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ABSTRACT

We present a simple and novel assay—employing a
universal molecular beacon (MB) in the presence of
Hg2+—for the detection of single nucleotide poly-
morphisms (SNPs) based on Hg2+–DNA complexes
inducing a conformational change in the MB. The
MB (T7-MB) contains a 19-mer loop and a stem of a
pair of seven thymidine (T) bases, a carboxyfluores-
cein (FAM) unit at the 5’-end, and a 4-([4-(dimethyla-
mino)phenyl]azo)benzoic acid (DABCYL) unit at the
3’-end. Upon formation of Hg2+–T7-MB complexes
through T–Hg2+–T bonding, the conformation of
T7-MB changes from a random coil to a folded struc-
ture, leading to a decreased distance between the
FAM and DABCYL units and, hence, increased effi-
ciency of fluorescence resonance energy transfer
(FRET) between the FAM and DABCYL units, result-
ing in decreased fluorescence intensity of the MB.
In the presence of complementary DNA, double-
stranded DNA complexes form (instead of the
Hg2+–T7-MB complexes), with FRET between the
FAM and DABCYL units occurring to a lesser
extent than in the folded structure. Under the optimal
conditions (20 nM T7-MB, 20 mM NaCl, 1.0 kM Hg2+,
5.0 mM phosphate buffer solution, pH 7.4), the linear
plot of the fluorescence intensity against the con-
centration of perfectly matched DNA was linear
over the range 2–30 nM (R2 = 0.991), with a limit of
detection of 0.5 nM at a signal-to-noise ratio of 3.
This new probe provides higher selectivity toward
DNA than that exhibited by conventional MBs.

INTRODUCTION

The past decade has witnessed the development of many
advanced biomolecular recognition probes for highly
sensitive and selective detection of DNA molecules
(genes) of interest (1–6). One such set of promising

probes are single-stranded DNA molecular beacons
(DNA-MB) that form hairpin-shaped structures to recog-
nize targeted DNA molecules. To allow the monitoring
conformation changes in DNA-MB upon reactions with
targeted DNA, a fluorophore and a quencher are cova-
lently conjugated at the termini of each DNA-MB strand.
DNA-MBs act as fluorescence resonance energy transfer
(FRET)-based switches that are normally in the closed or
‘fluorescence off’ state, but switch to the open or ‘fluores-
cence on’ state in the presence of target (complimentary)
DNA strands (7).
When DNA-MBs are used for the detection of single

nucleotide polymorphisms (SNPs), problems associated
with their nonspecific binding to DNA-binding proteins
and endogenous nuclease degradation occur, leading to
false-positive signals and their limited applicability in
complex biological samples (8–10). MBs containing
nuclease-resistant backbone residues, such as negatively
charged phosphorothioates and neutral peptide nucleic
acids, have been developed, but they sometimes exhibit
toxicity, self-aggregation and nonspecific binding to
single-stranded DNA (ss-DNA)-binding protein (SSB)
(11–13). To provide high sensitivity and fast hybridization
kinetics, hybrid molecular probes consisting of two
ss-DNA sequences tethered to two ends of a poly(ethylene
glycol) chain have been developed (14). The two ss-DNA
sequences are complementary to adjacent areas of a target
sequence in such a way that hybridization of the probe
with the target brings the 50- and 30-ends of the probe in
close proximity. Nevertheless, hybrid molecular probes
are more difficult to prepare and are more expensive
than conventional DNA-MBs.
Probes based on the Hg2+-induced conformational

change of a DNA molecule through thymidine (T)–
Hg2+–T coordination have been realized for the detection
of Hg2+ ions (15–18). A DNA sensor has been employed
for the detection of Hg2+ through the enhanced efficiency
of FRET as a result of formation of T–Hg2+–T complexes
(15). Recently, we presented a simple and rapid colouri-
metric assay—employing poly-Tn and 13 nm-diameter Au
NPs in the presence of salt—for the detection of Hg2+
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ions based on Hg2+–DNA complexes inducing the aggre-
gation of Au NPs (17).
In this article, we present a simple and novel assay—

employing T7-MB in the presence of salt and Hg2+—for
the detection of SNPs based on Hg2+–DNA complexes
inducing a conformational change in T7-MB. The T7-MB
contains a stem of a pair of 7-mer T bases that interact
with Hg2+ and a loop of 19-mer DNA bases that recog-
nize targeted DNA. According to our previous study (18),
for obtaining stable DNA–Hg complexes that allow selec-
tive detection of target DNA, the minimum number of T is
14. Therefore, 7-mer bp of Ts in the stem region are neces-
sary in the stem region for providing a proper function.
The T7-MB probe contains a donor of carboxyfluorescein
(FAM) at the 50-end, and a quencher of 4-([4-(dimethyla-
mino)phenyl]azo)benzoic acid (DABCYL) at the 30-end
(the sequence of the MB listed in Table 1). The T7-MB
is a random-coil structure that changes into a folded struc-
ture in the presence of Hg2+ ions through T–Hg2+–T
bonding (19–21). As a result of the decreased distance
between the donor and quencher, the fluorescence of
FAM in the Hg2+–T7-MB complexes becomes weaker
because of FRET occurring between the FAM and
DABCYL units. When the DNA loop of T7-MB interacts
with a targeted DNA more strongly than do the T7 units
in the stem with Hg2+, a double-stranded DNA forms,
rather than the folded structure. In this case, the FAM
and DABCYL units are separated far apart, resulting in
FAM fluorescing strongly, as depicted in Scheme 1.
We investigated the effect of the Hg2+ concentration on
the sensitivity and selectivity of the T7-MB probe, and
compared its sensing performance toward SNPs with
that of conventional DNA-MBs.

MATERIALS AND METHODS

Chemicals

Mercury(II) chloride (HgCl2) and magnesium(II) chloride
(MgCl2) used in this study were purchased from Aldrich
(Milwaukee, WI, USA). Sodium phosphate dibasic anhy-
drous and sodium phosphate monobasic monohydrate,
obtained from J. T. Baker (Phillipsburg, NJ, USA), were
used to prepare the phosphate buffer (5.0mM, pH 7.4).
The T7-MB, DNA-MBx (x=1�3), perfectly matched
DNA (DNApm) and mismatched DNA (DNAmmx) (see
Table 1 for sequences) were purchased from Integrated
DNA Technology, Inc. (Coralville, IA, USA). The
sequences in T7-MB and DNA-MBx that do not have
any biological targets were randomly designed to provide
optimum selectivity toward the target DNAs and hybrid-
ization kinetics (4). Milli-Q ultrapure water was used in all
experiments.

Analysis of samples

Aliquots (400ml) of 5.0mM phosphate buffer (pH 7.4)
containing NaCl (0–250mM) and MB (20 nM) were main-
tained at ambient temperature for 10min. Aliquots (50 ml)
of tested DNA (1.0 mM) were added to the solutions,
which were then incubated for 30min. The final ratio of
the concentrations of the MB and the tested DNA was 1:5.

An aliquot (50ml) of Hg2+ (0–1.5 mM) was added to each
solution, which was then incubated for 2 h prior to fluor-
escence measurements (Cary Eclipse; Varian, CA, USA)
at various temperatures (10–908C). To evaluate the resis-
tance to endogenous nuclease degradation, aliquots
(450 ml) of 5.0mM phosphate buffer (pH 7.4) containing
NaCl (20mM), MgCl2 (5.0mM), T7-MB or DNA-MB
(20 nM) and Hg2+ (1.0 mM) were maintained at ambient
temperature for 2 h. An aliquot (50ml) of DNase I (final
concentration: 5.0mg/ml) was added to each solution and
then the mixtures were subjected to fluorescence measure-
ments after certain periods of time, as indicated in the
Results and discussion section. To evaluate the nonspecific
binding to SSB, 5.0mM phosphate buffer (pH 7.4, 450 ml)
solutions containing NaCl (20mM), SSB (100 nM) and
T7-MB or DNA-MB (20 nM) were maintained at ambient
temperature for 30min. An aliquot (50 ml) of Hg2+

(1.0 mM) was added to each solution, which was then
incubated for 2 h prior to fluorescence measurement.

RESULTS AND DISCUSSION

Sensing behavior

Two aliquots of the T7-MB (20 nM) were separately added
to 5.0mM phosphate buffers containing 20mM NaCl
solution (pH 7.4) in the absence and presence of targeted
DNA (DNApm; 100 nM) and then the mixtures were equi-
librated for 30min at ambient temperature. Two aliquots
of Hg2+ (final concentration: 1.0 mM) were then added
separately to the two mixtures. In the absence of the
target DNA, the fluorescence of FAM (excitation wave-
length: 475 nm) was low, as indicated in Figure 1 (spec-
trum a). In the presence of the targeted DNA, the
fluorescence (spectrum b) of FAM was higher than that
in the absence of the target DNA. These results support
the sensing mechanism illustrated in Scheme 1. When
using a single base mismatched DNA (DNAmm1) having
the sequence listed in Table 1 as a control, the fluorescence
of FAM (spectrum c) was only slightly higher than that
in the absence of the targeted DNA, suggesting that the
T7-MB probe has high specificity toward DNApm. In addi-
tion, the selectivity of T7-MB toward DNApm to DNAmm1

Table 1. DNA sequences of MBs and trget DNA

Name Sequence (50–30)

T7-MB FAM-TTTTTTTTCTAAATCACTATGGTCGCTTTTT
TT-DABCYL

DNA-MB1 FAM-ACTTAGTTCTAAATCACTATGGTCGCACTA
AGT-DABCYL

DNA-MB2 FAM-ACCTAGCTCTAAATCACTATGGTCGCGCTA
GGT-DABCYL

DNA-MB3 FAM-GCCGAGCTCTAAATCACTATGGTCGCGCTC
GGC-DABCYL

DNApm GCGACCATAGTGATTTAGA
DNAmm1 GCGACCATAATGATTTAGA
DNAmm2 GCGACCATACTGATTTAGA
DNAmm3 GCGACCATATTGATTTAGA
DNAmm4 GCGACCATAGAGATTTAGA
DNAmm5 GCGACCATAGCGATTTAGA

Bold and underlined letters indicate the mutant bases.
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increased upon increasing in the ratio of the targeted
DNA to T7-MB, and achieved a maximum when the tar-
geted DNA was used in 5-fold excess (inset of Figure 1).
The selectivity values of T7-MB (20 nM) toward DNApm

over DNAmm1 were 3.0, 3.0, 4.2, 9.5 and 46 when the
molar ratios of the target DNA to T7-MB were 0.1, 0.5,
1, 2 and 5, respectively. The selectivity increased upon
increasing the concentration of the targeted DNA,
because the hybrid structure of T7-MB with DNApm is
more stable than that with DNAmm1. The use of four
other single base mismatched DNA strands (DNAmm2–5)
provided similar results to those obtained using DNAmm1.
Furthermore, when using a random DNA sequence
(50-ACCTGGAAGAGTATTGCAA-30) as a control to
test the specificity of our T7-MB, we did not observe any
change in the fluorescence. The highly specific nature of
our T7-MB probe suggested that it would have great
potential for use in SNPs studies.

Effect of Hg2+ concentration

The sensing capability of our T7-MB probe for DNA
depends on the interplay of the complexes formed between
T7 and Hg2+ and between the DNA sequence in the loop

and the tested DNA. Thus, we expected that the specificity
and sensitivity of our T7-MB probe would depend on the
concentration of Hg2+, because it affects the amount of
Hg2+–T7-MB complex formed. We investigated the effect
of Hg2+ at various concentrations (0–1.5 mM) on the
fluorescence of the FAM unit in the T7-MB in the absence
of tested DNA. Upon increasing concentration of Hg2+ in
the presence of 20 nM T7-MB (Figure 2A, closed square),
the fluorescence of FAM initially decreased rapidly (from
0 to 0.5 mM) and then decreased more gradually (from 0.5
to 1.5 mM). This result suggests that the folded DNA
structure was more stable in the presence of higher con-
centrations of Hg2+. To support this hypothesis, we con-
ducted melting temperature measurements; here, we define
Tm as the temperature at which the fluorescence of FAM
reaches 50% of its original value. Upon increasing the
temperature, the fluorescence intensity increased as a
result of breaking the T–Hg2+–T bonds (Figure 2B).
Upon increasing the Hg2+ concentration, the value of
Tm increased, reaching a plateau at the concentration of
Hg2+ of 1.0mM (inset to Figure 2B).

T7-MB

DNApm

DNAmm

: FAM

: DABCYL

: DNAmm

: DNApm

NaCl

NaCl Hg2+

Hg2+

Scheme 1. Schematic representation of the working principles of the
T7-MB.
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Figure 2. (A) Plots of (closed square) the fluorescence intensity at 518 nm
of T7-MB (20 nM) and (open square) the values of (IF1
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of T7-MB in the presence of DNApm (IF1) and DNAmm1 (IF2), both as
functions of the concentration of Hg2+ (0–1.5 mM). (B) Fluorescence
spectra of the T7-MB (20 nM) recorded a various temperatures. Inset:
plot of the value of Tm of T7-MB as a function of the concentration of
Hg2+ (0–1.5mM). Other conditions were the same as those described in
Figure 1.
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The results in Figure 2 suggest that the concentration of
Hg2+ is an important factor determining the specificity of
the T7-MB. Thus, to determine the optimal Hg2+ concen-
tration under the tested conditions, we plotted (IF1

– IF0
)/

(IF2
– IF0

) against the Hg2+ concentration, where IF0
, IF1

,
and IF2

are the fluorescence intensities of the FAM unit in
T7-MB in the absence of the targeted DNA and in the
presence of DNApm and DNAmm1, respectively. A
higher value of this ratio indicates better specificity of
the T7-MB probe toward DNApm over DNAmm.
Figure 2A (open square) indicates that the ratio was
maximized at an Hg2+ concentration of 1.0mM; at
higher concentrations (e.g. 10 mM), the T7-MB prefers to
complex with Hg2+, reducing its ability to recognize its
target DNA. In addition, the temperature also affected the
specificity of the T7-MB. The specificity of the T7-MB
probe toward DNApm over DNAmm achieved a plateau
at ambient temperature (25–308C). At higher temperature,
the T–Hg2+–T bonds were broken as a result of decreas-
ing the specificity (Figure S1). Thus, the optimal condi-
tions—providing the highest specificity of the T7-MB
toward its target DNA—involved the use of 20 nM
T7-MB in 5.0mM phosphate buffer (pH 7.4) containing
1.0mM Hg2+ and 20mM NaCl at ambient temperature.
Next, we separately investigated the kinetics of forming

folded structures of the T7-MB with and without targeted
DNA in the presence of Hg2+. The fluorescence intensity
of the T7-MB decreased immediately once Hg2+ was
added. However, the fluorescence intensities took 1.5
and 2.0 h to achieve constant values in the presence of
DNApm and DNAmm1, respectively (Figure S2).
Figure S2 reveals that the folded rate of the T7-MB with
DNAmm1 was slower than that with DNApm. The kinetics
of this probe is slow, because some undesired Hg-oligonu-
cleotide complexes may be kinetically preferred formed,
especially in the case of DNAmm1 (20). Based on these
kinetics, we employed an equilibrium time of 2.0 h in the
following experiments.

Sensitivity and specificity

We investigated the sensitivity of the T7-MB at different
concentrations toward DNApm. Figure 3 indicates that the
fluorescence intensity increased upon increasing the con-
centration of DNApm when using 20 nM T7-MB. We
obtained a linear response (R2=0.991) of the fluorescence
intensity against the concentration of DNApm over the
range 2–30 nM, (inset to Figure 3), with a limit of detec-
tion of 0.5 nM at a signal-to-noise ratio of 3. The LODs of
DNApm by using T7-MB at the concentrations of 10.0 and
50.0 nM were 0.48 and 1.20 nM, respectively. High con-
centration of T7-MB probe produced high background
fluorescence intensity, leading to decreases in the sensitiv-
ity. When using low concentrations (<20 nM) of T7-MB,
poor selectivity toward DNApm is problematic. Relative to
other existing methods for the detection of DNA using
DNA-MBs (the optimum conditions as shown in
Figure S3), the T7-MB probe provides at least a 3-fold
improvement in sensitivity. The relative standard devia-
tion for quantitation of DNA using the T7-MB probe
was <0.8%.

To compare the present system to a conventional DNA-
MB probe for the study of SNPs, we employed the two
systems separately for the detection of DNApm and five
mismatched strands DNAmm1–5. Because the stability of
DNA-MBx probe depends on the GC content in the stem,
three different DNA-MBx probe (x=1–3; no Hg2+) as
listed in Table 1 were chosen. The performances of the
four MB probes were evaluated according to the values
of (IF–IF0

)/IF0
, where IF0

is the florescence intensity of the
FAM in T7-MB or DNA-MB in the absence of target
DNA and IF values are those in the presence of DNApm

or DNAmm1–5, respectively. Figure 4A reveals that our T7-
MB probe exhibits enhanced specificity over the conven-
tional DNA-MBx under the optimal conditions (20 nM
T7-MB in the presence of 1.0 mM Hg2+ or DNA-MBx

(x=1–3), 20mM NaCl and 5.0mM phosphate buffer
solution, pH 7.4 at 358C). We further conducted similar
experiments under physiological conditions (150mM
NaCl, 5.0mM KCl, 1.0mM MgCl2, 1.0mM CaCl2 and
25mM Tris–HCl buffer solution, pH 7.4). The specificity
values of T7-MB and DNA-MBx (x=1–3) toward
DNApm over DNAmm1 were 69-fold for the T7-MB
probe (20 nM in the presence of 100 mM Hg2+), and
1.0-, 1.1- and 1.2-fold for DNA-MBx (20 nM; x=1–3),
respectively. We also compared the stabilities of the
T7-MB and DNA-MB2 probes in the presence of the endo-
nuclease DNase I (Figure 4B). The DNA-MB2 degraded
rapidly once DNase I was added, whereas the T7-MB
remained unaffected for at least 20min under otherwise
identical conditions. After 2 h, at least 50% of the
T7-MB in the presence of Hg2+ remained in its folded
structure, based on changes in the fluorescence intensity.
This behavior arose mainly because the folded structure of
the T7-MB is more stable than the random-coil structure
of the DNA-MBx. We finally compared the resistance of
the T7-MB and DNA-MB2 probes toward nonspecific
binding proteins. DNA-MBx are subjected to nonspecific
binding to SSB. Binding of the DNA-MB2 to SSB caused
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DNApm. Other conditions were the same as those described in Figure 1.
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it to remain in a randomly coiled structure, leading to a
false-positive signal (Figure 4C). For simplicity, we nor-
malized the fluorescence intensities of the two MBs in the
presence of SSB to their respective values in the absence of
SSB. Interestingly, our results reveal that the T7-MB was
barely affected after the addition of excess SSB, indicating
that this probe is superior to conventional MBs for detect-
ing target DNA strands within biological samples contain-
ing high amounts of SSB. Table 2 compares our present
approach with four popular approaches [conventional
DNA-MB, locked nucleic acid (LNA)-MB, superquench-
ers-MB and hybrid-MB] to SNPs study with respect to
detection limit, specificity and resistance to SSB and nucle-
ase digestion. The specificity of our method is superior to
the other four methods. The sensitivity of our approach is
comparable to those of superquenchers-MB and hybrid-
MB approaches, and is better than those of conventional
DNA-MB and LNA-MB approaches. Like our approach,
LNA-MB and hybrid-MB resist to the binding of SSB and
nuclease digestion. However, the LNA-MB and hybrid-
MB are more difficult and expensive to prepare.
Nevertheless, the use of toxic Hg2+ ions, albeit in small
amounts, in our probe system is a disadvantageous fea-
ture. This disadvantage can be overcome by using different
DNA sequences that respond to the presence of lower-
toxicity metal ions such as Ag+ and K+ ions (22–27).

CONCLUSIONS

We have developed a new sensing strategy for SNPs study
using T7-MB probe in the presence of Hg2+. This new
approach is simple, sensitive, selective and cost-effective
for studying SNPs. The T7-MB probe in the presence of
Hg2+ has greater resistance toward nuclease digestion and
undergoes less nonspecific binding with SSB. When com-
pared with the conventional MB approaches, the T7-MB
probe provides a greater specificity toward perfect-
matched DNA over mismatched DNA and is more
stable in the presence of high concentrations of salt.
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(20 nM) in the presence of DNAmm1, DNAmm2, DNAmm3, DNAmm4,
DNAmm5 and DNApm. The final concentration ratios of the T7-MB
and DNA-MBx to the tested DNA were 1:5. The fluorescence measure-
ments of T7-MB and DNA-MBx were at ambient temperature and
358C, respectively. (B) Digestion of (a) T7-MB and (b) DNA-MB2
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(C) Responses of the two MBs toward the presence of SSB. The final
ratio of the concentrations of MB and SSB was 1:5. Other conditions
were the same as those described in Figure 1.

Table 2. Comparison of SNPs studies using T7-MB and other four

different approaches

Type of MB Detection
limit of
the DNApm

(nM)

Specificitya Resistance

SSB Nuclease Reference

Conventional
DNA-MB

1.5 7.0 No No In this study

T7-MB 0.5 69 Yes Yes In this study
LNA-MB 10 10 Yes Yes Wang, L.,

et al. (6)
Superquenchers-
MB

0.1 30 No No Yang, C.J.,
et al.(7)

Hybrid-MB 0.8 25 Yes Yes Yang, C.J.,
et al. (14)

aSpecificity: (IF1
–IF0

)/(IF2
–IF0

) where IF0
, IF1

and IF2 are the
fluorescence intensities of the fluorophore units in the MBs without
the targeted DNA and with DNApm and DNAmm, respectively.
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When SNPs study under physiological conditions is
needed, the stability and specificity of the T7-MB probe
can be further improved by carefully controlling Hg2+

concentrations and/or the stem length. The superior char-
acteristics of the T7-MB probe show its great potential for
use in SNPs studies.
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