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Abstract
Automatic multi-modal image registration is central to numerous tasks in medical imaging today and
has a vast range of applications e.g., image guidance, atlas construction, etc. In this paper, we present
a novel multi-modal 3D non-rigid registration algorithm where in 3D images to be registered are
represented by their corresponding local frequency maps efficiently computed using the Riesz
transform as opposed to the popularly used Gabor filters. The non-rigid registration between these
local frequency maps is formulated in a statistically robust framework involving the minimization
of the integral squared error a.k.a. L2E (L2 error). This error is expressed as the squared difference
between the true density of the residual (which is the squared difference between the non-rigidly
transformed reference and the target local frequency representations) and a Gaussian or mixture of
Gaussians density approximation of the same. The non-rigid transformation is expressed in a B-spline
basis to achieve the desired smoothness in the transformation as well as computational efficiency.

The key contributions of this work are (i) the use of Riesz transform to achieve better efficiency in
computing the local frequency representation in comparison to Gabor filter-based approaches, (ii)
new mathematical model for local-frequency based non-rigid registration, (iii) analytic computation
of the gradient of the robust non-rigid registration cost function to achieve efficient and accurate
registration. The proposed non-rigid L2E-based registration is a significant extension of research
reported in literature to date. We present experimental results for registering several real data sets
with synthetic and real non-rigid misalignments.

1 Introduction
Image registration is a central algorithm to many image processing tasks and has a vast range
of applications including, but not limited to, medical image analysis, remote sensing, optical
imaging, etc. In this section, we will briefly review existing algorithms reported in literature
for achieving multi-modal registration. We will point out their limitations and hence motivate
the need for a new and efficient computational algorithm for achieving our goal.

1.1 Previous work
Image registration methods in literature to date may be classified into feature-based and
“direct” methods. Most feature-based methods are limited to determining the registration at
the feature locations and require an interpolation at other locations. If however, the
transformation/registration between the images is a global transformation e.g., rigid, affine etc.
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then, there is no need for an interpolation step. However, in the case of a non-rigid
transformation, it is necessary to interpolate. Also, the accuracy of the registration is dependent
on the accuracy of the feature detector.

Several feature-based methods involve detecting surfaces landmarks [1], edges, ridges etc. (see
[2] for references). Most of these assume a known correspondence with the exception of the
work in Chui et.al., [1]. Work reported in Irani et.al., [3] uses the energy (squared magnitude)
in the directional derivative image as a representation scheme for matching achieved using the
SSD cost function. Recently, Liu et.al., [4] reported the use of local frequency in a robust
statistical framework using the integral squared error a.k.a., L2E. The primary advantage of
L2E over other robust estimators in literature is that there are no tuning parameters in it. The
idea of using local phase was also exploited by Mellor et. al., [5], who used mutual information
(MI) to match local-phase representation of images and estimated the non-rigid registration
between them. However, robustness to significant non-overlap in the field of view (FOV) of
the scanners was not addressed. For more on feature-based methods, we refer the reader to the
survey by Maintz et.al., [2].

In the context of “direct” methods, the primary matching techniques for intra-modality
registration involve the use of normalized cross-correlation, modified SSD, and (normalized)
mutual information (MI). Recently, Roche et.al., [6] developed a correlation ratio based
algorithm for registering MR scans with ultra-sound images. The results presented were quite
impressive however, the issue of robustness to variations in the FOVs of the scanners was not
adequately addressed. Direct methods such as, variants of optical flow-based registration that
accommodate for varying illumination maybe used for inter-modality registration and we refer
the reader to [7,8] for such methods. Guimond et. al., [9] reported a multi-modal brain warping
technique that uses Thirion’s Demons algorithm [10] with an adaptive intensity correction.
The technique however was not tested for robustness with respect to significant non-overlap
in the FOVs.

A popular “direct” approach is based on the concept of maximizing mutual information (MI)
pioneered by Viola and Wells [11] and Collignon et al., [12] and modified in Studholme et al.,
[13]. Reported registration experiments in these works are quite impressive for the case of rigid
motion. In [14], Studholme et.al., presented a normalized MI scheme for matching multi-modal
image pairs misaligned by a rigid motion. Normalized MI was shown to cope with image pairs
not having exactly the same FOV, an important and practical problem. The problem of being
able to handle non-rigid deformations in the MI framework is a very active area of research
and some recent papers reporting results on this problem are [5,15–19]. Computational
efficiency and accuracy (in the event of significant non-overlaps) are issues of concern in all
the MI-based non-rigid registration methods.

1.2 Overview of Proposed Registration Method
In this paper, we develop a multi-modal registration technique which is based on a local
frequency representation of the image data. A local frequency image representation can be
obtained by filtering the image with Gabor filters and then computing the gradient of the phase
of the filtered images. As an alternative to the Gabor filter, we use the Riesz transform (see
section (2), which is computationally more efficient. Once, we compute this local frequency
representation for each of the two (source and target) images to be registered, we are ready to
find the registration transformation which will best match these representations. Several
matching criteria may be defined and we developed a statistically robust measure called the
L2E defined as the squared difference between the true density of the residual — defined as
the squared difference between the transformed source and the target local frequency
representations — and a Gaussian density approximation of the same. This matching criteria
is minimized over a class of smooth transformations expressed in a B-spline basis. The
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algorithm we have developed is well suited for situations where the source and target images
have FOVs with large non-overlapping regions (which is quite common in practise). This
formulation leads to a nonlinear cost function whose optimization yields the desired non-rigid
registration. Several experiments with synthetic and real 3D data sets are presented to depict
the performance of our algorithm.

Rest of the paper is organized as follows: in section 2.1, we present the local frequency
computation using the Riesz transform and section 2.2 contains the details of our model for
matching the local frequency representations. In section 2.3, we present the numerical
algorithm and section 3 contains the experimental results on 2D/3D medical image data sets.
Finally, we conclude in section 4.

2 Proposed Registration Method
2.1 Computing Local Frequency using Riesz Transform

For multi-modal image registration, the relation between the brightness of the corresponding
pixels is usually complicated: multiple intensity values in one modality image may map into
single intensity in another modality; image feature existing in one image may not have
correspondence in the other image, etc. However, multi-modal image data, acquired either with
different sensors, or with the same sensor, mainly differ in the low frequency components.
High frequency components, on the other hand, normally correspond to the physical structure
of the object being imaged, and thus are good at expressing the commonality existing within
the multi-sensor image pair. In the local frequency representation on which our algorithm is
based, edges and ridges will have high values (since they are associated with high frequency
components) and will be the dominant features for the matching stage.

In 1-D case, the local (instantaneous) frequency is well defined as the rate of change in phase
of analytical signal obtained by Hilbert transform. However, the estimation of local frequency
for higher dimensional images is still an important and open problem in the field of signal
processing and computer vision. Quadrature filters are widely used as an approach to
computing local phase and frequency in an image.

In this work, we present a novel formulation for computing the local-frequency using the Riesz
transform which can be regarded as a generalization of the Hilbert transform in higher
dimension. The key feature of this formulation is the fact that unlike the Gabor filter based
technique, we do not need a bank of filters for computing the local frequency representation.
A 3-D generalization of the Hilbert transform may be obtained by the vector sum of 3 Riesz
transforms:

(1)

where I(x, y, z) is the given 3D image and u = (u1, u2, u3)T is the spatial frequency vector, ek
is the unit vector in the direction of the kth coordinate axis, and F is the Fourier transform
operator. This may be rewritten as:

(2)

After some detailed analysis [20], it is possible to show that the righthand side of equation (2)
can be approximated as:

(3)
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where ωk(x, y, z) is the kth component of the local frequency. The frequency magnitude may
therefore be estimated as:

(4)

where H3 is computed using (1). In order to make this approximation less sensitive to noise,
we use a smoothing operator on both the computation of the ▽I and H3. It should be remarked
that a precise computation of ▽I is crucial for the correct approximation of |ω|; the best results
are obtained when this computation is performed in the frequency domain.

In this way, the estimation of |ω| requires one forward 3-D Fourier transform and 6 inverse 3-
D Fourier transforms, plus 2 separable 3-D convolutions. This can be done in O(NlogN) time,
where N is the number of voxels in the image. In comparison, the Gabor filter bank requires
O(4Nm3k) time — where, m3 is the convolution kernel size and k is the number of filters. In
our implementation m3 >> logN. Additional advantages of our approach accrue in the form of
storage savings since, there is a large storage requirement in the Gabor filter-based approach
described in Liu et al., [4] to keep the responses of a large filter bank at each lattice point for
computing the max. local freq. response. No such filterbanks are used in our approach for
computing the local frequency response.

Our current implementation uses FFTW3 package which is a very efficient implementation.
Even for 3D volumes (210 × 210 × 120), the computation can be done in 1 minute, under a
Linux system running on a PC equipped with a 2.6GHZ Pentium4. Figure (1) illustrates two
examples of computed local frequency in 2D for two T1 and T2 slices obtained from BrainWeb
[21]. Note the richness of the structure in the representation.

2.2 Matching Local Frequency Representations
Let I1 and I2 be two images to be registered, and assume the deformation field from I1 to I2 is
u = u(x), i.e. the point x in I1 corresponds to the x + u(x) in I2. Denote by F1 and F2 the local
frequency representations corresponding to I1 and I2 respectively. The corresponding local
frequency constraint is given by

(5)

where J(u) is the Jacobian matrix of deformation field.

Note the above equation holds for the vector-valued frequency representation. However,
experiments show that the vector-valued representation is much more sensitive to the noise
than the magnitude of frequency and the Jacobian matrix term makes the numerical
optimization computationally expensive. Applying Mirsky’s theorem from matrix perturbation

theory [22] which states  where  is the difference in the
singular values between the perturbed matrix (I + J(u)T) and I, and imposing the regularization

condition that J(u) is small, we can approximate the  to get the
following simplified form:

(6)

where ||·|| gives the magnitude of local frequency.
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Instead of the popular SSD approach, we develop a statistical robust matching criterion based
on the minimization of the integral squared error(ISE) or simply L2E between a Gaussian model
and the true density function of the residual. Traditionally, the L2E criterion originates in the
derivation of the nonparametric least squares Cross-validation algorithm for choosing the
bandwidth h for the kernel estimate of a density and has been employed as the goodness-of-fit
criterion in nonparametric density estimation. Recently, Scott [23] exploited the applicability
of L2E to parametric problems and demonstrated its robustness behavior and nice properties
of practical importance.

In the parametric case, given the r.v. ∊ from (6) with unknown density g(∊), for which we
introduce the Gaussian model f(∊|θ), we may write the L2E estimator as

(7)

Simply expand above equation and notice the fact that  does not depend on θ and
 is the so called expected height of the density which can be

approximated by the estimator , hence the proposed estimator minimizing the
L2 distance will be

(8)

For Gaussian distributions, we have closed form for the integral in the bracketed quantity in
(8) and hence can avoid numerical integration which is a practical limitation not only in
computation time but also in accuracy. Thus, we get the following criterion L2E(u, σ) from (8)
for our case,

(9)

Equation (9) differs from the standard SSD approach in that the quadratic error terms are
replaced by robust potentials (in this case, inverted Gaussians), so that the large errors are not
unduly overweighed, but rather are treated as outliers and given small weight.

Generally, a regularization term is needed for nonrigid registration problem to impose the local
consistency or smoothness on the deformation field u. In case u is assumed to be differentiable,
this regularization term could be defined as a certain norm of its Jacobian J(u). For simplicity,

the Frobenius norm of Jacobian of deformation field  is used here. Altogether, the
proposed non-rigid image registration method is expressed by the following optimization
problem:

(10)

where λ is the Lagrange multiplier and σ is the parameter controlling the shape of the residual
distribution modelled by a zero mean Gaussian ϕ(x|0, σ). Unlike other robust estimators, this
shape parameter σ need not be set by the user, but rather it is automatically adjusted during the
numerical optimization. Deformation field u, in this work, is expressed for computational
efficiency, by a B-Spline model controlled by a small number of displacement estimates which
lie on a coarser control grid.
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2.3 Numerical Implementation
The numerical implementation is achieved using nonlinear optimization techniques to solve
equation (10). In our current implementation, we handle the minimization over σ and u
separately. At each step, the σ is the minimizer of the L2 distance between the true density and
model density of residual distribution given fixed u. A zero vector is used as the initial guess

for u. In each iteration, we evaluate the gradient of  with respect
to each of the parameters in u using analytical formulae which can be computed in laboratory
frame:

(11)

(12)

where

is the frequency magnitude error at pixel i,

is the spatial gradient of (||F1||). Then, a block diagonal matrix is computed as approximation
of Hessian matrix by leaving out the second-derivative terms and observing that the overall
Hessian matrix is sparse multi-banded block-diagonal. Finally, a preconditioned gradient
descent technique is used to update the parameter estimates. In this step, an accurate line search
derived by Taylor approximation is performed.

The numerical optimization approach is outlined as follows:

- Set i = 0 and give an initial guess for deformation field u0;

- Gaussian fitting: σi = arg min L2E(ui σ), this step involves a quasi-Newton nonlinear
optimization;

- Update deformation estimates: ui+1 = ui+△u, this step involves a preconditioned gradient
descent method close to that used by [7];

- Iterate: i = i + 1

- Stopping criteria: 

3 Experimental Results
In this section we present three sets of experiments. The first set constitutes of a 2-D example
to depict the robustness of L2E. The second set contains experiments with 2-D MR T1- and
T2- weighted data obtained from the Montreal Neurological Institute database [21]. The data
sets were artificially misaligned by known non-rigid transformations and our algorithm was
used to estimate the transformation. The third set of experiments was conducted with 3-D real
data for which no ground truth was available.

3.1 Robustness Property of the L2E Measure
In this section, we demonstrate the robustness property of L2E and, hence, justify the use of
the L2E measure in the registration context.
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In order to depict the robustness property of L2E, we designed a series of experiments as
follows: with a 2-D MR slice as the source image, the target image is obtained by applying a
known nonrigid transformation to the source image. Instead of matching the original source
image and transformed image, we cut more than 1/3 of the source image (to simulate the affect
of significant non-overlap in the FOVs), and use it and the transformed image as the input to
the registration algorithms. Figure 2 depicts an example of this experiment. In spite of missing
more than 33% of one of the two images being registered, our algorithm yields a low average
error of 1.32 and a standard deviation of 0.97 in the estimated deformation field over the uncut
region. The error here is defined by the magnitude of the vector difference between ground
truth and estimated deformation fields. For comparison purposes, we also tested the MI and
the SSD method on the same data set in this experimental setup. The nonrigid mutual
information registration algorithm was implemented following the approach presented in
[24]. And in both the MI and SSD method, the nonrigid deformations are modeled by B-Splines
with the same configuration as in our method. However, both the MI and the SSD method fail
to give acceptable results due to the significant non-overlap between the data sets.

3.2 Inter-modality Registration
For problem of inter-modality registration, we tested our algorithm on two MR-T1 and -T2 2D
image slices from the BrainWeb site [21] of size 181 × 217. These 2 images are originally
aligned with each other and are shown in Figure (1) as well as their corresponding local
frequency maps computed via the application of the Riesz transform described earlier. In this
experiment, a set of synthetic nonrigid deformation fields were generated using four kinds of
kernerl-based spline representations: cubic B-spline, elastic body spline, thin-plate spline and
volume spline. In each case, we produced 15 randomized deformations where the possible
values of each direction in deformation vary from -15 to 15 in pixels. The left half of Table 1
shows the statistics of the difference between the ground truth and estimated deformation fields.
For purpose of comparison, in this setup we also tested the nonrigid mutual information
registration algorithm which was used in the previous experiment. As shown in the right half
of Table 1, MI-based nonrigid registration produces almost same accuracy in the results as our
method for this fully overlapped data sets. However, the strength of our technique does not lie
in registering image pairs that are full overlapped. Instead, it lies in registering data pairs with
significant non-overlap, as shown in Figure 2. Figure 3 shows plots of the estimated B-Spline
deformation along with the ground truth as well as the cumulative distribution of the estimated
error. Note that the error distribution is mostly concentrated in the small error range indicating
the accuracy of our method.

3.3 3D Data Example
To conclude our experimental section, we show results on a 3D example for which no ground
truth deformations are available. The data we used in our experiments is a pair of MR images
of brains from different rats. The source image is (46.875 × 46.875 × 46.875) micron resolution
with the field of view (2.4 × 1.2 × 1.2cm), while the target is 3D diffusion-weighted image
with (52.734 × 52.734 × 52.734) micron resolution with the field of view (2.7 × 1.35 ×
1.35cm). Both the images have the same acquisition matrix (256 × 512 × 256).

Figure 4 shows the registration results for the dataset. As is visually evident, the misalignment
has been fully compensated for after the application of the estimated deformation. The
registration was performed on reduced volumes (128 × 128 × 180) which took around 10
minutes to obtain the results illustrated in figure 4 with the control knots placed every 16 × 16
× 16 voxels by running our C++ program on a 2.6GHZ Pentium PC. Validation of non-rigid
registration on real data with the aid of segmentations and landmarks obtained manually from
a group of trained anatomists are the goals of our ongoing work.
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4 Conclusions
In this paper, we presented a novel algorithm for non-rigid 3D multi-modal registration. The
algorithm used the local frequency representation of the input data and applied a robust
matching criteria to estimate the non-rigid deformation between the data. The key contributions
of this paper lie in, (i) efficient computation of the local frequency representations using the
Riesz transform, (ii) a new mathematical model for local-frequency based non-rigid
registration, and (iii) the efficient estimation of 3D non-rigid registration between multi-modal
data sets possibly in the presence of significant non-overlapping between the data. To the best
of our knowledge, these features are unique to our method. Also the robust framework used
here namely, the L2E measure, has the advantage of providing an automatic dynamic
adjustment of the control parameter of the estimator’s influence function. This makes the
L2E estimator robust with respect to initializations. Finally, we presented several real data (with
synthetic and real non-rigid misalignments) experiments depicting the performance of our
algorithm.
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Fig. 1.
Left: a pair of T1 and T2 images; Right: their corresponding local frequency maps
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Fig. 2.
Depiction of the robustness property of the L2E measure. From left to right: (a): a 2-D MR
slice of size 257 × 221; (b): the source image obtained from (a) by cutting the top third of
image; (c): transformed (a) serving as the target; (d) warped source image with the estimated
deformation.

Jian et al. Page 11

Inf Process Med Imaging. Author manuscript; available in PMC 2008 November 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
From left to right: the ground truth deformation field; the estimated deformation field; the
cumulative distribution of the estimated error in pixels.
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Fig. 4.
Nonrigid registration of an MR-T1 & MR-DWI mouse brain scan. Left to Right: an arbitrary
slice from the source image, a slice of the transformed source overlayed with the corresponding
slice of the edge map of the target image and the target image slice.
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