
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Nov. 2008, p. 6806–6807 Vol. 74, No. 21
0099-2240/08/$08.00�0 doi:10.1128/AEM.01047-08
Copyright © 2008, American Society for Microbiology. All Rights Reserved.

Simple and Safe Method for Simultaneous Isolation of Microbial RNA
and DNA from Problematic Populations�

Simon McIlroy, Kate Porter, Robert J. Seviour, and Daniel Tillett*
Biotechnology Research Centre, La Trobe University, Bendigo, Victoria, Australia

Received 9 May 2008/Accepted 29 August 2008

We describe a novel, rapid, and safe method for extracting RNA and DNA from refractory microbes, which
avoids the use of phenol or chloroform. It has been used successfully to isolate high-quality nucleic acids from
pure cultures and environmental populations known to resist widely used extraction protocols.

Critical to the success of culture-independent analyses of
natural communities is the extraction of high-quality nucleic
acids (2, 16). Although often ignored, the method used for
RNA/DNA extraction can be an important source of bias, as
only organisms susceptible to the method selected are detect-
able (16). In some instances, the choice of inappropriate meth-
ods may result in even the dominant microbial populations
being missed in subsequent analyses (1, 12, 17, 18). To
overcome this problem, laborious and hazardous protocols
requiring phenol and chloroform combined with physical
disruption such as bead beating have been used (4, 7, 11).
Here we describe a rapid and safe method for the coextrac-
tion of RNA and DNA that avoids the use of enzymes,
chloroform, or phenol.

Our method employs the strongest known chaotrophic
agent, sodium trichloroacetate (NaTCA) (8). NaTCA was used
by Summerton et al. (15) to isolate plasmid DNA but to our
knowledge has never been used to extract nucleic acids from
natural microbial communities. We reasoned that NaTCA in
combination with physical disruption may provide high-quality
DNA and RNA from difficult samples without the need for
phenol or chloroform.

Our optimized method is as follows. A stock solution of 4.5
M NaTCA is prepared according to the method of Summerton
et al. (15). Briefly, sufficient sterile distilled water is added to
367.63 g TCA to allow its magnetic stirring on ice. Ten molar
NaOH is added slowly, dropwise (ensuring that the solution
remains below 50°C), until the pH is �7. The final volume is
adjusted to 500 ml (4.5 M NaTCA) with water and stored at
�70°C, as NaTCA degrades at 4°C. Cell biomass (10 to 15 mg)
is collected by centrifugation (4,000 � g for 10 min at 4°C) in
standard 2-ml microcentrifuge tubes, and the supernatant dis-
carded. The pelleted biomass is resuspended in 1.5 ml TCA
lysis buffer (3 M NaTCA, 50 mM Tris-HCl, pH 8.0, 15 mM
EDTA, pH 8.0, 1% [wt/vol] N-lauroylsarcosine, 1% [wt/vol]
polyvinylpyrrolidone, 10 mM dithiothreitol), and 0.6 g Ballotini
beads (0.1 mm) are added. Samples are homogenized with a
bead beater (Biospec, Bartlesville, OK) at maximum speed for
1 to 3 min. The optimal beating time is chosen based on the

yield and integrity of nucleic acids as assessed by their appear-
ance on agarose electrophoresis gels (Fig. 1). A time of 3 min
was selected here for activated sludge samples based on suc-
cessful isolation and PCR of DNA from cluster II Defluviicoc-
cus organisms. Samples are centrifuged (14,000 � g for 5 min
at 4°C) to remove cell debris, and supernatants carefully trans-
ferred to new 1.5-ml microcentrifuge tubes containing 0.6 vol-
ume of 2-propanol. After being mixed, the samples are incu-
bated on ice (20 min) to precipitate nucleic acids. The tubes
are centrifuged for 20 min at 14,000 � g, the supernatants
removed, and the pellets washed two times with 70% ethanol,
air dried for 10 min, and resuspended in 40 �l of TE buffer (10
mM Tris-HCl, 1 mM EDTA, pH 8.0).

This method isolated DNA and RNA simultaneously from a
range of gram-negative and -positive bacteria, including Esch-
erichia coli, Pseudomonas aeruginosa, Micrococcus luteus, Ba-
cillus subtilis, Mycobacterium phlei, and Mycobacterium smeg-
matis, the latter two being recalcitrant acid-fast organisms.
Bead beating was essential for gram-positive strains but proved
to be optional for gram-negative strains (Fig. 1). Some DNA
pellets were gelatinous, resulting possibly from high levels of
polymeric material present in some biomasses (13). Our at-
tempts to avoid this by modifying the precipitation protocol
proved unsuccessful. However, gelatinous material could be
removed by resuspending the nucleic acids (20 min at 37°C or
4°C overnight), centrifuging for 30 s, and transferring the su-
pernatants to fresh tubes.

This method was also tested on complex samples from four
phosphorus-removing activated-sludge plants (two laboratory
scale and two full scale). Initial difficulties were encountered in
disrupting the large flocs present due to foaming during the
bead beating step. This was overcome by incorporating a sili-
cone-based antifoam (1.67% [vol/vol]) (product no. 1520-US;
Dow Corning) in the lysis buffer. Nucleic acids isolated by this
method proved sufficiently free of inhibitory substances for
successful performance of PCR, reverse transcription-PCR,
real-time PCR, and restriction digestion (data not shown).
When samples were incubated for 2 h at 37°C in 1� EcoRI
restriction enzyme buffer (Roche, Basel, Switzerland), no
DNase activity was detected (data not shown). Furthermore, a
comparison of the results of our method with those of eight
different published methods and kits developed for difficult
environmental samples showed equal or better DNA and RNA
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yields (S. McIlroy, K. Porter, S. Schroeder, R. J. Seviour, and
D. Tillett, unpublished data).

Real-time PCR data (McIlroy et al., unpublished) confirmed
that this protocol extracted DNA from “Candidatus Accumu-
libacter phosphatis” and Defluviicoccus-related organisms,
both of which can form heavily capsulated clustered cells.
Their RNA has been difficult to recover in 16S rRNA gene
clone libraries (1, 12). Semiquantitative fluorescence in situ
hybridization analyses of these populations (6) gave data that
corresponded well with data obtained by quantitative PCR,
suggesting that our method does not introduce significant ex-
traction bias. Real-time PCR results for Defluviicoccus-related
organisms were 11.4% � 2.8% (mean � standard error) of
total 16S rRNA genes and for “Candidatus Accumulibacter
phosphatis” were 66.3% � 14.4%. The universal primers used
were 1492R and 1369F (10); the primers for Defluviicoccus
were 518F (14) and DEF1020R (12); and the primers for
“Candidatus Accumulibacter” were PAO462F and PAO651R
(5). Semiquantitative fluorescence in situ hybridization results
for Defluviicoccus-related organisms showed that 4.1% � 0.6%
of the total biovolume hybridizing with the EUBmix probes
(5a) also hybridized with the DF1020 probe (12) and that
67.7% � 3.0% hybridized with the PAOmix probes designed to
target “Candidatus Accumulibacter phosphatis” (5, 19). Fur-
thermore, comparisons with a range of phenol-based extrac-
tion methods (3, 4, 7, 11) with activated-sludge samples showed
that our method was equal to or better than these as assessed
by PCR targeting the same problematic populations (McIlroy
et al., unpublished). Increased safety and a reduced number of
pipetting steps make the method suitable for high-throughput
analysis. Consequently, it should prove valuable in molecular
microbial ecology where current extraction protocols can fail
to recover sequences from recalcitrant populations in clone
libraries (1, 9, 12, 16).
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FIG. 1. Gel electrophoresis (1% agarose, 1� TAE) of the total
nucleic acid extracted from different organisms using the NaTCA
method (2.5-�l load). Lanes: M, 1-kb DNA ladder (catalog no. G5711;
Promega); 1, E. coli (no bead beating); 2, P. aeruginosa (no bead
beating); 3, M. luteus (1 min of bead beating); 4, B. subtilis (1.5 of min
bead beating); 5, M. phlei (1 min of bead beating); 6, M. smegmatis (1
min of bead beating); 7, aerobic laboratory scale reactor (3 min of bead
beating).
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