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Abstract

Arabidopsis flowers in long day (LD) in response to

signals transported from the photoinduced leaf to the

shoot apex. These LD signals may include protein of

the gene FLOWERING LOCUS T (FT) while in short day

(SD) with its slower flowering, signalling may involve

sucrose and gibberellin. Here, it is shown that after 5

weeks growth in SD, a single LD up-regulated leaf

blade expression of FT and CONSTANS (CO) within

4–8 h, and flowers were visible within 2–3 weeks.

Plants kept in SDs were still vegetative 7 weeks later.

This LD response was blocked in ft-1 and a co mutant.

Exposure to different LD light intensities and spectral

qualities showed that two LD photoresponses are

important for up-regulation of FT and for flowering.

Phytochrome is effective at a low intensity from far-red

(FR)-rich incandescent lamps. Independently, photo-

synthesis is active in an LD at a high intensity from red

(R)-rich fluorescent lamps. The photosynthetic role of

a single high light LD is demonstrated here by the

blocking of the flowering and FT increase on removal

of atmospheric CO2 or by decreasing the LD light

intensity by 10-fold. These conditions also reduced

leaf blade sucrose content and photosynthetic gene

expression. An SD light integral matching that in

a single LD was not effective for flowering, although

there was reasonable FT-independent flowering after

12 SD at high light. While a single photosynthetic LD

strongly amplified FT expression, the ability to re-

spond to the LD required an additional but unidentified

photoresponse. The implications of these findings for

studies with mutants and for flowering in natural

conditions are discussed.
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Introduction

Flowering of Arabidopsis thaliana (L.) Heynh. is regu-
lated environmentally by daylength and cold (Boss et al.,
2004; Searle and Coupland, 2004; Imaizumi and Kay,
2006: Turck et al., 2008). Its light response in long days
(LD) involves phytochrome (PHY) and the blue photo-
receptors (Goto et al., 1991; Reed et al., 1994; Bagnall
and King, 2001; Endo et al., 2007, and references
therein). These photoreceptors interact with endogenous
oscillators to activate expression in leaf blade vascular
tissue of two ‘floral’ genes, CONSTANS (CO) and
FLOWERING LOCUS T (FT) (Halliday et al., 2003;
Imaizumi et al., 2003; Takada and Goto, 2003; An et al.,
2004; Valverde et al., 2004; Endo et al., 2007).

Genetically, the link between FT and flowering is
shown by the delayed flowering in ft mutants and early
flowering in overexpression lines (Koorneef et al., 1991;
Kardailsky et al., 1999; Kobayashi et al., 1999; Yoo
et al., 2005). Furthermore, recent evidence implies LD
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floral signalling by FT protein which may act as a signal
transmitted from the leaf to the shoot apex in Arabidopsis,
Cucurbita spp, and rice (Corbesier et al., 2007; Jaeger and
Wigge, 2007; Lin et al., 2007; Mathieu et al., 2007;
Tamaki et al., 2007). At the shoot apex, FT then interacts
in a putative transcriptional complex with protein of the
FD gene (Abe et al., 2005; Wigge et al., 2005).

Far-red (FR) light acting via phytochrome up-regulates
FT expression in Arabidopsis (Cerdän and Chory, 2003;
Halliday et al., 2003; Valverde et al., 2004) and, in
parallel, FR promotes flowering (Reed et al., 1994;
Bagnall and King, 2001, and references therein). Red (R)
light acting via phytochrome blocks the FT increase and
flowering is delayed. Paradoxically, however, high light
intensities from R-rich fluorescent lamps are traditionally
used to show LD up-regulation of FT (Suarez-Lopez
et al., 2001; Imaizumi et al., 2003; Takada and Goto,
2003; Valverde et al., 2004; Abe et al., 2005; Wigge
et al., 2005; Yoo et al., 2005).

Here, for Arabidopsis this paradox is explained by
showing independent LD photoregulation of both FT and
flowering by photosynthesis in high intensity R-rich light
and by phytochrome in low intensity FR-rich light.
Importantly, to assess cause and effect in the link between
photosynthesis, FT, and flowering, conditions were used
which give rapid flowering after exposure to a single LD.
In a limited way, the question of sucrose regulation of the
extremely late short day (SD) flowering of Arabidopsis
(Ericksson et al., 2006) is also addressed.

Materials and methods

Plant material, growing conditions, and light treatments

Plants of A. thaliana (L.) Heynh. ecotype Columbia and various
mutant lines in Columbia were grown in 8 h SDs at 22 �C under an
irradiance of 100 lmol m�2 s�1 from fluorescent lamps. There was
a very limited flowering by 3 weeks (up to 3% of 1000 plants in
various experiments). These precociously flowering plants were
removed and the remainder were still vegetative at 3 months.

For flower induction, the plants were always 5 weeks old when
exposed to one or up to five LDs. The LD light extension was for a
duration of 16 h from incandescent lamps at 10 lmol m�2 s�1 or from
fluorescent lamps at either 10 lmol m�2 s�1 or 100 lmol m�2 s�1.
In one experiment (Fig. 7), light intensity in 8 h SDs was increased
;3-fold (to 270 lmol m�2 s�1 or 360 lmol m�2 s�1) for a total
of 12 d; each SD was terminated by a 10 min exposure to
incandescent lamps.

The spectral output of the fluorescent lamps used here is enriched
in yellow/orange and R wavebands, and the incandescent bulbs
provide predominantly FR light (Supplementary Fig. S1 available at
JXB online). The R:FR ratio of 0.8 in the FR-rich light provides
spectral conditions close to direct sunlight (R:FR 1.1–1.25)
especially as there is a substantial further enrichment for FR at
twilight (Smith, 1982). Exposure to an LD from R-rich fluorescent
lamps (R:FR 4.5) is often used but does not match natural
conditions as closely as the FR-rich LD treatment. Compared with
these fluorescent and incandescent lamps, there are matching
responses of growth and flowering of Arabidopsis to light from
narrow-band R and FR sources (Bagnall and King, 2001; Hisamatsu

et al., 2005). Therefore, subsequently, the LDs here from
fluorescent lamps is referred to as a R-rich LDs (LD-R) at a high
light intensity (100 lmol m�2 s�1) and as a low light R-rich LDs
(LD-lR) at a 10-fold lower intensity An LD from incandescent
lamps at low light is referred to as an FR-rich LD (LD-FR).

Flowering began 10–20 d after an LD (flower buds were visible
;2–3 d after bolt appearance) and was recorded both as percentage
flowering and as days from the start of the LD until petal
appearance. The findings of all experiments presented here have
been confirmed in repeat studies.

For genetic studies of CO/FT in Columbia, the co mutant was
from the SAIL T-DNA collection and carries a T-DNA insertion at
bp 342 after the ATG (Laubinger et al., 2006). It causes late
flowering in LD as with other co mutants (Putterill et al., 1995),
produces very low levels of CO (Dr I Searle, Max Planck Institute,
Koeln, Germany, personal communication), and lacks detectable FT
expression in LD (T Hisamatsu, data not shown). The ft-1 mutant
was a third backcross line in Columbia crossed in from Landsberg
erecta. Eighth backcross material of this ft-1 line became available
at the end of this study and it responded in a similar way to the third
backcross material.

To block photosynthesis, 16 plants per treatment were enclosed
in 7. 0 l clear plastic boxes which were flushed with CO2-free or
normal air at 2 l min�1. Scrubbing of CO2 was through a 1.0 l
plastic cylinder filled with indicating soda lime. All CO2 was
quickly removed (<4 min), as measured with a gas analysis system.
At the flow rates used, the soda lime column remained effective for
up to 48 h. To balance the humidity of the air streams, both the
CO2-free and the normal air were aspirated in sealed 2.0 l water
columns before entering the boxes.

Statistical analysis

Some statistical analysis involved analysis of variance (ANOVA)
and calculation of LSD0.05. Otherwise errors are shown as means
6SE. In many instances, the error was smaller than the symbol and
is not visible in the figures. Unless indicated otherwise, 16 plants
per treatment were assessed for calculating percentagr flowering and
flowering time. All experiments reported here have been repeated at
least once.

Quantitative real-time PCR analysis of gene expression

For studies of gene expression, the youngest fully expanded leaves
were harvested from >16 plants. Where harvests were during the
dark period, a green safe light was used. Total RNA was extracted
using an RNeasy Plant Mini Kit (Qiagen, Clifton Hills, Victoria,
Australia) and treated with RNase-free DNase (Qiagen) according
to the manufacturer’s instructions An aliquot of 1 or 2 lg of total
RNA was reverse-transcribed using Super Script II (Invitrogen, Mt
Waverley, Victoria, Australia) according to the manufacturer’s
instructions. The cDNA was diluted 5- or 25-fold, and 4 ll was
used in a 10 ll Q-PCR with SYBR Green JumpStart Taq
ReadyMix (Sigma Aldrich, Castle Hill, NSW, Australia) performed
on a Rotor-Gene 2000 Real-Time Cycler (Corbett Research,
Sydney, Australia). The Q-PCR assays were repeated three times
and, for any claimed treatment effects, the result was confirmed in
at least one further independent experiment. All samples were
normalized using the ‘Comparative Quantification’ analysis method
(Rotogene-5 software, Corbett Research), and RNA expression is
compared directly after normalization against an ACTIN2 loading
standard.

Primer pairs previously characterized were: CO, FT, and SOC1
(Halliday et al., 2003) and ACTIN2 (Hisamatsu et al., 2005). The
internal standard, ACTIN2 (At3g18780), was constant in the
samples assayed. Further details of these assays are given in
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Hisamatsu et al. (2005). The means presented are averages from
three technical replicates, and all experiments have been repeated.

Measurement of leaf and shoot apex sucrose content

As shown in Supplementary Fig. S2 at JXB online, the ‘shoot apex’
used for the sucrose assays refers to a tissue piece no bigger than
250 lm diameter after dissection and which weighed <1 lg dry
weight. It included the true shoot apex, some basal pith tissue, and
up to two leaf primordia as large as the apex itself (Supplementary
Fig. S2 at JXB online). This ‘shoot apex’ is smaller by several
orders of magnitude than the 3 mm tissues pieces harvested as
shoot tips but incorrectly described in the literature as ‘the shoot
apex’. Dissecting this minute shoot apex was not difficult and the
GCMS-SIM assays of sucrose showed high reproducibility due to
the inclusion of a [13C]sucrose internal standard. Sensitivity of the
microbalance was a limitation so four to five apices were combined
in each assay and sufficient apices were collected for 5 replicate
assays. The methods for sucrose extraction and quantification by
GCMS-SIM are given in detail in King and Ben-Tal (2001).

Results

A sensitive LD flowering response

Arabidopsis (ecotype Columbia) flowered rapidly on
exposure to a single 16 h LD light extension either at high
light intensity (100 lmol m�2 s�1) from R-rich (LD-R)
fluorescent lamps or at a low intensity (10 lmol m�2 s�1)
from FR-rich (LD-FR) incandescent lamps (Fig. 1A).
These plants were 5 weeks old when exposed to this
single LD, and flower buds were visible 2 weeks later.
Untreated control plants in SD were still vegetative
7 weeks later (i.e. 3 months after germination). Obligate
and precise LD flowering in response to a single LD
confirms earlier reports for Arabidopsis after its exposure
to an R-rich LD (Corbesier et al., 1996) or to an FR-rich
LD (Gocal et al., 2001).

In Fig. 1B the conditions for a single cycle floral
induction by an R- (LD-R) or FR-rich LD (LD-FR) are
shown schematically along with the SD control. Plants
exposed to a low intensity (10 lmol m�2 s�1) R-rich LD
(LD-lR) were essentially vegetative (Fig. 1A), and this
provided an additional ‘control’ treatment.

Based on published light response curves for photosyn-
thesis of Arabidopsis (Walters et al., 1999), only the
higher intensity R-rich LD would contribute photosynthet-
ically. Thus, the restricted flowering in the R-rich low
light LD-lR treatment (Fig. 1A) could suggest photosyn-
thetic regulation of flowering in a high light intensity LD.
The spectral contrast between flowering at a low light
intensity after exposure to a single FR-rich LD but not
after an R-rich LD, indicates an additional LD light
response and one which, for these incandescent lamps,
would involve PHYB, as shown previously (Bagnall and
King, 2001).

Referencing time of the day to the time from the daily
light-on signal (hour 0) is consistent with other studies.

However, the response to a single LD cycle is sometimes
referred back to the end of the 8 h SD as this adds focus
to the rapidity of the response to the LD.

Following the single LD there was a rapid response at
the shoot tip; its expression of SUPPRESSOR OF
OVEREXPRESSION OF CONSTANS1 (SOC1) began to
increase by hour 20 (Supplementary Fig. S3 at JXB
online) and the size of the apex had increased dramatically
by hour 24–48 (Gocal et al., 2001). Based on this
evidence of early change at the shoot tip/apex, the
subsequent analysis of the timing of leaf blade gene
expression has focused on changes during the first LD.

An FT mutant blocks LD flowering

Flowering of Arabidopsis is inhibited in ft mutants
(Koorneef et al., 1991; Kardailsky et al., 1999; Kobayashi
et al., 1999; Yoo et al., 2005) and, here, ft-1 in Columbia

Fig. 1. A rapid LD flowering response of Arabidopsis, ecotype
Columbia. Effect of a single LD on flowering of plants of Columbia
(% plants flowering; A). The four daylength treatments imposed here
and in further studies are shown schematically in (B). Prior to the single
LD exposure, all plants were grown in 8 h SD for 5 weeks. After the
LD, they were returned to SDs for daily recording of flowering. At 40 d
(75 d from germination) there was little or no flowering of plants in
SDs or after a single low intensity R-rich LD. There were 16 replicate
plants for flowering assays. The shaded areas show the ‘overnight’ 16 h
light or dark exposure.
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completely inhibited the flowering of plants exposed to
high intensity R-rich LD (Fig. 2). The point mutation in
ft-1 is near to the C-terminal group (Kardailsky et al.,
1999) and there is detectable mRNA production (Yoo
et al., 2005); nevertheless, its protein product is appar-
ently sufficiently defective for ft-1 to block LD flowering.

The lack of effect of ft-1 on the late onset of flowering
in SDs not only shows the specificity of FT for LDs but,
more importantly, that FT accounts for all the flowering
response to high intensity R-rich LD (LD-R). In contrast,
flowering in FR-rich LD (LD-FR) was inhibited in ft-1
(Fig. 2B) but it was not blocked completely, and the same
result was found in a repeat experiment with ft-1 back-
crossed eight times into Columbia (not shown). Appar-
ently, floral signalling in an R-rich LD involves FT alone
but in an FR-rich LD there may be an additional
signalling component, and this possibility is examined in
the companion paper (Hisamatsu and King, 2008).

CO regulates FT (Valverde et al., 2004; see review in
Turck et al., 2008) and it was found that a co mutant in
Columbia delayed flowering in LD-R and LD-FR (Sup-
plementary Fig. S4 at JXB online) and blocked FT
expression (not shown). However, this co mutant was not
as effective as ft-1.

LDs and FT expression

Within 4–8 h of commencing a single florally inductive
LD (hour 12–16), FT expression in the leaf blade
increased rapidly and dramatically (Fig. 3A, B). Normal-
ization to the highest value emphasizes the timing of the
LD increase in FT in any one LD light exposure. When all
four daylength conditions were included in a repeat
experiment (Fig. 3C), their normalization to the FR-rich
LD allows comparison across light treatments. An early
and substantial increase in FT expression was only evident
in the two florally effective LDs (LD-R and LD-FR). There
was little or no increase in SDs or in a low intensity R-rich
LD (LD-lR). Thus, as for flowering (Fig. 1), there is
separate spectral and light intensity specificity for LD up-
regulation of FT expression. There is no obvious
explanation for the delayed response of FT to an FR-rich
LD relative to an R-rich LD.

In parallel with increase in FT expression, a florally
effective R- or FR-rich LD increased CO expression
(Fig. 4). In a low intensity R light LD (LD-lR) there was
some increase in CO expression, but this was apparently
not sufficient to affect FT expression which was weak
(Fig. 3C) and matched by poor or nil flowering (Fig. 1A).
A repeat experiment with more frequent sampling con-
firmed the FR-rich LD increase in CO expression
(Supplementary Fig. S5 at JXB online).

None of the LD treatments increased SOC1 expression
in the leaf blade relative to plants in SD (Fig. 4), which
confirms the findings of Wigge et al. (2005). In contrast,
LDs increased expression of SUC2, a photosynthetically
regulated gene, but only in a high light, R-rich LD (Fig. 4).
This finding emphasizes the potential for a photosynthetic
input in this high light LD.

Taken together, these studies (Figs 1–3) show that
activation of FT in LDs accounts for flowering. In
addition, they highlight inputs by two photoresponses,
a low intensity (non-photosynthetic) response in a low
light FR-rich LD and a photosynthetic input in a high
intensity R-rich LD.

Photosynthetic regulation of FT and flowering

Photosynthetic regulation of FT in a high intensity R-rich
LD is implied by the evidence that flowering and FT
expression were both restricted by a 10-fold reduction in
the LD light intensity (Figs 1, 3). To confirm this role for
photosynthesis, plants were exposed to CO2-free air to
block photosynthesis during the 16 h high light LD

Fig. 2. The ft-1 mutant blocks LD flowering. Plants of Columbia or ft-1
were held in SD (filled symbols) or exposed to five LDs (open symbols)
from high intensity R-rich fluorescent lamps (A) or from low intensity
FR-rich lamps (B). These daylength treatments are described in Fig. 1.
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exposure (LD-R). Flowering was delayed by the removal
of atmospheric CO2 for the single 16 h ‘overnight’ period
of high light intensity (Fig. 5A) and, in parallel, the
normal FT increase was restricted (Fig. 5B). The same
treatment had no effect on plants exposed to this LD at
a 10-fold lower intensity (LD-lR); their flowering was late
and FT expression was low (Fig. 5). Two further studies
confirmed the strong delay of flowering when CO2-free
conditions were imposed for the entire period of a two LD
high light period or for the 16 h ‘overnight’ periods of
two high light LDs (not shown).

A role for photosynthesis in a high light LD is also
supported by the measurements of sucrose content of the
leaf and shoot apex. At a high light intensity, the LD
caused an early doubling of leaf blade sucrose (<8 h after
starting the LD, Fig. 6A), but there was little or no
increase for plants in 16 h of darkness (SD) or exposed to
a low intensity LD (LD-lR or LD-FR). At the shoot apex,
sucrose increased in parallel with its increase in the LD
leaf (Fig. 6B, C). Furthermore, exposure to CO2-free air
during a 16 h high light LD extension blocked sucrose
increase in the leaf blade and shoot apex (Table 1).

LD increases in expression in the leaf blade of
photosynthetically regulated genes (Fig. 4; Supplementary
Fig. S6 at JXB online) also support this claim of a
photosynthetic role for a high light LD. For example, up-
regulation of SUC2, a gene which regulates sucrose
transport, was only evident in a high light LD (Fig. 4).
Comparable high light LD increases are shown in Supple-
mentary Fig. S6 at JXB online, not only for SUC2, but also
for genes involved in sucrose accumulation (SUS1), its
perception (AKIN1 a SNF1-like kinase), carbon intercon-
versions (e.g. ADPG and INVERTASE), and other aspects
of photosynthetic carbon fixation (SUC3).

In addition to the finding that ft-1 completely blocked the
high light LD response (Fig. 2), there was no flowering
when only sucrose was allowed to increase. First, when co
was used to block the FT increase, a high light LD was
ineffective for flowering but the LD still increased the
sucrose content of the leaf and shoot apex (Table 1).
Secondly, in SD with its low FT expression (Fig. 3),
Columbia did not flower when the light intensity in a single
SD was increased to 360 lmol m�2 s �1 (not shown).
Assuming a linear increase in photosynthesis with light
intensity (Walters et al., 1999), the daily photosynthetic
gain in an 8 h SD at a light intensity of 360 lmol m�2 s�1

exceeds that for a 24 h LD exposure at 100 lmol m�2 s�1.
Taken together, these findings imply that photosynthesis

in the LD leaf regulates flowering by up-regulating FT

Fig. 3. An LD rapidly up-regulates FT expression. FT expression was
assayed in the leaf blade over the first day of LD exposure and during
a repeat of this LD. Compared with the SD control, both a high light R-
rich LD (A) and an FR-rich LD (B) dramatically increased FT
expression. In a repeat experiment, shown in (C), FT expression was
assayed for all four daylength treatments described in Fig. 1. The

dashed lines and schematic underneath the figures show the daily timing
of light and of dark. Gene expression is normalized to the maximum
value taken as 1.0. All values are means 6SE (n¼3). The error bars are
generally not evident because they were smaller than the symbols.
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expression. Secondly, because increasing photosynthesis
for one SD was not sufficient to trigger flowering, LD
specification to allow photosynthetic up-regulation of FT
must be signalled via an additional photoresponse..

Can photosynthetic sucrose act directly in SD floral
induction?

When grown in SD, Arabidopsis eventually flowers (>7
weeks later Fig. 2) and there is an associated increase in
shoot tip sucrose (Ericksson et al., 2006). Here, 5-week-
old plants of Columbia flowered rapidly in 8 h SDs
(2–3 weeks) when the light intensity was increased for
12 d to 270 lmol m�2 s�1 (Fig. 7). These findings were
confirmed in a repeat experiment involving a 12 d
exposure in SD at 360 lmol m�2 s�1 (not shown). A
single high light SD exposure did not induce flowering (as
noted above) and SD plants held at 100 lmol m�2 s�1

were still vegetative when the experiment was terminated
at 42 d (Fig. 7). Furthermore, SD flowering was in-
dependent of FT because high light stimulated flowering
equally well for ft-1 and Columbia (Fig. 7).

Compared with the FT-dependent flowering response to
a single high light LD, the FT-independent SD response
required more cycles of high light (12 d) and the response

Fig. 4. Effects of LD on leaf blade gene expression. Expression in the
leaf blade is shown for three genes CO, SOC1, and SUC2. FT
expression in this experiment is shown in Fig. 3C. Other conditions
were as for Figs 1 and 3.

Fig. 5. Blocking photosynthesis during an LD can inhibit flowering and
FT expression. Flowering (A) and FT expression (B) are compared
following an exposure to normal (solid bar) or CO2-free air (hatched
bar) during a 16 h high light LD (LD-R, 100 lmol m�2 s�1) or to an
LD at a 10-fold lower intensity from the same fluorescent lamps (LD-
lR, 10 lmol m�2 s�1).
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was slower (e.g. 20.0 6 1.4 d to flower in Fig. 1 versus
29.0 6 1.4 d in Fig. 7). Such differences strengthen the
claim that high light in LD acts via FT as a dominant LD
floral signal.

Discussion

Information on LD photoresponse(s) in the leaf blade is
essential for any understanding of floral signals transported
from the leaf to the shoot apex. Here, with Arabidopsis, its
rapid and obligate flowering after a single LD has allowed
identification of two LD photoresponses which act by up-
regulating FT expression. Phytochrome is effective in an
FR-rich LD at a low light intensity from incandescent
lamps. In contrast, in a high light intensity LD from R-rich
fluorescent lamps, photosynthesis is important and this
novel observation has implications for studies with mutants
and for understanding the role of FT in natural conditions.

There are at least two photoresponses controlling FT
and flowering in LDs

Published studies of LD up-regulation of FT expression
have introduced roles for both R and FR light but,

Fig. 6. Sucrose content of the leaf and shoot apex increases within hours
in a high intensity R-rich LD from fluorescent lamps. Daily change in
sucrose content of the leaf (A); or shoot apex (B, C) for plants in SD or
exposed to an LD at a high intensity (LD-R; 100 lmol m�2 s�1), at a low
intensity (LD-lR; 10 lmol m�2 s�1), or to an FR-rich LD (LD-FR;
10 lmol m�2 s�1). The hatched bars indicate the timing of exposure to the
various LD light extensions, the white bars indicate the daily 8 h light
period of the SD, and the black bars indicate darkness. Each value is the
mean of five replicates. Errors are shown as the LSD (P?¼0.05) for all the
data in each experiment. Other conditions are as for Fig. 1.

Table 1. Effect of daylength and photosynthetic input on leaf
and shoot apex sucrose content (mg g�1 dry weight)

An 8 h SD light period was followed by a 16 h overnight dark period
(SD) or a 16 h LD exposure to light from fluorescent lamps (LD-R) at
a light intensity of 100 lmol m�2 s�1 in either normal or CO2-free air.
The values are means and SE of five replicate assays for apices and
three replicates for the leaf for the Columbia ecotype of Arabidopsis
and a co mutant of Columbia.

SD LD-R

Normal air CO2-free air

Columbia leaf 1.760.1 4.160.1 1.660.2
co mutant leaf 1.960.1 5.260.4
co mutant shoot apex 3.660.5 5.760.7 0.860.2

Fig. 7. An increase in light intensity in SD causes flowering equally
well for Columbia and ft-1. Columbia (solid bar) and ft-1 (open bar)
were held for 12 d in an 8 h SD terminated daily by a 10 min exposure
to low intensity FR-rich light from incandescent lamps. Half the plants
were exposed to the normal SD light intensity of 100 lmol m�2 s�1

and half to an intensity of 270 lmol m�2 s�1. None of the plants held at
100 lmol m�2 s�1 had flowered when the experiment was terminated
after 42 d (77 d after germination). Values are means 6SE (n¼18).
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sometimes, without resolving which photoreceptors were
active. However, when light action involves phytochrome,
it is only FR light which enhances FT expression (Cerdän
and Chory, 2003; Halliday et al., 2003; Valverde et al.,
2004) and flowering (Goto et al., 1991; Reed et al., 1994;
Bagnall and King, 2001, and references therein). Here,
use of an additional non-florally inductive, low intensity
R-rich LD separates the FR-rich phytochrome response
from an intensity-dependent, R-rich photosynthetic input.
The evidence provided of contributions by two photo-
responses resolves the paradox that both R and FR light
promote FT expression and flowering.

All the response to R-light LD is blocked in the ft-1
mutant but, interestingly, flowering is not blocked com-
pletely by ft-1 in a low intensity FR-rich LD (Fig. 2B).
This result implies additional, albeit weak, signalling in an
FR-rich LD. Gene redundancy involving the FT-related
gene, TSF, seems unlikely. The tsf mutant delays flowering
(Yamaguchi et al., 2005), but this would not explain the
difference in response to ft-1 between an FR- and an R-rich
LD (Fig. 2). An alternative involves the known phyto-
chrome up-regulation of gibberellin (GA) biosynthesis in
shoots exposed to an FR-rich LD (Hisamatsu et al., 2005),
and this explanation is examined in the companion paper
(Hisamatsu and King, 2008).

Photosynthetic regulation of FT and flowering in LDs

In a leaf exposed to a high light, R-rich LD (LD-R),
photosynthesis is important for FT-dependent floral
signalling because: (i) this LD rapidly increases FT
expression in the leaf blade (in 4–8 h; hours 12–16); (ii)
ft-1 completely blocks this LD-R flowering; (iii) this LD
increases leaf sucrose and expression of genes regulating
sucrose synthesis; (iv) exposure to this LD in CO2-free air
restricts increases in both FT and sucrose and delays
flowering; and (v) a 10-fold reduction in light intensity
during this LD restricts FT expression, prevents any
sucrose increase, and delays flowering.

Support for a florigenic effect of photosynthetically
derived sucrose acting in the leaf via FT is provided by the
failure of applied sucrose to reverse late flowering of ft-1
despite its effectiveness with five other late flowering
mutants (Roldán et al., 1999). Nevertheless, how sucrose
might act to up-regulate FT is unclear in the study of
Roldán et al. (1999). They grew their plants in total
darkness, so it is likely that sucrose was acting as an energy
source. Similarly, the action of sucrose as an energy source
for FT expression fits with applied sucrose reversing late
flowering in lines with restricted carbon metabolism (Yu
et al., 2000; see review in Bernier and Perilleux, 2005).

It is not clear why an increase in photosynthesis regulates
FT expression in one LD but not in one SD at a much
higher light intensity. Speculatively, in LDs, there must be
an additional photoresponse potentiating the FT response
which is then amplified by photosynthetic input. Blue light

acting via the cryptochromes in a fluorescent light LD
might determine daylength specificity, although it would
not be part of the response to light intensity because there is
little or no intensity dependence for blue light activation of
CO expression and, it is assumed, of FT (Imaizumi et al.,
2003). A more complex alternative which allows for
‘gating’ of the FT response by an endogenous rhythm
introduces R light regulation of the rhythm phase, as has
been reported for a number of plant responses including
rhythmic CO2 fixation in Lemna perpusilla Torr.(Hillman,
1971) and for a flowering rhythm in the SD plant
Chenopodium rubrum L. (King and Cumming, 1972).

The possibility of parallel inputs to FT by photosynthe-
sis, by FR-rich light, and by a potential third blue light
input introduces unexpected complexity, particularly to
studies with mutants. For example, delayed flowering of
a Columbia phyA mutant could be the result of reduced
photosynthetic input to FT since this mutant has half the
wild-type leaf area and, in addition, a reduced photosyn-
thetic pigment content (Walters et al., 1999; Bagnall and
King, 2001). Consistent with a photosynthetic effect in
phyA, higher light intensities reverse its late flowering.
Furthermore, in the same studies, phyA did not delay
flowering in non-photosynthetic, low light, FR-rich LD
conditions (Bagnall and King, 2001). A more complex
model may also be required to explain the effects of
GIGANTEA (GI) on flowering. It acts as an upstream
regulator of CO and FT via a link to a circadian rhythm
(Mizoguchi et al., 2005) but also regulates sucrose
interconversion to starch (Eimert et al., 1995), and its
protein interacts with SPINDLY (SPY) to modulate GA
actions on flowering (Tseng et al., 2004).

FT-independent flowering in high light SDs

Arabidopsis flowers early when a cell wall invertase is
overexpressed near the shoot apex to enhance sucrose
unloading there (Heyer et al., 2004). Also, sucrose
increases at the shoot apex when Arabidopsis flowers in
a photosynthetic LD (Fig. 6, and see Corbesier et al.,
1998) and, in an SD, there is a dramatic increase in shoot
tip sucrose content when Columbia eventually flowers
(Ericksson et al., 2006). Direct regulation of flowering by
transported sucrose is also favoured by the evidence
presented of FT-independent flowering after 12 d expo-
sure to a high light intensity in SDs (Fig. 7). Potentially,
such promotion of flowering by sucrose would involve
activation of LEAFY at the shoot apex, a possibility raised
by Blázquez et al. (1998) from their studies of sucrose/
GA-regulated increases in LEAFY::GUS expression.

On the other hand, FT-independent flowering in SDs is
far weaker than FT-dependent flowering in a single LD.
SD flowering required many more cycles of high light
(12 cycles at 270 lmol m�2 s�1) and with a far greater
light integral (Fig. 1, versus Fig. 7), as also reported
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previously for two other LD plants, Sinapis alba L.
(Bodson et al., 1977) and Fuchsia hybrida (King and
Ben-Tal, 2001). A simple photosynthetic regulation is
unlikely, especially because when the co mutant was used
to block FT increase and flowering (Supplementary Fig. S4
at JXB online), shoot apex sucrose still increased (Table 1).
Perhaps, if maintained for 12 d this same sucrose increase
would be sufficient for flowering, but there does not appear
to be any evidence to support or deny such a speculation.

FT regulation in natural conditions

There have been no studies of flowering of Arabidopsis
which combine the effects of seasonal light intensity and
daylength. However, in the LD species L. temulentum
there is strong additivity between photosynthetic input and
the LD response (King and Evans, 1991). Thus, in late
spring and summer, ‘photosynthetic’ amplification could
become important for LD, FT-regulated flowering but
photosynthesis may not be as dominant as the direct FT
response to daylength, stop. This claim is consistent with
the quantitative relationship to expression of an FT
homologue associated with latitudinal adaptation for
autumn bud set in Populus tricocarpa (Böhlenius et al.,
2006).

In SD species, seasonal photosynthetic differences
should be less relevant as FT expression and flowering
increase in response to exposure to a prolonged daily dark
period, as in rice (Izawa et al., 2002) and Pharbitis nil
Chois (Hayama et al., 2007). Interestingly, an SD dark
period leads to loss of spectrophotometrically detectable
PHY Pfr in P. nil after 1–2 h (King et al., 1978). Thus,
a reduction in the level of Pfr, either in darkness in SD
species or with an FR exposure in LD species, leads to FT
up-regulation. There is complexity yet to be explained for
P. nil where FT expression is not related simply to that of
CO (Hayama et al., 2007). It is also unclear why an SD
plant does not up-regulate FT in LD, and vice versa for an
LD response type.

Supplementary material

Supplementary Figures S1–S6 may be found at JXB
online.
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