
Impaired Autoimmune T Helper 17 Cell Responses
Following DNA Vaccination against Rat Experimental
Autoimmune Encephalomyelitis
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Abstract

Background: We have previously shown that vaccination with DNA encoding the encephalitogenic peptide myelin
oligodendrocyte glycoprotein (MOG)91–108 (pMOG) suppresses MOG91–108-induced rat Experimental Autoimmune
Encephalomyelitis (EAE), a model for human Multiple Sclerosis (MS). The suppressive effect of pMOG is dependent on
inclusion of CpG DNA in the plasmid backbone and is associated with early induction of Interferon (IFN)-b.

Principal Findings: In this study we examined the mechanisms underlying pMOG-induced protection. We found that in the
DNA vaccinated cohort proinflammatory Interleukin (IL)-17 and IL-21 responses were dramatically reduced compared to in
the control group, but that the expression of Foxp3 and Tumor Growth Factor (TGF)-b1, which are associated with
regulatory T cells, was not enhanced. Moreover, genes associated with Type I IFNs were upregulated. To delineate the role
of IFN-b in the protective mechanism we employed short interfering RNA (siRNA) to IFN-b in the DNA vaccine. SiRNA to IFN-
b completely abrogated the protective effects of the vaccine, demonstrating that a local early elaboration of IFN-b is
important for EAE protection. IL-17 responses comparable to those in control rats developed in rats injected with the IFN-b-
silencing DNA vaccine.

Conclusions: We herein demonstrate that DNA vaccination protects from proinflammatory Th17 cell responses during
induction of EAE. The mechanism involves IFN-b as IL-17 responses are rescued by silencing of IFN-b during DNA
vaccination.
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Introduction

Experimental Autoimmune Encephalomyelitis (EAE) is an

animal model for the human autoimmune demyelinating disease

Multiple Sclerosis (MS) [1]. Vaccination with DNA encoding

myelin peptides suppresses EAE following induction with the

corresponding peptide in an antigen (Ag)-specific manner [2–6].

Vaccination with DNA encoding myelin oligodendrocyte glycopro-

tein (MOG)91–108, pMOG, suppresses clinical signs of EAE and is

associated with enhanced IFN-b expression, but MOG-specific Th1

or Th2 cell responses are not altered by pMOG vaccination [3,7].

It has been shown that inclusion of CpG DNA within the

plasmid backbone of DNA vaccines has adjuvantic properties.

CpG DNAs are non-coding and unmethylated CpG motifs within

the context of certain flanking bases in bacterial DNA recognized

by Toll-like receptor (TLR)9 [8]. TLR9 is constitutively expressed

by plasmacytoid dendritic cells (pDC) and facilitates promotion of

innate immunity and type I interferon (IFN) production [8]. In

pDC the adaptor molecule MyD88 binds interferon-regulatory

factor-7 (IRF-7) directly, which results in high type I IFN

production following TLR9 ligation, whereas ligation of TLR9

in macrophages, B cells and murine myeloid dendritic cells (mDC)

leads to activation of NF-kB [9,10]. Treatment with a DNA

vaccine containing CpG DNA suppresses clinical signs of EAE in

rats whereas a corresponding DNA vaccine lacking CpG DNA has

no effect [3,7,11]. Thus the presence of CpG DNA is decisive for

protective DNA vaccination against EAE.

Conversely, Ishii et al recently reported a TLR-independent,

TANK-binding kinase-1 (TBK-1)-dependent, activation of innate

and adaptive immune responses to viral proteins following DNA
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vaccination [12]. Plasmid DNA is a double-stranded B form of

DNA which is recognized by an unknown sensor which signals via

TBK-1 to induce IFN-b expression and NF-kB activation [12].

EAE was previously thought to be a purely IL-12-driven T

helper (Th)1-mediated autoimmune disease [13]. However,

interleukin (IL)-23 rather than IL-12 has been reported to be the

critical cytokine for EAE development [14] driving encephalito-

genic IL-17-producing Th cells designated Th17 [15]. Naı̈ve CD4

T cells differentiate into Th17 cells in the presence of IL-6 and

tumor growth factor (TGF)-b in vitro and are maintained by IL-23

[16]. It has recently been demonstrated that in fact the Th17:Th1

ratio of infiltrating T cells determines where inflammation occurs

in the CNS. T cell infiltration and inflammation in the brain only

occurs when Th17 cells outnumber Th1 cells. In contrast, T cells

showing a wide range of Th17:Th1 ratios induce spinal cord

parenchymal inflammation [17].

In the present study the molecular mechanisms underlying

DNA vaccine-mediated protection in a rat EAE model were

investigated. We demonstrate that DNA vaccination downregu-

lates Ag-specific Th17 cell responses, and that the suppressive

capability of the DNA vaccine can be abrogated by silencing IFN-

b using short-interfering RNA (siRNA).

Results

IL-17 and IL-21 expression is abolished in central nervous
system (CNS)-derived lymphocytes from DNA vaccinated
rats

In our hands alterations in MOG91–108-specific Th1, Th2 or IL-

10-producing regulatory T cell responses do not correlate with

protection induced through DNA vaccination [3,7]. However,

Th17 cell responses have never been investigated in this system.

We therefore examined the expression of proinflammatory

cytokines which are expressed by Th17 cells following DNA

vaccination. We used real-time quantitative RT-PCR (Q-PCR) to

measure expression because anti-rat intracellular Abs are yet not

available.

We started by examining if DNA vaccination itself induces

Th17 cell responses in vivo. Splenocytes from DA rats treated

respectively with DNA vaccines encoding MOG91–108, pMOG, or

a control plasmid, pCI, 3 wk after DNA vaccination–but before

EAE challenge - were cultured with MOG91–108 for 48 h to

reactivate Ag-specific T cells. CD3+ T cells were subsequently

isolated from the cultures. We failed to detect any IL-17 or IL-21

from T cells isolated from pMOG-vaccinated rats (data not

included), which demonstrates that pMOG vaccination does not

induce Th17 cell responses.

Thereafter, cytokine expression was assessed in splenocytes from

pMOG- or pCI-treated rats during the peak of disease.

Splenocytes were isolated on d 9 after MOG91–108 immunization

and cultured for 48 h with or without MOG91–108. Ag-specific IL-

17 mRNA expression was much lower in splenocytes from

pMOG-vaccinated rats compared to in controls (p,0.01) (Fig. 1A).

Expression of cytokines relevant for Th17 cell differentiation such

as IL-21 (Fig. 1A), IL-6 and IL-1b (data not included) did not differ

between the groups. In concordance with our previous findings

[3,7,11] the expression of the Th1 cytokine IFN-c and the anti-

inflammatory cytokine IL-10 were similar in pMOG and pCI

treated rats (data not included).

To confirm reduced IL-17 expression in Th17 cells, splenocytes

from pMOG- or pCI-treated rats were isolated on d 11 after

MOG91–108 immunization and cultured for 48 h with or without

MOG91–108. CD3+CD4+ Th cells were subsequently sorted by

flow cytometry. The IL-17 mRNA expression was lower in

Figure 1. Impaired Th17 cell responses after pMOG vaccina-
tion. (A) Mean IL-17 and IL-21 mRNA expression in splenocytes after
48 h culture with medium (No Ag) or MOG91–108 (MOG) isolated from
pMOG- or pCI-treated rats, respectively, 9 d after MOG91–108 immuni-
zation (n = 6/group). Data are representative of two separate experi-
ments. All values are normalized to 18s rRNA. (B) Mean IL-17 and IL-21
mRNA expression in sorted CD3+CD4+ Th cells from spleen. Splenocytes
were sorted after 48 h culture with medium (No Ag) or MOG91–108

(MOG) isolated from pMOG- or pCI-treated rats (n = 7/group) 11 d after
MOG91–108 immunization. All values are normalized to GAPDH mRNA.
(C) Mean IL-17 and IL-21 mRNA expression in CNS-derived lymphocytes
isolated from pMOG- or pCI-treated rats (n = 5/group) at 11 d after
MOG91–108 immunization. All values are normalized to GAPDH mRNA.
Bars represent mean values. * p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0003682.g001

DNA Vaccination against EAE

PLoS ONE | www.plosone.org 2 November 2008 | Volume 3 | Issue 11 | e3682



pMOG-treated rats compared to pCI-treated controls (Fig. 1B)

(p = 0.09). IL-21 mRNA expression was undetectable in 6/7 Th

cell samples (Fig. 1B).

Neither IFN-c expression by CNS-derived lymphocytes nor the

degree of inflammation or number of infiltrating lymphocytes

within the CNS are altered by pMOG vaccination [3], but Th17

cell responses have not been investigated to date. We therefore

examined Th17 cell responses in the brain and spinal cord during

peak of disease by measuring IL-17 and IL-21 responses in CNS-

derived lymphocytes isolated from DNA-vaccinated, pMOG-

treated or pCI-treated control rats, respectively. Because infiltra-

tion of pathogenic T cells starts to occur just a few days before rats

exhibit signs of disease, we isolated lymphocytes from the CNS at a

timepoint when all contol rats had severe symptoms of EAE, on d

11 after immunization. Importantly, we observed abolished IL-17

(p = 0.008) and IL-21 (p = 0.008) expression in CNS-derived

lymphocytes from DNA vaccinated rats compared to in controls

(Fig. 1C).

We conclude that although pMOG vaccination does not affect

IFN-c production or lymphocyte infiltration into the CNS, it

dramatically impairs subsequently induced MOG91–108-specific

Th17 cell responses which correlates with protection from disease.

Foxp3 expression is reduced in splenocytes from DNA
vaccinated rats

Induced regulatory T cells (Treg) have been implicated in the

protective mechanism of DNA vaccination against other organ-

specific autoimmune diseases such as murine Experimental

Autoimmune Uveitis [18]. Ag-specific induced TGF-b1-express-

ing, Foxp3+ Treg are primed after exposure of naı̈ve CD4 T cells

to TGF-b1 and Ag presentation in the absence of IL-6 in vitro [19],

and induced Foxp3+ Treg can suppress subsequent Th17 cell

responses [16,20]. IL-10-producing Tregs are not induced by

pMOG vaccination and coinjection of IL-10-coding DNA with a

DNA vaccine does not increase the efficacy of the DNA vaccine

[3,7,11] but Foxp3 expression has never been investigated in this

system. We therefore examined the expression of TGF-b1 and

Foxp3 which are expressed by both natural and induced Treg,

following DNA vaccination.

First we examined if DNA vaccination itself induced Foxp3

mRNA expression in vivo. Splenocytes from pMOG- or pCI-

treated DA rats 3 wk after DNA vaccination – but before EAE

challenge - were cultured with MOG91–108 for 48 h to reactivate

the T cells. CD3+ T cells were subsequently isolated from the

cultures. T cells isolated from pMOG-vaccinated rats expressed

similar amounts of Foxp3 and TGF-b1 as did controls (Fig. 2A).

This demonstrates that pMOG vaccination itself does not increase

the Foxp3 mRNA expression in the spleen.

Splenocytes from pMOG- or pCI-treated rats during the peak

of disease were then analyzed for expression of TGF-b1 and

Foxp3. Splenocytes were isolated on d 9 after MOG91–108

immunization and cultured for 48 h with or without MOG91–

108. Unexpectedly, Foxp3 mRNA expression was lower in MOG-

stimulated splenocytes from pMOG-vaccinated rats compared to

controls (p,0.03) (Fig. 2B). Expression of TGF-b1 (Fig. 2B) did not

differ between the groups.

Finally we measured TGF-b1 and Foxp3 responses in CNS-

derived lymphocytes isolated during peak of disease from DNA

vaccinated, pMOG-treated or pCI-treated control rats, respec-

tively. We failed to observe any altered expression of TGF-b1 or

Foxp3 in CNS-derived lymphocytes from DNA vaccinated rats

compared to controls (Fig. 2C).

Our data suggest that pMOG vaccination may reduce Foxp3

mRNA expression in the periphery.

Figure 2. Reduced Foxp3 mRNA expression after pMOG
vaccination. (A) Mean Foxp3 and TGF-b1 mRNA expression in
MOG91–108-stimulated CD3+ T cells isolated from pMOG- or pCI-treated
rats (n = 5/group) before EAE challenge. (B) Mean Foxp3 and TGF-b1
mRNA expression in splenocytes after 48 h culture with medium (No
Ag) or MOG91–108 (MOG) isolated from pMOG- or pCI-treated rats,
respectively, 9 d after MOG91–108 immunization (n = 6/group). Data are
representative of two separate experiments. All values are normalized
to 18s rRNA. (C) Mean Foxp3 and TGF-b1 mRNA expression in CNS-
derived lymphocytes from pMOG- or pCI-treated rats (n = 5/group) at
11 d after MOG91–108 immunization. All values are normalized to GAPDH
mRNA. Horisontal bars represent mean values. * p,0.05.
doi:10.1371/journal.pone.0003682.g002
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cDNA microarray analysis of spleens from protected DNA
vaccinated rats reveals upregulation of type I IFN-
associated molecules

Inclusion of CpG DNA in the plasmid backbone is required for

efficient DNA vaccination against rat EAE and IFN-b expression

is upregulated following DNA vaccination [3,7,11]. Since we failed

to observe enhanced Foxp3 responses, and because IL-10 and IL-6

expression is not controlled by pMOG vaccination [3], the

molecular mechanisms causing the impaired Th17 cell responses

remained elusive. To identify genes that were regulated by DNA

vaccination we studied the expression profiles of spleens from

LEW.1AV1 rats vaccinated with pMOG or pCI during the peak

of clinical EAE.

Of 6240 genes printed on the array, 3390 genes were detected

in the spleen; 54 transcripts were differentially expressed more

than 1.4 times in DNA vaccinated rats compared to controls.

Eleven genes were significantly upregulated and 43 genes were

significantly downregulated following DNA vaccination (Table 1).

Dataseries GSE1538 is available online at www.ncbi.nlm.nih.gov/

geo. Among the upregulated genes 4/11 have reported immuno-

logical functions. Strikingly, the most upregulated genes are linked

to type I IFN-induced responses and/or are pDC-associated

[9,10,21–25]. A list of the differentially expressed immune system-

related genes is presented in Fig. 3A. Differential expression of

immune related genes was confirmed by Q-PCR (data not

included). The differences between pMOG- and pCI-treated rats

were modest and the number of differentially expressed genes was

low. Most likely, the reason for this is that we compared gene

expression between two MOG91–108 immunized groups and not

between MOG91–108 immunized vs healthy rats. The cDNA

microarray analysis may thus suggest a type I IFN gene signature

in DNA vaccinated rats.

In order to confirm that the genetic profile observed in the

microarray analysis could be an effect of early IFN-b expression in

protected rats we investigated whether the most relevant

upregulated genes observed in the cDNA microarray analysis

could be induced by IFN-b. We applied either IFN-b/GM-CSF or

IL-4/GM-CSF in vitro to differentiate monocytes from LEW.1AV1

rats into pDC-like cells or mDC, respectively [26]. Monocytes

cultured with IFN-b expressed significantly higher mRNA levels of

IRF-7 and Ly6c, markers that were preferentially expressed in

DNA vaccinated rats (Fig. 3B). Other markers associated with

pDC, such as CC chemokine receptor (CCR)-7, TLR9 and IFN

inducible protein (IP)-10, were exclusively expressed in cells

cultured with IFN-b (Fig. 3B). Next we measured the mRNA

expression of these molecules in spleens from pMOG- or pCI-

treated rats during peak of disease. However, we failed to observe

any upregulation of CCR7, TLR9 or IP-10 mRNA expression

(Fig. 3C). In conclusion, DNA vacccinated rats upregulated many,

but not all, of the differentially expressed genes in IFN-b-treated

monocytes.

RNA interference specific for IFN-b inhibits DNA vaccine-
induced protection from EAE

The requirement of CpG DNA for the protective effect to occur

[3], enhanced IFN-b mRNA expression [7] and together with the

gene expression signature thus suggested that early IFN-b is

involved in the protective mechanism following DNA vaccination.

RNA interference was therefore employed to test in vivo if IFN-b is

required during the initiation of the EAE-suppressive immune

response following DNA vaccination. A combined DNA vaccine,

pMOG-IFNbeta, was constructed that not only encoded MOG91–

108 in tandem but also silencing siRNA specific for IFN-b (Fig. 4A).

To exclude any effects of the siRNA per se, a DNA vaccine

containing a scrambled, non-specific siRNA (pMOG-scr), was

constructed. The scrambled siRNA was identical to the specific

siRNA in bp content. We swapped the position of two bp in three

locations to generate the scrambled siRNA. We first tested if

expression of the encephalitogenic peptide MOG91–108 by the

DNA vaccine was affected by siRNA by assessing MOG91–108

protein levels in the supernatants from DNA vaccine-transfected

rat marrow stromal cells [27]. Western blot analyses revealed that

MOG91–108 production was not affected by the siRNA (Fig. 4B).

Next we assessed the silencing capability of the siRNA construct

in pMOG-IFN-beta-, pMOG-Scr- or Mock-transfected spleno-

cytes from untreated DA rats. IFN-b mRNA expression was

induced in cells transfected with pMOG-Scr compared to Mock-

transfected cells (p = 0.05) (Fig. 5A). Importantly, IFN-b mRNA

expression was much lower in cells transfected with pMOG-

IFNbeta compared to cells transfected with pMOG-Scr (p = 0.05)

(Fig. 5A). We then analysed the IFN-b mRNA expression in

splenocytes after 48 h culture with medium or MOG91–108 isolated

from pMOG-, pMOG-IFNbeta- or pCI-treated rats, respectively,

11 d after MOG91–108 immunization. In contrast to pMOG,

pMOG-IFNbeta failed to induce IFN-b mRNA expression in

splenocytes (Fig. 5B). These data suggest that pMOG-IFNbeta

silences IFN-b expression in vitro and in vivo.

pMOG-IFNbeta was then tested in vivo for its ability to suppress

EAE induced with MOG91–108 relative to (a) a DNA vaccine

containing a non-specific siRNA (pMOG-scr), (b) a suppressive

DNA vaccine (pMOG) [3] and (c) a control DNA (pCI). DNA

vaccines and control DNA were injected into LEW.1AV1 rats 3-

to-5 wks before EAE induction with MOG91–108 in CFA.

Treatment with either pMOG-scr or pMOG protected the rats

from EAE compared to pCI-treated controls (Fig. 6, A and C). In

contrast, the DNA vaccine containing siRNA specific for IFN-b
(pMOG-IFNbeta) failed to suppress clinical symptoms of EAE

compared to pCI-treated controls (Fig. 6, B and C). In 4/4

experiments addition of IFN-b-specific siRNA to the DNA vaccine

completely inhibited its disease-suppressive capability. The results

were similar in DA rats (data not included). Thus DNA vaccine-

induced IFN-b is essential for the protective effect to occur.

As the addition of siRNA itself may alter the efficacy of the

pMOG construct we wanted to control for the effect of the non-

specific siRNA encoded by pMOG-scr on the suppressive

capability of the DNA vaccine. EAE progression and severity

was compared between rats that had received the protective DNA

vaccine pMOG with rats that had received pMOG-scr. No

alterations in the mean daily EAE score or the mean accumulated

EAE score could be determined between pMOG and pMOG-scr-

treated rats (Fig. 6C), and this demonstrates that loss of protection

in pMOG-IFNbeta-treated rats is specifically due to silencing of

IFN-b and not due to the construct design.

Impaired IL-17 responses following DNA vaccination are
mediated by IFN-b

pMOG vaccination impaired Ag-specific IL-17 mRNA expres-

sion. To confirm a role for IFN-b during DNA vaccination on

subsequent IL-17 responses we measured the levels of IL-17

protein in supernatants from splenocytes after 24 h, 48 h or 72 h

culture with MOG91–108 isolated from pMOG-, pMOG-IFNbeta-

or pCI-treated DA rats during peak of disease. The levels of IL-17

were strongly reduced in supernatants from pMOG-treated rats

compared to pCI-treated controls after 48 h restimulation with

MOG91–108 (p,0.01) (Fig. 7A). Importantly, the levels of IL-17 in

supernatants from pMOG-IFNbeta-treated rats reached the same

levels as in supernatants from pCI-treated controls after 48 h and

DNA Vaccination against EAE
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Table 1. Differentially expressed genes in DNA vaccinated rats compared to controls.

Accession nra Human Locuslink IDb Gene product
Microarray fold
changec

Cell growth and/or maintenanced

BF281472 3925 stathmin 1/oncoprotein 18 1.4e

AW915624 6517 solute carrier family 2 (facilitated glucose transporter). member 4 1.8

AI070183 26471 p8 protein (candidate of metastasis 1) 21.4

AA900048 3265 v-Ha-ras Harvey rat sarcoma viral oncogene homolog 21.4

AA819611 3486 insulin-like growth factor binding protein 3 21.4

AA858975 7018 Transferrine 21.4

Signal transduction

AW140799 2778 GNAS complex locus 21.4

AW141021 4792 nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor. alpha 21.4

AA818383 5296 phosphoinositide-3-kinase. regulatory subunit. polypeptide 2 (p85 beta) 21.4

AA900722 9351 solute carrier family 9. isoform 3 regulatory factor 2 21.4

Immune response

BF281806 3106 major histocompatibility complex. class I. B 1.6

AA965186 3665 interferon regulatory factor 7 1.7

AW140651 4062 lymphocyte antigen 6 complex. locus H 1.4

AA996885 6363 chemokine (C-C motif) ligand 19 1.6

AA818847 3502 immunoglobulin heavy constant gamma 3 22.5

AW141017 3681 integrin. alpha D 21.7

AW142249 714 complement component 1. q subcomponent. gamma polypeptide 21.4

Response to stress

AA963445 6414 selenoprotein P. plasma. 1 21.7

Organogenesis

NM012862 4256 matrix Gla protein 22.5

AW140758 650 bone morphogenetic protein 2 21.7

Protein metabolism

AW140546 1515 cathepsin L2 21.4

U02553 1843 dual specificity phosphatase 1 21.4

Neurophysiological process

AI045437 4852 neuropeptide Y 21.7

Nucleobase. nucleoside. nucleotide and nucleic acid metabolism

AI385189 5935 RNA binding motif protein 3 21.7

AA819198 6943 transcription factor 21 21.7

Protease inhibitor activity

AI058471 7035 tissue factor pathway inhibitor 1.4

L00091 183 angiotensinogen (serine (or cysteine) proteinase inhibitor 22

AA900912 7078 tissue inhibitor of metalloproteinase 3 21.7

Unassigned

U30789 10628 thioredoxin interacting protein 21.9

AW144812 669 2.3-bisphosphoglycerate mutase 1.5

AW142974 56963 RGM domain family. member A 1.7

J03627 6281 S100 calcium binding protein A10 1.4

AW142371 1073 cofilin 2 (muscle) 21.8

BM986386 55049 hypothetical protein FLJ20850 21.6

AW142696 3416 insulin-degrading enzyme 21.5

M12492 5577 protein kinase. cAMP-dependent. regulatory. type II. beta 21.5

AW142905 115019 solute carrier family 26. member 9 21.4

Comparison of changes in gene expression in DNA vaccinated vs. control rats. Genes significantly differentially expressed as estimated using the significance analysis of
microarray (SAM) technique. a) Genbank accession number. b) Rat gene identities were mapped to human locuslink numbers of orthologous genes for gene
categorization. c) The data are presented as ratios between the levels of test to reference cDNA that is hybridized to spotted DNA. Data represents the mean ratio of 6
arrays. d) Gene categorized using gene ontology annotation program. e) Upregulated genes are highlighted in bold.
doi:10.1371/journal.pone.0003682.t001
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72 h restimulation, and were significantly higher than in

supernatants from pMOG-treated rats after 48 h restimulation

(p,0.05) (Fig. 7A).

IL-17 mRNA expression was higher (p,0.05) in splenocytes

from pMOG-IFNbeta-treated than pMOG-treated rats (Fig. 7B).

However, IL-17 expression in pMOG-IFNbeta-treated rats did

not increase to the levels of pCI-treated rats although the

difference between the groups was not significant (Fig. 7B). Ag-

specific IL-21 expression did not differ between the groups (data

not included). The experiment was repeated twice with the same

results.

Finally we measured IL-17 mRNA expression in CNS-derived

lymphocytes isolated during peak of disease from DNA vaccinated,

pMOG-, pMOG-IFNbeta- or pCI-treated rats, respectively.

Compared to pCI-treated controls, IL-17 mRNA expression was

nearly absent in pMOG-treated rats (p,0.01) (Fig. 7C). The

mRNA expression of IL-17 was twenty times higher in pMOG-

IFNbeta-treated rats compared to pMOG-treated rats, although

the levels did not reach the levels of pCI-treated rats (Fig. 7C). IL-

21 mRNA expression was not induced in pMOG-IFNbeta-treated

rats compared to pMOG-treated rats (data not included).

These data suggest that IFN-b mediates the DNA vaccine-

conferred downregulation of IL-17 responses in the spleen, and is

a likely explaination why pMOG-IFNbeta vaccination does not

protect against EAE. The observed differences between protein

and mRNA levels in splenocytes from pMOG-IFNbeta-treated

rats may be caused by expansion of another cell type during

restimulation in this group which would reduce the mRNA

expression relative to housekeeping genes. This issue can be

specifically addressed as soon as anti-rat IL-17 antibodies for

intracellular staining becomes available.

Because IL-27 has been implicated in the mechanism of IFN-b-

mediated suppression of autoimmunity and Th17 cell responses

Figure 4. (A) Schematic portrayal of pMOG-IFNbeta contruct. A
fragment containing the U6 promoter and siRNA with specificity to
IFN-b was ligated downstream of the MOG91–108 -coding sequence of a
DNA vaccine, pMOG, to form pMOG-IFNbeta. As a control for any
nonspecific effect of siRNA, a non-specific siRNA sequence was ligated
into pMOG to form pMOG-scr. pCI - lacking MOG91–108-coding DNA -
was used as negative control for all DNA constructs. (B) siRNA specific
for IFN-b does not alter the expression of the autoantigen MOG91–108

encoded by the DNA vaccine. Western blot analysis of MOG91–108

expression from marrow stromal cells transfected with either mock,
pMOG, pMOG-scr or pMOG-IFNbeta.
doi:10.1371/journal.pone.0003682.g004

Figure 3. cDNA microarray analysis of DNA vaccinated rats
reveals upregulated type I IFN-regulated genes. (A) Changes in
gene expression of immune system-related genes in pMOG-vaccinated
vs. pCI-vaccinated control rats at 11 d after MOG91–108 immunization
(n = 6/group). Genes significantly differentially expressed as estimated
using the SAM technique, which does not allow for calculations of SD or
SEM. (B) Monocytes cultured with IFN-b upregulate IRF-7, CCR-7, Ly6C,
TLR9 and IP-10 expression. Q-PCR analysis of the mean+/2SEM mRNA
expression of relevant molecules in monocytes cultured with IL-4/GM-
CSF or IFN-b/GM-CSF respectively (n = 4/group). (C) Mean TLR9, CCR-7
and IP-10 mRNA expression in splenocytes isolated from pMOG- or pCI-
treated rats respectively 11 d after MOG91–108 immunization (n = 5/
group). All values are normalized to GAPDH mRNA. Bars represent
mean+/2SEM. * p,0.05.
doi:10.1371/journal.pone.0003682.g003

DNA Vaccination against EAE

PLoS ONE | www.plosone.org 6 November 2008 | Volume 3 | Issue 11 | e3682



[28] we investigated the mRNA expression of IL-27p28 in

MOG91–108-stimulated spenocytes from pMOG-, pMOG-IFN-

beta- or pCI-treated rats. Unexpectedly, we observed reduced IL-

27p28 expression in pMOG-treated mice compared to in pCI-

treated mice (p,0.01) (data not included). This suggests that the

suppressive effect of pMOG is not mediated by IL-27.

Reduced numbers of CD4 Foxp3+ T cells following
pMOG-IFNbeta vaccination

We observed reduced Foxp3 mRNA expression following

pMOG vaccination. To assess CD4 Foxp3+ and CD8 Foxp3+ T

cell responses the frequency of Foxp3+ of total CD4+CD3+ or

CD8+CD3+ T cells was measured by flow cytometry in splenocytes

stimulated with or without MOG91–108 from pMOG-, pMOG-

IFNbeta- or pCI-treated rats during peak of disease (Fig. 8A). The

observed auto fluorescence was caused by the restimulation ex vivo

and could not be further reduced by gating of the cells. The mean

frequency of CD4 Foxp3+ T cells were reduced for all three groups

after restimulation with MOG91–108. This is likely caused by clonal

expansion of Ag-specific Th17 and Th1 cells ex vivo, which reduces

the frequency of other Th cell types. It also suggests that induced,

Ag-specific Treg are not induced following MOG91–108 immuni-

zation. The mean frequency of CD4 Foxp3+ T cells was not

increased in pMOG-treated rats, but was reduced in pMOG-

IFNbeta-treated rats compared to pCI-treated rats (p,0.05)

(Fig. 8B).

The mean frequency of CD8 Foxp3+ T cells was not increased

in either pMOG-treated or pMOG-IFNbeta-treated rats com-

pared to in pCI-treated rats (Fig. 8C). In fact there was a tendency

towards a decreased frequency of CD8 Foxp3+ T cells in both

pMOG- and pMOG-IFNbeta treated rats (Fig. 8B and C).

We then measured Foxp3 mRNA expression in CNS-derived

lymphocytes isolated during peak of disease from pMOG-,

pMOG-IFNbeta- or pCI-treated rats, respectively. Foxp3 mRNA

Figure 6. IFN-b is required for the protective effect to occur
after DNA vaccination against EAE. (A) Mean daily EAE score+/
2SEM (n = 5–8) for pMOG-scr (circles) or pCI (squares), and (B) pMOG-
IFNbeta (triangles) or pCI (squares). (C) Nonspecific siRNA does not
affect the suppressive effect of the DNA vaccine. The mean
accumulated EAE score in pMOG-, pMOG-scr-, pCI- or pMOG-IFNbeta-
treated LEW.1AV1 rats. The mean accumulated EAE score+/2SEM
(n = 5–8/group). Data are representative of four separate experiments
with the same results. A and B depicts the EAE score for rats from the
same experiment. * p,0.05.
doi:10.1371/journal.pone.0003682.g006

Figure 5. siRNA specific for IFN-b silence the mRNA expression
of IFN-b. (A) Mean IFN-b mRNA expression in rat splenocytes 24 h after
transfection with either mock, pMOG-scr or pMOG-IFNbeta (n = 6/
group). All values are normalized to 18S rRNA. (p = 0.05). (B) siRNA
specific for IFN-b dampens the mRNA expression of IFN-b after EAE
challenge. Mean IFN-b mRNA expression in splenocytes after 48 h
culture with medium (No Ag) or MOG91–108 (MOG) isolated from pMOG-
, pMOG-IFNbeta- or pCI-treated rats, respectively, 11 d after MOG91–108

immunization (n = 6/group). All values are normalized to GAPDH mRNA.
Bars represent mean+/2SEM . * p,0.05.
doi:10.1371/journal.pone.0003682.g005
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expression was lower in pMOG-IFNbeta-treated rats compared to

in pCI-treated controls (p,0.05) (Fig. 8D).

Taken together these data suggest a pMOG-IFNbeta-conferred

downregulation of CD4 Foxp3+ T cell responses in the spleen, and

a tendency towards reduced CD4 Foxp3+ T cell responses in

pMOG-treated rats.

Discussion

We have previously studied Th responses subsequent to DNA

vaccination but have been unable to link altered Th1 or Th2

responses to the capability of the DNA vaccine to protect from

EAE development. Herein we report that Th17 cell responses

during the peak of disease are dramatically impaired in DNA

vaccinated rats compared to in controls. This may explain why

DNA vaccination suppresses EAE, since Th17 cells mediate EAE

[15], although Th1 cells also have a role in spinal cord

parenchymal inflammation [17]. The suppressive effect of DNA

vaccination was Th17 cell-specific, as only IL-17 and IL-21

responses were dampened in the CNS, and the expression of other

relevant cytokines such as IFN-c, IL-27, IL-6, IL-1b, TNF, IL-4

and IL-10 were not affected by DNA vaccination [3,7,11]. IL-17

Figure 7. IL-17 responses are rescued by silencing of IFN-b during DNA vaccination. (A) Much lower IL-17 levels in supernatants from
pMOG-vaccinated rats. Mean IL-17 protein levels in supernatants from splenocytes after 24 h, 48 h or 72 h culture with MOG91–108 (MOG) isolated
from pMOG-, pMOG-IFNbeta- or pCI-treated rats, respectively, 11 d after MOG91–108 immunization (n = 7/group). Bars represent mean+/2SEM. (B)
Mean IL-17 mRNA expression in splenocytes after 48 h culture with medium (No Ag) or MOG91–108 (MOG) isolated from pMOG-, pMOG-IFNbeta- or
pCI-treated rats, respectively, 11 d after MOG91–108 immunization (n = 6/group). Data are representative of three separate experiments. All values are
normalized to GAPDH mRNA. (C) Mean IL-17 mRNA expression in CNS-derived lymphocytes isolated from pMOG-, pMOG-IFNbeta- or pCI-treated rats
(n = 7/group) at 11 d after MOG91–108 immunization. All values are normalized to GAPDH mRNA. Bars represent mean values. * p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0003682.g007
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and IL-21 are both expressed by Th17 cells but exert different

functions, IL-17 being thought to be an effector molecule whereas

IL-21 potentiates the Th17 cell response [29,30].

Th17 and induced Foxp3+ Treg cells are activated through

reciprocal mechanisms in vitro [16,20] although further studies on

the activation of these cells in vivo is warranted. The reduced Th17

cell responses reported herein could be caused by enhanced

activation of induced Treg during DNA vaccination. We

unexpectedly recorded a tendency towards reduced numbers of

CD4 Foxp3+ and CD8 Foxp3+ T cells in the spleen following

DNA vaccination compared to in controls during peak of EAE.

Previous studies by us have demonstrated that the frequency of

splenic CD4+CD25+ or CD4+CD25hi Treg are likewise not

affected by pMOG vaccination [7]. This is an important

observation as it suggests that DNA vaccination dampens the

Th17 cell response via mechanisms other than enhancing CD4

Foxp3+ or CD8 Foxp3+ T cell responses in our system. Probably

the differentiation of Th17 cells is specifically impaired because

Th1 and Th2 responses do not correlate with protection in our

model [3,7,11]. In contrast, CD4+CD25+ Treg are implicated in

the protective mechanism of DNA vaccination against experi-

mental autoimmune uveitis [18] which suggests that the role of

Treg during DNA vaccination differs between the different disease

models and/or immunization regimens.

Guo, et al recently demonstrated that IFN-b-treated macrophages

secrete IL-27, which in turn suppresses Th17 responses in vitro [28].

In contrast, we observed reduced IL-27 responses after DNA

vaccination, which is in agreement with our previous findings that

IL-10 is not enhanced by the pMOG vaccination [3,7,11]. Critical

differences may be that we study suppression of Th17 responses in

vivo whereas Guo et al study these responses in vitro; that IL-27 is

expressed at an earlier timepoint in our system or that we use

different species. Furthermore, pMOG-induced IFN-b may excert

its function at a local site where few macrophages are present in vivo.

Further analyses of T cell responses in DNA vaccinated rats are

warranted and are ongoing in our laboratory.

The suppressive effect of pMOG is dependent on CpG DNA in

the plasmid backbone and is associated with early induction of

Interferon (IFN)-b [3,7,11]. However, the pathways that are

activated by the DNA vaccine and which led to impaired Ag-

specific Th17 immune responses have not been elucidated. Our

microarray analyses demonstrated type I IFN-associated genes to

be linked to protection following EAE induction. A specific, small

set of IFN-inducible genes including IRF-7 and CCL19 were

upregulated. This is in agreement with our previous studies in

which IFN-b expression was enhanced following DNA vaccination

[7] as well as a study in IFN-b-treated MS patients using

microarrays that revealed upregulation of genes with IFN-

responsive promoter elements but no alterations in Th1- or

Th2-associated genes [31]. Similar to our microarray analyses,

results from microarray analyses of peripheral blood from

Systemic Lupus Erythematosus (SLE) patients suggest enhanced

type I IFN production [32]. Moreover, plasma from SLE patients

have elevated levels of circulating DNA enriched in hypomethy-

lated CpG DNA [33]. Chromatin-IgG immune complexes (IC)

isolated from these patients can induce pDC to produce high levels

of IFN-a, and IC can also activate rheumatoid factor, B cells and

dendritic cells [34]. In marked contrast, TLR9-deficient lupus-

prone mice exhibit more severe lupus and activated pDC [35,36],

which concords with our previous findings that TLR9 and CpG

DNA is linked to protection from autoimmunity [3,11,37].

Because we have previously observed enhanced IFN-b expres-

sion following DNA vaccination [3,11] and type I IFN can inhibit

differentiation of naı̈ve CD4 T cells into Th17 cells in vitro [38], we

studied the role of IFN-b during priming of Ag-specific T cells

after DNA vaccination. The expression of IFN-b was specifically

silenced both in vitro and in vivo, resulting in an abolished protective

effect of the DNA vaccine construct. Our data demonstrates a

requirement for early, local production of IFN-b during initiation

of the suppressive immune response following DNA vaccination

against EAE. We have thus unravelled a direct link between IFN-b
exposure to T cells in vivo and subsequent suppression of EAE.

We investigated how IFN-b influences the Th17 and Foxp3+ T

cell responses during DNA vaccination. Importantly, splenic IL-17

protein expression significantly developed in rats injected with the

IFN-b-silencing DNA vaccine, pMOG-IFNbeta, compared to the

suppressive DNA vaccine pMOG. However, IL-17 mRNA levels of

expression did not reach the levels of the control rats. The reason for

this could be: a) clonal expansion of another cell type in the pMOG-

IFNbeta-treated group that skews the IL-17 mRNA expression

relative to a housekeeping gene, or b) there are additional, unknown

mechanisms involved. At present we lack tools to further dissect the

effect of silencing of IFN-b on IL-17 expression. The numbers of

CD4 Foxp3+ T cells were signifiantly reduced after silencing of IFN-

b. We thus demonstrate a role for IFN-b in the suppression of Th17

responses during vaccination with pMOG.

Even though we have previously demonstrated a requirement

for CpG DNA, TBK-1 phophorylates IRF-7 and IRF-3 and

induces IFN-b via an unknown sensor of B form DNA such as

plasmid DNA [12]. We speculate that TLR9 and TBK-1 act in

synergy and are both required for the protective effect to occur

following DNA vaccination. We propose a model for the

protective mechanism of DNA vaccination against EAE that links

immune reactivity towards plasmid DNA with suppression of

MOG-specific Th17 cell responses and clinical signs of EAE. The

expression of IFN-b is upregulated in response to DNA vaccine-

derived B form DNA and/or CpG DNA. MOG91–108 expressed

by the DNA vaccine is processed and presented on MHC II by

dendritic cells to T cells. Enhanced IFN-b expression, in concert

with unknown mechanisms, leads to failure of T cells to

differentiate into pathogenic Th17 cells after subsequent

MOG91–108-immunization, whereas the Th1 and Th2 responses

remain intact [3].

In conclusion, we demonstrate that DNA vaccination downreg-

ulates Ag-specific Th17 cell responses, and that the suppressive

capability of the DNA vaccine can be abrogated by silencing IFN-b.

Materials and Methods

Antigens
Peptide SDEGGYTCFFRDHSYQEE from rat sequence

MOG91–108 was synthesized as previously described [3].

Figure 8. Reduced frequency of CD4 Foxp3+ T cells in spleen after pMOG-IFNbeta vaccination. (A) Percentage of CD4 Foxp3+ of total
CD3+CD4+ T cells and CD8 Foxp3+ of total CD3+CD8+ T cells in spleen 11 d after MOG91–108 immunization. Mean frequency (%) of (B)
Foxp3+CD4+CD3+ or (C) Foxp3+CD8+CD3+ T cells in spleen after 48 h culture with medium (No Ag) or MOG91–108 (MOG) isolated from pMOG-, pMOG-
IFNbeta- or pCI-treated rats respectively (n = 7/group). (D) Mean Foxp3 mRNA expression in CNS-derived lymphocytes isolated from pMOG-, pMOG-
IFNbeta- or pCI-treated rats (n = 7/group) at 11 d after MOG91–108 immunization. All values are normalized to GAPDH mRNA. Bars represent mean+/
2SEM. * p,0.05.
doi:10.1371/journal.pone.0003682.g008
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Rats
All animal studies were reviewed and approved by the local

ethical committee in Stockholm and Uppsala (Approval numbers

C272/4 and C21/7, permission given to A. Lobell). Four-to-five

wk old locally bred LEW.1AV1 (RT1av1) or DA (B&K, Sweden)

female rats were used in the experiments.

Plasmid construction
pMOG and pCI. Construction of pMOG (previously named

pMOG91–108) and pCI were as previously described [3]. Briefly,

seven tandem repeats of DNA coding for MOG91–108 were cloned

into pCI (Promega, Madison, WI) to create pMOG. pCI, the

plasmid backbone, is used as a control for pMOG.
pMOG-IFNbeta. Oligonucleotides coding for short hairpin

RNA consisting of the sense strand of siRNA specific for IFN-b, a

loop sequence, and the antisense stand of siRNA specific for IFN-b
were hybridized and ligated into pSilencer 1.0 (Ambion, Austin,

TX) directly downstream of a murine RNA polymerase U6

promoter, (sense 59- GCACTAGCATTCGGACATGTTCA-

AGAGACATGTCCGAATGCTAGTGCTTTTTT -39 and

antisense 59- AATTAAAAAAGCACTAGCATTCGGACAT-

GTCTCTTGAACATGTCCGAATGCTAGTGCGGC C -39).

During RNA transcription from this sequence, one short hairpin

RNA will form that is cleaved by Dicer intracellularly to generate

an anti-IFN-b siRNA [39]. A BamHI-BamHI-fragment consisting

of the U6 promoter/anti-IFN-b siRNA fragment was ligated into

the plasmid backbone of a Bam HI-cleaved DNA vaccine,

pMOG, encoding 7 repeats of the encephalitogenic MOG-

peptide MOG91–108 to generate pMOG-IFNbeta.
pMOG-scr. As a negative control for the anti-IFN-b silencing

by pMOG-IFNbeta, a siRNA-DNA vaccine was generated that

consisted of a scrambled siRNA sequence without any specificity

to any known RNA sequences in the rat: bp at three positions

within the siRNA-coding portion of the siRNA were switched with

the bp next to it, generating an siRNA that differed from the anti-

IFN-b siRNA at six bp positions but had identical bp composition.

Oligonucleotides coding for the sense strand of a scrambled siRNA

sequence, a loop sequence, and the antisense strand of a scrambled

siRNA sequence were hybridized and ligated into pSilencer 1.0

directly downstream of a murine RNA polymerase U6 promoter,

(sense 59- GACCTACGATTCGAGCATGTTCAAGAGAC-

ATGCTCGAATCGTAGGTCTTTTTT -39 and antisense 59-

AATTAAAAAAGACCTACGATTCGAGCATGTCTCTTGA-

ACATGCTCGAATCGTAGGTCGGCC -39). A BamHI-

BamHI-fragment consisting of the U6 promoter and a

scrambled siRNA fragment was ligated into the plasmid

backbone of a Bam HI-cleaved DNA vaccine, pMOG, to

generate pMOG-scr.

Plasmid preparation
Plasmid DNA was prepared using the Qiagen plasmid

preparation protocol. Endotoxins were removed in an additional

step (Endofree buffer set; Qiagen, Santa Clarita, CA).

Transfection of cell lines
Rat marrow stromal cells were cultured to 50% confluence as

previously described [27]. 105 cells were transfected with 1 mg of

pMOG-scr, pMOG-IFNbeta or PBS (Mock) in 7.5 ml of Super

transfect reagent (Qiagen) according to the manufacturer’s

instructions and cultured for 48 h at 37 C.

Western blotting
Cell lysates from transfected rat marrow stromal cells were

subjected to SDS-PAGE (Novex pre-cast gels; Invitrogen life

technologies, Carlsbad, CA) and transferred to nitrocellulose

membranes (BioTraceHNT, PN 66485, Pall Life Sciences, Ann

Arbor, MI). Membranes were incubated for 1 h in blocking buffer

(TBS-0.2% Tween 20 with 5% w/v nonfat dry milk and 5% w/v

BSA) then further incubated with a rat polyclonal anti-MOG91–108

antiserum diluted 1/100 in blocking buffer over night at 4uC.

After incubation with a HorseRadish Peroxidase-conjugated goat-

anti-rat Ab (Amersham Pharmacia Biotech, UK) for 1 h at R.T.,

the protein-Ab complexes were detected using ECL (Amersham

Pharmacia Biotech, Uppsala, Sweden).

Transfection of splenocytes
Rat splenocytes were isolated from five-to-six wk old female DA

rats. 106 cells were transfected with 0.5 mg of pMOG-scr, pMOG-

IFNbeta or 1 ul H2O (Mock) and 0.5 ml PLUS reagent in 3 ml of

Lipofectamine LTX (all from Invitrogen, Gaithersburg, MD)

according to the manufacturer’s instructions. Cells were cultured

in DMEM supplemented with 10% heat inactivated fetal calf

serum, 1% pencillin-streptomycin and 1% L-glutamine (all from

Invitrogen) for 24 h at 37 C.

Plasmid DNA injections and cardiotoxin pretreatment
Four-to-five wk old LEW.1AV1 or DA female rats were injected

with 100 ml of 10 mM cardiotoxin (Latoxan, Rosans, France) in

the gastrocnemii muscles. Seven d later rats were injected with

800 mg DNA at 2.0 mg/ml in PBS, divided into four 100 ml

injections administered in the tibialii and gastrocnemii muscles, of

either pCI, pMOG, pMOG-IFNbeta or pMOG-scr, respectively.

EAE induction and clinical evaluation
Three wks after DNA vaccination rats were injected s.c. in the

base of the tail with 200 ml inoculum containing 1:1 100 mg

MOG91–108 in PBS emulsified in CFA, consisting of IFA (Sigma,

St Louis, MO) and 0.5 mg heat-inactivated Myobacterium tuberculosis

(H37 RA strain, Difco Laboratories, Detroit, MI). The symptoms

were scored as follows: grade 1; tail weakness or tail paralysis,

grade 2; hind leg paraparesis, grade 3; hind leg paralysis, grade 4;

complete paralysis, moribund state or death.

Splenocyte preparation and culture
Spleens from DNA vaccinated and MOG91–108-immunized rats

were disrupted and cells were suspended in DMEM (Invitrogen).

Mononuclear cells were resuspended in DMEM supplemented

with 10% heat inactivated fetal calf serum, 1% pencillin/

streptomycin and 1% L-glutamine (all from Invitrogen), and

flushed through a 70 mm plastic strainer (Becton Dickinson,

Mountain View, CA), adjusted to 26106 cells/ml, and cultured

with or without 10 mg/ml MOG91–108 for 24, 48 or 72 h at 37 C

in a humidified atmosphere containing 5% CO2.

CNS-derived lymphocyte isolation
Lymphocytes were isolated from brain and spinal cord from

pMOG, pMOG-IFNbeta or pCI vaccinated and MOG91–108

immunized rats 11 days after immunization as previously

described [3].

Isolation of T cells
CD3+ T cells were purified from MOG91–108-stimulated

splenocyte cultures using CD3-MACS magnetic beads according

to the manufacturer’s instructions (Miltenyi Biotec GmbH,

Bergisch Gladbach, Germany) and CD3+CD4+ Th cells were

sorted by flow cytometry to 90% purity. The following antibodies

were used for staining: anti-CD3-APC and anti-CD4-FITC (all
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from BD Biosciences). Sorted cells were frozen in 270 C for

subsequent RNA isolation, cDNA synthesis and Q-PCR.

Intracellular staining of Foxp3 in T cells
Splenocytes from DNA vaccinated and MOG91–108-immunized

rats were cultured with or without MOG91–108 for 48 h. Cells were

fixed, permeabilized and incubated with 1% normal rat serum to

prevent non-specific binding of antibodies. The following

antibodies were used for staining: anti-CD3-APC (BD Bioscienc-

es), anti-Foxp3-PE (Biolegend, San Diego, CA) and anti-CD4-

FITC (Biolegend) or anti-CD8b-FITC (Biolegend). Mouse IgG1-

PE was used as isotype control (Biolegend). Cells were analyzed on

a FACSCaliburTM flow cytometer (BD Biosciences) using

Cellquest software (BD Biosciences).

Supernatant IL-17 ELISA
Rat IL-17 was measured in supernatants from MOG91–108-

stimulated splenocyte cultures by ELISA according to manufac-

turer’s instructions (USCN Life Science and Technology Compa-

ny, China). The lower limit of detection is 3.9 pg/ml for IL-17.

Quantification of mRNA expression
Q-PCR to quantify levels of cytokines has been previously

described [40,41]. RNA isolation and subsequent cDNA prepa-

ration were performed as previously described [40]. Quantitative

analyses of mRNA expression were performed using Quanti-

TectTM SYBRH green according to the manufacturer’s instruc-

tions (Qiagen) and amplification was performed using an ABI

prism 7700 Sequence Detection System (ABI, Norwalk, CT) or

MyiQ Cycler (Bio-Rad laboratories). Samples were analyzed as

previously described [7]. PCR products were visualized by

electrophoresis in 4% Et-Br containing agarose gels.

cDNA microarray analysis
The generation, use and analysis of microarrays representing

6240 cDNAs has been described previously [42–44]. The

guidelines and checklist of MIAME (www.mged.org/work-

groups/MIAME) were followed. cDNA clones were selected from

the TIGR rat gene index (www.tigr.org) or purchased from

Research Genetics (Invitrogen Carlsbad, CA). The platform is

available online and is designated GLP541 at Gene Expression

Omnibus (GEO) at www.ncbi.nlm.nih.gov/geo. Total RNA from

pMOG91–108- vaccinated rats or pCI-treated control rats were

isolated from flash-frozen spleens 11 d after EAE induction using

RNeasy maxi RNA isolation kit (Qiagen). cDNA from three

individual DNA vaccinated rats was labelled with Cy5, and cDNA

from three individual control rats was labelled with Cy3. First,

each Cy5-labelled DNA vaccine cDNA was compared with one of

the Cy3-labelled control cDNA in a hybridisation. The three DNA

vaccine cDNAs were then labelled with Cy3 and the three control

cDNAs were labelled with Cy5 and hybridised to the microarray.

Labelling and hybridization protocols have been previously

described [43]. The data series is available online at GEO at

www.ncbi.nlm.nih.gov/geo, is designated GSE1538 and consists

of the six samples GSM26467-GSM26472.

Statistical analysis of microarray data
Data was normalized by Lowess normalization using the

statistical software R. The significance of the expression ratios was

then estimated using the Significance Analysis of Microarray (SAM)

statistical technique [45]. A q value was assigned for all detectable

genes. The q value represents the lowest false discovery rate at which

the differential expression of the gene is considered significant. Only

genes with a q value of less than 5% were considered significantly

differentially expressed. In an additional step, only genes with a ratio

of 1.4 or higher were considered. Then the genes were categorized

using Gene Ontology annotations program (http://apps1.niaid.nih.

gov/David/gochart). Because rat genes are not as well annotated as

human genes, the rat gene identities were mapped to human

locuslink numbers of orthologues genes. These were then used to

search in the GOchart program.

Isolation and culture of monocytes
Monocytes were obtained from heparinized blood of 4–5 rats

using standard Lymphoprep density gradient centrifugation

(Nycomed, NY). Monocytes were further enriched by magnetic

beads conjugated to RT1 Ab (Miltenyi Biotec, Germany) following

the instructions provided by the manufacturer. Subsequent to this

procedure approximately 90% of the cells were MHC class II+ as

assessed by flow cytometry. Cells were plated into 6 well plates

(Nunc, Roskilde, Denmark) at a concentration of 1–26106 cells/

well in 1 ml DMEM supplemented with 10% heat inactivated fetal

calf serum, 1% pencillin-streptomycin, 1% L-glutamine (all from

Invitrogen) with GM-CSF (5 ng/ml, R&D Systems, Oxon, UK)

and IL-4 (25 ng/ml, R&D systems) or GM-CSF and IFN-b
(1000 U/ml a kind gift from Peter van Der Meide). After three d

cells were harvested and used for further analysis.

Statistical analysis
Differences between mean daily and accumulated EAE scores

were analyzed with Mann Whitney’s U test. p values lower than

5% were considered significant. To measure differences between

gene expression and cytokine levels, we first tested if the groups

were normally distributed. If they were, we analyzed differences

using unpaired t-test. If the groups were not normally distributed,

we analyzed the differences with Mann-Whitney U test or

Kruskal-Wallis test to compare three or more groups using

Graphpad Prism 4.0 software. p values lower than 5% were

considered significant.
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