethylene biosynthesis). Earlier, Tang et al.
(2003) had shown that exogenous ATP at millimolal levels
could strongly affect gravitropic growth and auxin distribu-
tion in Arabidopsis roots, suggestive of the role of eATP as
a regulatory signal in plant growth. Extracellular ATP has
been found to be essential for maintaining plant cell
viability in both cell cultures and whole plants of
Arabidopsis (Chivasa et al., 2005). Kim et al. (2006)
detected the presence of eATP in Medicago truncatula root
hairs, localizing in the interstitial spaces between epidermal
cells, and found that ATP release was a calcium-dependent
process. These studies strongly suggest that eATP plays
a regulatory role in plant growth and development, and
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a signal role in plant stress response (Roux and Steine-
brunner, 2007). Our recent study has shown that a poly-
saccharide elicitor from yeast extract induces the transient
release of ATP from Salvia miltiorrhiza hairy roots to
the culture medium, and Ca2+ is required for activating
elicitor-induced ATP release and signal transduction (Wu
et al., 2008).
Nitric oxide (NO) is a free radical gas formed

endogenously and has multiple functions in both animal
and plant systems (Neill et al., 2003). Although its
physiological functions in plants remain to be character-
ized, NO is a well-established second messenger in plant
stress signalling (Delledonne et al., 1998; Beligni and
Lamattina, 2001; Lamotte et al., 2004). Nitric oxide
synthase (NOS) or its analogue, the major enzyme for
NO biosynthesis in animals, is also regarded as a major
NO producer in plants (del-Rio et al., 2004; Zemojtel
et al., 2006). Nitrate reductase (NR) is another possible
enzyme for NO synthesis in plants (Xu and Zhao, 2003).
An important characteristic of NO signalling in plant
stress responses is its interplay or cross-talk with the
reactive oxygen species (ROS). It has been shown that
NO and ROS are produced concomitantly in plants
in response to pathogen and stress challenges, and the
two types of signal compounds can act co-operatively
in mediating the defence responses such as hypersensitive
cell death, expression of defence genes and secondary
metabolite accumulation (Delledonne et al., 2001; Wang
and Wu, 2005; Bright et al., 2006; Zaninotto et al., 2006).
In animal systems, NO production has been character-

ized as a quick response to exogenous ATP stimulation
(Silva et al., 2006), and NO has been shown to play a role
in ATP-induced Ca2+ signalling (Shen et al., 2005). When
this study began, however, there had been no reported
study on ATP-induced NO biosynthesis and its relation-
ship with Ca2+ or any other signalling element in the plant
systems. In a very recent short correspondence, Foresi
et al. (2007) reported exogenous ATP-induced NO pro-
duction in tomato cell suspensions. In this study, ATP-
induced NO production in Salvia miltiorrhiza Bunge
(Lamiaceae) hairy root cultures was characterized further,
and its dependence on the membrane receptors analogous
to mammalian purinoceptors, and its relationship with

the membrane Ca2+ influx, protein kinase and H2O2

biosynthesis was examined.

Materials and methods

Plant hairy root culture

Salvia miltiorrhiza hairy root culture was derived after the infection
of plantlets with a Ri T-DNA bearing Agrobacterium rhizogenes
(ATCC15834), maintained in a liquid, hormone-free MS medium
with 30 g l�1 sucrose but without ammonium nitrate at 25 �C in the
dark. The hairy root culture was incubated in 125 ml Erlenmeyer
flasks, each filled with 25 ml liquid medium on an orbital shaker
at 110–120 rpm (shake-flask cultures, as described in Ge and
Wu, 2005).

Treatment of hairy roots with ATP, other purine nucleotides

and various inhibitors

ATP and the purine nucleotides, ADP, AMP, and adenosine (A), and
a non-hydrolysable ATP analogue, ATPcS (sodium salts from Sigma-
Aldrich, St Louis, MO) were tested in parallel to discern the effect of
the ATP molecule from its hydrolysed derivatives. The involvement of
various signal agents in a response was examined through gain-and-
loss of function experiments using their specific antagonists as shown
in Table 1. For example, reaction blue (RB) and suramin are two
specific inhibitors of purinoceptors which were originally used for
mammalian cells, and have also been shown to be effective for
blocking the exogenous ATP responses in plant cells (Ralevic and
Burnstock, 1998; Demidchik et al., 2003; Song et al., 2006). The
concentration range of all inhibitors was selected based on the
literature and our preliminary tests, which showed no inhibitory effect
on root growth and viability. The ATP relatives (as inducers) and
inhibitors were all predissolved in distilled water as 1003 concen-
trated stock solutions and filter-sterilized through a 0.2 lm membrane.
All treatment experiments were carried out in 50 ml Erlenmeyer

flasks, each filled with 15 ml fresh MS medium and inoculated with
1.5 g fresh weight of the hairy roots from the shake-flask cultures
which had been incubated for 18–21 d. After an initial incubation
for 4 d, ATP was applied to the hairy root cultures at selected doses.
The various inhibitors, when needed, were added to the hairy root
cultures 30 min before the addition of ATP and relatives. All
treatments were performed in triplicate flasks and the results were
represented by their mean plus standard deviation; all experiments
were performed at least twice to confirm the treatment effects.

Quantification and observation of NO production in hairy root

cultures

The concentration change or relative level of NO in the hairy root
culture medium was quantified by a fluorometric method using the

Table 1. ATP, Ca2+, NO and protein kinase antagonists employed in the experiments and their putative functions in plant cells

Targeted responses Chemical name (abbreviation): function

Perception of extracellular
ATP signal

Reactive blue (RB) and suramin: inhibitors of plasma membrane purinoceptors

Ca2+ influx through membrane 1,2-bis(2-amino-5-bromophenoxy)ethane-N,N,N#,N#-tetra-acetic acid (EGTA): Ca2+ chelator; verapamil:
Ca2+ channel blocker

NO production and release L-x-nitro-Arg-methyl-ester (L-NAME) and S,S’-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea (PBITU):
NOS inhibitor; sodium azide (SoA): NR inhibitor; 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO):
NO scavenger

Protein phosphorylation Staurosporine (ST): protein kinase inhibitor
Calmodulin (CaM) activation N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W-7) and trifluoperazine (TRF): CaM Inhibitor
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NO-sensitive fluorescence probe 4,5-diaminofluorescein diacetate
(DAF-2DA) (Sigma Aldrich) (Lamotte et al., 2004; Hu et al.,
2005; Wang and Wu, 2005). The DAF-2DA reagent was
predissolved in fresh MS medium and added to the culture
medium at a final concentration of 10 lM 2 h prior to treatment
with ATP or its relatives. After the treatment, 50 ll of medium
was withdrawn from each culture flask at selected time intervals
and mixed with 250 ll TRIS-KCl (10 mM, pH 7.2), and the
fluorescence intensity was measured on a luminescence spectrom-
eter (LS50B, Perkin–Elmer, Shelton, CT) at 495 nm excitation and
515 nm emission.
NO accumulation in the hairy roots was visualized by

fluorescence microscopy. The root samples for the microscopy
were stained with 10 lM DAF-2-DA in 10 mM TRIS-KCl buffer
(pH 7.2) for 30 min, and then rinsed with 10 mM TRIS-KCl buffer
for 10 min (Hu et al., 2005). The specimen for fluorescence
microscopy was taken from the elongation part of the root near the
root tip in which the cells are usually more active in NO
biosynthesis and permissible to the DAF-2-DA dye than the
older and mature root cells (Stöhr and Ullrich, 2002). The root
specimen was pressed into a thin layer and placed between the
slides, and the photo image was taken by Axionvert 200 inverted
microscopy connected with a laser confocal scanner (LSM 510
meta; Carl Zeiss, Oberkochen, Germany) (excitation: 488 nm;
emission: 515–560 nm).

Measurement of H2O2

Hydrogen peroxide (H2O2) in the culture medium was measured by
luminol chemiluminescence as described by Wang and Wu (2005).
In brief, 50 ll of sample medium was mixed with 750 ll of
phosphate buffer (0.05 M, pH 7.9), followed by auto-injection
of 200 ll luminol (0.3 mM in phosphate buffer) and 100 ll of
K3[Fe(CN)6] (14 mM in water). Fluorescence intensity was
recorded after the last injection at an integration time of 5 s, and
the intensity value was calibrated to actual H2O2 concentration with
pure H2O2 liquid (30 wt% in water from Junsei Chemical Co., Ltd.,
Tokyo, Japan).

Measurement of intracellular Ca2+ in hairy roots

Intracellular Ca2+ concentration change in the hairy roots after
various treatments was measured with the Ca2+-sensitive probe
Fluo-3-AM (Sigma, Cat F6142). Before various treatments, the
hairy roots were incubated at 4 �C for 2 h in 10 mM MES-TRIS
loading buffer (pH 6.1) containing 0.2 mM CaCl2, 50 mM
sorbitol, and 20 lM Fluo-3AM. The hairy roots loaded with the
fluorescence probe were incubated in the MS medium at 25 �C
for another 2 h, and then subject to various treatments (Zhang
et al., 1998; Ma et al., 2002). After the treatments, the hairy root
samples were collected and examined by laser-confocal scanning
at 480 nm excitation and with signal collection from 515 nm
and above (Zhang et al., 1998; Ma et al., 2002). The integration
of fluorescence intensity over area on the laser image of each
sample was performed to show the relative intracellular Ca2+

concentration level.

Results

ATP-induced NO production in S. miltiorrhiza hairy
roots

As shown in Fig. 1A, the fluorescence intensity of the
culture medium began to increase within 30 min after the
addition of ATP to the hairy root culture at various

Fig. 1. NO production in S. miltiorrhiza hairy root cultures induced by
exogenously-applied ATP at various concentrations. (A) Time-course of
NO concentration (relative fluorescence intensity) in the culture medium
after ATP application. (B) Effects of purinoceptor inhibitors RB and
suramin on ATP-induced NO production. (C) NO accumulation in hairy
roots after ATP treatment (2 h) at various concentrations (laser confocal
images of roots stained by NO-fluorescence probe DAF-2DA; scale
bar¼100 lm). CTRL stands for control, and the number after each agent
represents the concentration in lM; error bars for standard deviations,
n¼3; root specimen for microscopy were taken from the elongation part
of the hairy root.

Exogenous ATP-induced NO biosynthesis 4009



concentrations from 10 lM to 200 lM. At most of the
ATP doses applied, the fluorescence intensity increase
occurred between 0–4 h and then reached a plateau or
a maximum level, which increased gradually with the
increase in the ATP dose from 10 lM to 100 lM but
dropped significantly from 100 lM to 200 lM (and 500
lM, not shown). There was only a slight or negligible
change in the fluorescence intensity in the control culture
or the culture supplied with the specific NO scavenger
PTIO (at 0.4 mM) throughout the test period, which
confirmed that the fluorescence intensity increase in the
ATP-treated cultures was due to NO production induced
by ATP. The results showed that ATP induced rapid
and dose-dependent NO production in the hairy root
cultures, and the optimal and most effective dose was
about 100 lM. In addition, the ATP-induced NO pro-
duction was significantly suppressed by both RB and
suramin (Fig. 1B), suggesting that the requirement of
purinoceptors for ATP signal transmission across the
plasma membrane was to activate the NO production
inside the cell.
In addition to the fluorescence intensity of the culture

medium, NO accumulation in the hairy root cells after
ATP treatment can be observed from the microscopic
images of hairy roots stained with the NO-specific
fluorescence probe, DAF-2DA (Fig. 1C). These images
were all taken from epidermal cells in the elongation part
of the hairy root, while the pericycle cells also exhibited
strong fluorescence in response to the ATP treatment (data
not shown). Strong fluorescence was found in the roots
treated with ATP at 50 lM and 100 lM doses, and weak
or no fluorescence was observed in the roots of the control
culture or the culture treated with ATP plus the NO
scavenger PTIO.

NO production induced by ATP analogue and
derivatives

As shown by Fig. 2A, at an equal dose of 100 lM, the
non-hydrolysable ATP analogue ATPcS induced a similar
level of NO production to that by ATP, but the ATP
derivatives ADP, AMP, and adenosine (A) induced much
lower levels of NO in the hairy root culture. Among the
ATP relatives, AMP had the weakest activity for NO
induction, and was even weaker than ADP and adenosine.
The fluorescence microscopic images of the hairy roots
(Fig. 2B) also show the similar changes in NO accumula-
tion induced by various ATP relatives. The results suggest
that the hydrolysis of ATP is neither essential nor
favourable for ATP activation of NO production.
A further inference drawn from the results is that the
membrane receptors are specific to the ATP molecule and
its partial or complete hydrolysis would significantly
weaken the signal and response. Similar to the ATP-
induced NO production (Fig. 1B), the ATPcS-induced
NO production was strongly suppressed by purinoceptor

Fig. 2. Effects of ATP analogue and ATP derivatives (A for adenosine)
on NO production in the hairy root cultures. (A) Time-course of NO
concentration change (relative fluorescence intensity) in the hairy root
culture medium after treatment with ATP and relatives. (B) NO
accumulation in hairy roots observed by laser confocal microscopy after
treatment (for 2 h) by ATP and relatives (laser confocal microscopic
images of roots stained by NO-fluorescence probe DAF-2DA; scale
bar¼100 lm). (C) Inhibition of ATPcS-induced NO production by NO
scavenger, NOS inhibitor, and purinoceptor inhibitors (PTIO and L-
NAME at 400 lM and all other agents at 100 lM in culture; error bars
for standard deviations, n¼3).
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inhibitors (RB and suramin), and also by NO scavengers
(L-NAME and PTIO) (Fig. 2C).
Figure 3 shows the maximum NO levels induced by

ATP at various doses (10–500 lM) and by various ATP
relatives, which provides a direct comparison of their NO-
inducing activities.

Dependence of ATP-induced NO on NOS, NR, Ca2+

and protein kinase

The ATP-induced NO production was significantly sup-
pressed by the NOS inhibitors L-NAME and PBITU, and
the NR inhibitor sodium azide (Fig. 4A), suggesting that
both NOS and NR contributed to the ATP-induced NO-
biosynthesis in this plant hairy roots.
The ATP-induced NO production was also effectively

blocked by both EGTA (an external Ca2+ chelator) and
verapamil (a Ca2+ channel blocker) (Fig. 4A), suggestive
of a strong dependence on the Ca2+ membrane influx. The
ATP-induced NO production was also blocked by both
W-7 and trifluoperazine (TRF), two specific inhibitors of
calmodulin (CaM) (Fig. 4B). Ca2+ influx through the
plasma membrane and the subsequent increase in cyto-
solic Ca2+ concentration are early steps in the ATP
signalling cascade, and CaM activation is associated with
several downstream enzyme activities in the Ca2+ signal-
ling pathway. Therefore, the results here indicate the
involvement of Ca2+ signalling in activating the ATP-
induced NO biosynthesis. On the other hand, staurospor-
ine (ST), a general inhibitor for a broad range of protein

kinases (Lamotte et al., 2004; Menke et al., 1999), had
no significant influence on ATP-induced NO production
(Fig. 4A), suggesting that protein kinases were not
involved in activating the ATP-induced NO biosynthesis.

ATP-induced NO and H2O2 production

Exogenous ATP induced H2O2 production in a dose-
dependent manner, with the highest H2O2 level attained at
100 lM (Fig. 5). The result suggests that an optimum
exogenous ATP concentration exists for the stimulation of
H2O2 biosynthesis in hairy roots. The ATP-induced H2O2

biosynthesis was strongly suppressed by the
NO scavenger PTIO and the NOS inhibitor L-NAME
(Fig. 6A), and the NO donor SNP (sodium nitroprusside)
at 20 lM also induced H2O2 production (Fig. 6B). The
results suggest that NO biosynthesis induced by ATP was
closely associated with H2O2 biosynthesis. In addition, the
H2O2 production induced by both ATP and SNP was
inhibited by the protein kinase inhibitor staurosporine
(Fig. 6B). Notice that the concentration of staurosporine
0.1 lM for effectively inhibiting the H2O2 production was
only one-tenth of that tested for the NO production of
1 lM which showed no significant effect (Fig. 4).
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However, exogenous H2O2 applied to the hairy root
culture did not stimulate NO biosynthesis (H2O2 40 lM
and 5 mM versus the control), and the addition of the
H2O2 scavenger catalase (CAT) did not suppress ATP-
induced H2O2 (ATP+CAT 50 versus ATP) (Fig. 7). In
agreement with our results, Laxalt et al. (2007) have also

found that NO can stimulate H2O2 biosynthesis but ROS
cannot induce NO synthesis.

ATP-induced intracellular Ca2+ increase and
dependence on NO and H2O2

Exogenous ATP at 10–100 lM induced a significant
increase in the intracellular Ca2+ level of the hairy roots,
which was detected within 5 min of the ATP treatment
(Fig. 8). Similar to the induction of H2O2 production (Fig.
5), exogenous ATP at the much higher concentrations of
200 lM and 500 lM induced a smaller or no intracellular
Ca2+ increase, which again suggests an optimal ATP dose
for the induction (Fig. 8B). The non-hydrolysable ATP
analogue ATPcS at 100 lM induced a similar level of
intracellular Ca2+ to that by 100 lM ATP. ATP (100 lM)
in combination with PTIO (0.4 mM) (ATP+PTIO 400)
failed to induce the intracellular Ca2+ increase, suggesting
the requirement of NO signalling for the ATP-induced
intracellular Ca2+ increase (Fig. 8B). It has also been
found that NO biosynthesis was required for osmotic
stress-induced intracellular Ca2+ concentration increase
in tobacco cells based on the PTIO inhibitor test (Lamotte
et al., 2006). In addition, a significant increase in
the intracellular Ca2+ level of hairy roots was induced by
the NO donor SNP (20 lM) but not by exogenous H2O2

(40 lM). Similarly, Foreman et al. (2003) reported that
H2O2 did not induce a Ca2+ concentration increase in
plant roots. However, H2O2 did induce the Ca2+ concen-
tration increase in guard cells (Pei et al., 2000). These
contrasting results could be attributed to the organ-specific
response of plants to ROS. In addition, the responses of
plant cells to H2O2 may be dependent upon the age and
location of cells in plant roots. As shown in a recent study
(Demidchik et al., 2007), the H2O2-induced Ca2+ influx in
the elongation part of A. thaliana roots was much more
pronounced than in the older and mature part of roots.
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Discussion

Our experimental results have shown that exogenous ATP
induces rapid and dose-dependent NO production in S.
miltiorrhiza hairy root cultures. The ATP action was
inhibited by suramin and RB, two reagents capable of
blocking the combination of extracellular ATP with

purinoceptors in animal cells, suggesting the involvement
of similar purinoceptors in the extracellular ATP signal

transmission across the plant cell membrane. The

induction of NO by ATP could be mimicked by the non-

hydrolysable ATP analogue ATPcS but not by its hydro-

lysed derivatives ADP and AMP. These results are similar

Fig. 8. Changes of intracellular Ca2+ level in the hairy roots after treatment by exogenous ATP, NO, and H2O2. (A) Time-course of intracellular Ca2+

level after ATP treatment, represented by the fluorescence intensity of roots loaded with the Ca2+-specific fluorescence probe Fluo-3AM (laser-
confocal images taken from epidermal cells in the elongation part of roots; scale bar¼100 lm). (B) Effects of various inhibitors on the induced Ca2+

concentration increase (different letters on top of the columns indicating significant difference among the treatment effects, n¼3, P <0.05,
LSD¼0.54). The number after each agent represents the concentration in lM or U ml�1 for CAT only, and ATP was fixed at 100 lM in ATP+PTIO
400 and ATP+CAT 50.
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to those in tomato cell suspensions reported by Foresi
et al. (2007), but some different characteristics have also
been found in our study. Firstly, an optimum ATP dose
(about 100 lM) was observed in our experiments for
maximum NO induction, while in Foresi et al. (2007), the
NO increased constantly with the ATP concentration from
0.01 to 1 mM and then levelled off from 1 mM to 5 mM.
This difference may be attributed to the different plant
species or culture systems. Our results have also shown an
optimum ATP dose or range for the induction of H2O2

production (about 100 lM) and intracellular Ca2+ increase
(10–100 lM). Similarly, an optimum ATP concentration
(or range) about 50 lM was suggested for effective
induction of ROS production in Arabidopsis cells (Song
et al., 2006). The lower levels of NO and ROS production
induced by excessive ATP may be attributed to an adverse
or negative effect of ATP on plant cell growth and
metabolism. Roux and Steinebrunner (2007) have also
suggested that extracellular ATP is beneficial at suitable
concentrations to plant cell growth but becomes inhibitory
at excessive concentrations. Another possible cause for
the weaker responses induced with excessive ATP is
a stronger interaction of ATP with some components of
the culture medium such as Ca2+ chelation.
Another new finding from our study is the strong

dependence of the exogenous ATP-induced NO biosyn-
thesis on Ca2+ signalling and the independence on protein
kinase activities. Our present study and previous studies
(Demidchik et al., 2003; Jeter et al., 2004) have shown
the activation of Ca2+ influx and the elevation of
intracellular Ca2+ levels within a few minutes after ATP
treatment in plant cells. It has also been reported that Ca2+

influx and the activation of CaM are prerequisites for the
activation of NOS-like enzymes (del-Rio et al., 2004;
Kondo et al., 1999). As a NOS-like enzyme has been
detected as a possible source of ATP-induced NO pro-
duction in hairy roots, the dependence of NO production
on Ca2+ signalling is consistent with the requirement of
Ca2+ signalling for NOS-like enzyme activation. The
insignificant effect of the protein kinase inhibitor staur-
osporine on ATP-induced NO biosynthesis detected in our
experiments suggests that protein phosphorylation is not
a prerequisite for activating NO biosynthesis. Likewise,
the protein kinase inhibitor could not block the intracellu-
lar Ca2+ increase in the S. miltiorrhiza hairy roots induced
by ATP or the NO donor SNP as observed from our
supplementary tests (data not shown). This may further
suggest that ATP induces Ca2+ influx and signalling,
leading to NO biosynthesis earlier than protein kinase
activation and protein phosphorylation. Such a signal
cascade is in agreement with the findings from previous
studies (Lamotte et al., 2006; Lanteri et al., 2006; Courtois
et al., 2008), that Ca2+ and CaM were required for
activating the NO response, osmotic stress-induced activa-
tion of 42 kDa protein kinase NtOSAK was dependent on

NO, and the activation of a 50 kDa CDPK by NO was
essential for NO-induced adventious root formation.
The independence of protein kinase activity for the ATP-

induced NO biosynthesis found in our study may be
explained as follows. As shown in animal cells (Ralevic
and Burnstock, 1998), exogenous ATP treatment induces
the rapid activation (within a few milliseconds) of a non-
selective flux of cations (Na+, K+, Ca2+) across the cell
membrane, which is mediated by purinoceptors, perhaps
via G-proteins. The ATP-induced cation ion flux leads to
a significant increase in intracellular Ca2+, which activates
NO biosynthesis in the cytosol. The ATP-induced Ca2+

influx and the following NO biosynthesis can be accom-
plished without the involvement of protein kinases in the
plasma membrane or cytosol. By contrast, the activation of
Ca2+ flux and NO biosynthesis in plant cells by other signal
agents such as elicitors may depend on protein kinase
activities and protein phosphoryaltion. For example, Gelli
et al. (1997) have shown that the activation of plant plasma
membrane Ca2+-permeable channels by race-specific fungal
elicitors is modulated by phosphorylation of the channel
protein; Lamotte et al. (2004) have shown that the
activation of protein kinases is required for fungal elicitor-
induced NO biosynthesis. Future discovery and character-
ization of eATP-binding proteins in plant cells will be most
helpful for elucidating the role of Ca2+ channel and protein
kinases in the eATP signalling pathway.
On the other hand, the strong dependence of H2O2

production induced by exogenous ATP and the NO donor
SNP on protein kinase activity found in our study
suggests the requirement of protein phosphorylation for
the activation of H2O2 production. This is in agreement
with the general consensus that protein kinases are
required for the activation of NADPH oxidases, the major
enzymes responsible for ROS production in plant cells
(Mehdy, 1994; Yoshioka et al., 2003). This also implies
that H2O2 production is located downstream of protein
phosphorylation in the eATP signal pathway, as that in
animal cells (Gertsberg et al., 2004). NO may be an
important element of the eATP signalling pathway for
activating the protein kinases and the release of Ca2+ from
the intracellular stores. NO has been found to induce the
expression of MAPKs, while ATP treatment also induced
the expression of MAPKs (Jeter et al., 2004; Grun et al.,
2006). Therefore, NO biosynthesis may be an event
upstream of protein kinase activation and protein phos-
phorylation in the extracelluar ATP signalling pathway. In
Panax ginseng cells, Hu et al. (2004) suggested that H2O2

production is downstream of MAPK activation induced by
a chitosan elicitor, based on the suppressed H2O2 pro-
duction with a MAPK inhibitor. As NO can induce the
MAPK pathways, it may activate the H2O2 biosynthesis
through the MAPK signal pathways.
Based on our experimental results and the above discus-

sion, a signal pathway leading to exogenous ATP-induced
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NO and ROS biosynthesis in S. miltiorrhiza hairy roots, as
shown in Fig. 9, is proposed. In addition to the signal
components detected in our study, the involvement of
NADPH oxidases in eATP-induced H2O2 biosynthesis
has been detected by Song et al. (2006) in Arabidopsis
cells, and the role of NO for activating the Ca2+ release
from intracellular stores is well-established in the plant
response to biotic and abiotic elicitors (Garcia-Mata et al.
2003; Courtois et al., 2008). The simultaneous and
balanced production of NO and ROS in plants is
a common event in the plant defence response, and the
NO and ROS signals co-regulate the defence response
(Bright et al., 2006; Zaninotto et al., 2006). The two
signal elements can exert reciprocal regulation over each
other, and their signalling functions can be complemen-
tary, synergistic or parallel. A recent study (Laxalt et al.,
2007) showed that the inhibition of NO production with
NO antagonists also led to the inhibition of H2O2

production, suggesting that NO regulates H2O2 biosynthe-
sis. NO may regulate H2O2 production through the lipid
signalling system which activates ROS biosynthesis
(Laxalt et al., 2007). The lipid signalling system has been
recognized as an integral part of extracellular ATP
signalling in animal cells (Ralevic and Burnstock, 1998),
but remains to be further characterized in plant signalling
cascades. In plants, NO can also facilitate the accumula-
tion of ROS by directly inhibiting the enzymes eliminat-
ing ROS such as catalase and ascorbate peroxidase (Clark
et al., 2000). Alternatively, NO can act as an antioxidant
to counteract the cytotoxic effect of excessive ROS in
plants evoked by biotic and abiotic stress (Beligni and
Lamattina, 2001).
The rapid induction of NO by exogenous ATP found

here in the S. miltiorrhiza hairy roots and previously in
other plant cells provides another line of evidence for the
role of extracellular ATP as a signal agent in plant cells.
Ca2+ signalling has been found to be essential for
activating the NO and ROS production induced by ATP
in plant cells. These results suggest a strong interrelation-
ship among several signalling elements including Ca2+,

ROS, NO, and protein kinases in eATP signalling and
activation of plant cell responses. Further investigation is
needed to characterize and understand the respective
signal pathways and their interrelationships.
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