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ABSTRACT

Epitope tagging is a powerful and commonly used
approach for studying the physical properties of
proteins and their functions and localization
in eukaryotic cells. In the case of Saccharomyces
cerevisiae, it has been possible to exploit the high
efficiency of homologous recombination to tag
proteins by modifying their endogenous genes,
making it possible to tag virtually every endogenous
gene and perform genome-wide proteomics experi-
ments. However, due to the relative inefficiency
of homologous recombination in cultured human
cells, epitope-tagging approaches have been limited
to ectopically expressed transgenes, with the atten-
dant limitations of their nonphysiological transcrip-
tional regulation and levels of expression. To
overcome this limitation, a modification and exten-
sion of adeno-associated virus-mediated human
somatic cell gene targeting technology is described
that makes it possible to simply and easily create an
endogenous epitope tag in the same way that it is
possible to knock out a gene. Using this approach,
we have created and validated human cell lines with
epitope-tagged alleles of two cancer-related genes
in a variety of untransformed and transformed
human cell lines. This straightforward approach
makes it possible to study the physical and biologi-
cal properties of endogenous proteins in human
cells without the need for specialized antibodies
for individual proteins of interest.

INTRODUCTION

Epitope tagging is a powerful approach that makes it pos-
sible to perform immunoprecipitation, western blot and
immunocytochemistry without the need for specialized
antibodies to the protein of interest. In some model organ-
isms such as Saccharomyces cerevisiae, it is possible to

epitope tag the endogenous allele of a gene and therefore
to study the protein in its natural state. However, in cul-
tured human cells, the inefficiencies of chromosomal mod-
ification have limited epitope tagging to the study of
ectopically expressed transgenes.
This limitation has important practical repercussions

when performing experiments using epitope tags in
human cells. First, ectopically expressed transgenes are
generally expressed more highly than the endogenous
gene (often dramatically so). Second, transgenes generally
lack features present in endogenous genes such as a nat-
ural promoter, introns, and 50- and 30-untranslated
regions, all of which contribute to transcriptional and
translational regulation. Because of these limitations,
results generated using epitope-tagged expression vectors
are often criticized as being possible artifacts of overex-
pression and/or unnatural expression and generally
require confirmation with endogenous proteins.
Therefore, it has been desirable to perform epitope tag-

ging on endogenous genes. In the genetically tractable
yeast S. cerevisiae, this goal has been realized—virtually
every open reading frame has been epitope tagged and
studied using proteomics and related approaches (1).
However, the limitations of homologous recombination-
mediated genetic modification have made the prospect of
epitope-tagging endogenous genes in human cells a daunt-
ing one at best.
Homologous recombination-based gene targeting in

human cells was introduced by Porter and Itzhaki in
1993, and since that time �50 different genes (mostly
cancer related) have been disrupted by homologous
recombination (2,3). Though powerful, this approach
has been in limited use because of the perceived technical
difficulties in its execution. However, two recent advances
have made the creation of modified alleles in human cells
more feasible. First, Hirata et al. (4) demonstrated that the
use of adeno-associated virus (AAV) vectors for delivery
of targeting constructs enhanced the efficiency of gene
targeting in human cells by several orders of magnitude.
Porteus et al. (5) and Kohli et al. (6) also demonstrated
that targeting vectors created in AAV backbones and
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delivered by infection have reproducibly high efficiencies
of gene targeting. Second, Topaloglu et al. (7) recently
described a NeoR gene cassette termed a synthetic
exon promoter trap (SEPT) that made the creation of
promoter trap targeting vectors a simpler and more tech-
nically tractable prospect.
Here, we build on these recent advances in human

genomic modification and describe a modification of
AAV-mediated human somatic cell gene-targeting techni-
que and its application to the creation of epitope tags of
endogenous genes in human cells. Importantly, the time
needed to create such cell lines is comparable to the
time otherwise needed to create and validate polyclonal
antibodies to individual endogenous proteins.

MATERIALS AND METHODS

Creation of pAAV-SEPT-Acceptor and pAAV-TK-Acceptor

For pAAV-SEPT-Acceptor, the SEPT cassette was PCR
amplified using VENT Polymerase (New England Biolabs,
Beverly, MA) from the SEPT vector using primers
adding consecutive restriction sites 50 and 30 to the cassette
(7). All primers for this and other recombinant DNA steps
were obtained from Integrated DNA Technologies
(Coralville, IA, USA) and were PAGE purified. All
primer sequences are available from the authors upon
request. The 50 cloning sites (in order 5–30) were as follows:
Not I, Age I, Asc I, Bcl I, Mlu I, Nhe I, Sac I, Xba I and
Spe I. The 30 cloning sites (similarly in order 5–30) are as
follows: Nde I, EcoRI, EcoRV, Cla I, Sal I, Xho I and
Not I. The PCR product was then digested with Not I and
cloned into the Not I site of pAAV-MCS (Stratagene, La
Jolla, CA, USA), an AAV-2-based vector system. The
integrity of the resulting construct was confirmed by
restriction analysis and sequencing of the insert and junc-
tions. The completed vector and the order of unique sites
in the polylinker are depicted in Figure 1A.
For pAAV-TK-Acceptor, the TK-neo cassette was PCR

amplified from pMC1-neo-polyA (Stratagene) using pri-
mers containing restriction sites (sense primers Sac I, Xba
I, Spe I, Bam HI, and antisense primers Sac II, Avr II, Eco
RV, HindIII, Cla I) and cloned into the Sac I and Cla I
sites of pAAV-SEPT-Acceptor, replacing the SEPT cas-
sette with a TK-neo cassette. The integrity of the resulting
construct was confirmed by restriction analysis and
sequencing of the insert and junctions. The completed
vector and the order of unique sites in the polylinker are
depicted in Figure 1B.

PCR-based creation and assembly of
epitope-tagging vectors

Homology arms for creation of both PTEN and p53 epi-
tope-tagging vectors were created by PCR from a human
genomic DNA template using VENT Polymerase (New
England Biolabs) as described by the manufacturer.
Homology arms were �1 kb in size. In the case of PTEN,
the left arm was composed of exon I/intron I, and the right
arm was composed of intron I. In the case of p53, the
left arm was composed of intron I/exon II/intron II/exon
III/intron III, and the right arm was composed of

intron III/exon IV/intron IV. The sequence of all PCR
primers is available from the authors upon request.

For both vectors, the PCR product composing the left
homology arm was digested with Age I and Sac I, and the
PCR product composing the right homology arm was
digested with Eco RI and Sal I. All enzymes were obtained
from New England Biolabs. These left and right arms
were then simultaneously cloned into the pAAV-SEPT-
Acceptor vector that had been digested with Age I, Sac I,
Eco RI and Sal I and treated with Calf Intestinal Alkaline
Phosphatase. After electroporation into DH10B cells
(Invitrogen), thousands of colonies were obtained, and a
subset was tested by whole-cell PCR with a junction-
specific primer pair. For the PTEN vector assembly, 9 of
37 (24%) colonies contained plasmids in which the ligation
had successfully occurred. For the p53 vector assembly,
19 of 45 (42%) colonies contained the expected ligation
event. A subset of positive clones was further confirmed
byDNA sequencing; in all cases, the junctions were correct.

Site-directed mutagenesis for addition of FLAG epitopes

Site-directed mutagenesis for the addition of FLAG epi-
tope tags to the left homology arms of the PTEN and p53
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Figure 1. Acceptor vectors for endogenous epitope tagging. pAAV-
SEPT-Acceptor (A) and pAAV-TK-Acceptor (B) both contain a
FLOXed NeoR gene flanked by polylinkers containing unique, rare-
cutting restriction sites chosen to simplify four-way ligations. L-ITR
and R-ITR refer to the inverted terminal repeats required for viral
packaging. pAAV-SEPT-Acceptor contains a SEPT cassette composed
of a splice acceptor (SA), internal ribosome entry site (IRES) and
promoterless NeoR gene. pAAV-TK-Acceptor contains a NeoR gene
driven by a thymidine kinase (TK) promoter.
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vectors was performed using the Quikchange Kit
(Stratagene) with PAGE-purified oligonucleotides desi-
gned to add an in-frame FLAG tag (IDT). A total of
22% and 42% of colonies tested by PCR and seq-
uencing for the PTEN and p53 vectors, respectively, con-
tained the desired 24-nt FLAG insertion
(GAT/TAC/AAG/GAT/GAC/GAC/GAT/AAG encod-
ing DYKDDDDK).

Tissue culture and identification of epitope-tagged clones

Transient stocks of AAV-2 virions were created by
cotransfection of 293T cells with epitope-tagging vectors
together with pAAV-RC (Stratagene) and pHELPER
(Stratagene) using FUGENE 6 (Roche, Indianapolis,
IN, USA) as previously described (8). Two days after
transfection, media was aspirated and cell monolayers
were scraped into 1ml PBS and subjected to four cycles
of freeze/thaw (consisting of 10min freeze in a dry-ice
ethanol bath and 10min thaw in a 378C water bath, vor-
texing after each thaw). The lysate was then clarified by
centrifugation at 12 000 r.p.m. for 10min in a benchtop
microfuge to remove cell debris, and the virus-containing
supernatant was aliquoted and stored at �808C. No
further viral purification or concentration was performed.

These virus stocks were titered by qPCR as described
(9). The titer of the FLAG-p53 epitope-tagging vector was
4.0� 1010 genome copies/ml, and the titer of the FLAG-
PTEN epitope-tagging vector was 4.9� 1010 genome
copies/ml. Hundred microliters of virus was then used to
infect cells in T25 tissue culture flask, and cells were pas-
saged at limiting dilution into 96-well plates in the pres-
ence of G418 1 day after infection. The concentrations of
G418 used were as follows: 0.4mg/ml for BJ–hTERT and
RPE–hTERT cells, 0.6mg/ml for HCT116 cells and
1.0mg/ml for LN229 and A172 cells. Individual G418-
resistant clones were expanded and used for the prepara-
tion of genomic DNA using standard techniques. Clones
were tested for homologous integration of the targeting
vector using a primer pair specific for the targeted allele.
PCR products from clones with homologous integration
of the targeting vector were then sequenced to determine
whether the FLAG epitope had been inserted into the
genome of each cell line. All primer sequences used in
these steps are available from the authors upon request.

Once individual clones were identified in this way, they
were infected with a Cre-expressing adenovirus as pre-
viously described (8). Individual clones were expanded
by limiting dilution and tested for the restoration of
G418-sensitivity.

Preparation of protein lysates, affinity purification
and western blot

Protein lysates to be used directly for western blot were
prepared in RIPA buffer. Nuclear and cytoplasmic lysates
used for FLAG purification were prepared using a mod-
ification of Dignam’s nondetergent lysis method (10,11).
Protein concentrations were quantified using the bicinch-
oninic assay (Pierce, Rockford, IL, USA).

For FLAG affinity purification, a-FLAG M2 beads
(SIGMA, St Louis, MO, USA) were washed once with

TBS, then resuspended in nuclear or cytoplasmic fractions
derived from parental or epitope-tagged cells, and rotated
at 48 for 1 h. Beads were then washed three times in TBS,
packed into a Poly-Prep chromatography Column
(Biorad, Hercules, CA) and bound proteins were eluted
with 100 ng/ml FLAG peptide in three 1-ml fractions.
Fractions were concentrated by TCA precipitation, resus-
pended in sample buffer and separated by SDS–PAGE.
Western blot was performed using standard techniques.

Primary antibodies used were as follows: PTEN clone
6H2.1 (Cascade Biosciences, Winchester, MA, USA),
p53 clone DO-1 (Calbiochem, San Diego, CA, USA),
FLAG polyclonal F7425 (SIGMA) and HAUSP A300-
033A (Bethyl Labs, Montgomery, TX, USA).

Mass spectrometry

Protein sequence analysis was performed at the Harvard
Mass Spectrometry and Proteomics Resource Laboratory
by microcapillary reverse-phase HPLC nano-electrospray
tandem mass spectrometry (mLC/MS/MS) on a Thermo
LTQ-Orbitrap mass spectrometer. These MS/MS spectra
were then correlated with known sequences (12,13).

RESULTS

Universal acceptor vectors for single-ligation assembly
of AAV-based targeting vectors

One factor limiting the ease and speed of human somatic
cell gene-targeting projects has been the technical chal-
lenges inherent to vector assembly. Several different
approaches have been tried in an effort to simplify this
process. For example, we and others have described
approaches that exploit the high rate of homologous
recombination in S. cerevisiae to build targeting vectors
with the needed junctions without the need for conveni-
ently located restriction sites (14). Kohli et al. (6) have
employed a nested PCR strategy for the creation of target-
ing vectors with only a single-ligation step. However, these
and other related strategies have had the disadvantages of
either requiring multiple consecutive assembly steps and/
or being insufficiently robust.
In an effort to remedy these difficulties, universal

AAV-2 acceptor vectors were created that make it possible
to perform vector assembly in a single ligation (Figure 1A
and B, described in detail in Materials and Methods sec-
tion). These acceptor vectors contain polylinkers with
multiple unique rare-cutting restriction sites flanking a
FLOXed NeoR gene, making it possible to subclone
PCR-generated homology arms into the acceptor vector
simultaneously.
Two such acceptor vectors were created, which were

identical except that one contained a TK-neo gene for
creation of so-called ‘promoter containing’ targeting vec-
tors and the other contained a SEPT-neo gene for creation
of promoter trap targeting vectors. Of note, the SEPT
cassette contains a splice acceptor followed by an IRES-
neo and was recently described by Topaloglu et al. (7).
The specific cloning strategy employed for creation
of these vectors is described in detail in Materials and
Methods section.

PAGE 3 OF 8 Nucleic Acids Research, 2008, Vol. 36, No. 19 e127



A generalizable approach for the creation of human
epitope-tagging vectors and its application to p53

These new acceptor vectors made it theoretically possible
to build targeting vectors in a single-ligation step. To do
this, left and right homology arms were created by PCR
from a human genomic DNA template, and then simulta-
neously cloned into the polylinkers that had been built
into the acceptor vectors. This was successfully performed
for p53 in �9 days, as described in Materials and Methods
section and depicted in Figure 2 (Steps I and II).
Importantly, this ligation step was extremely robust, and
the expected recombinant plasmid was present in 42% of
all tested bacterial colonies.
Since the left arm of the targeting vector was designed

to contain the initiating methionine codon, it was possible
to add an epitope tag to the sequences encoding the
amino-terminus of the encoded protein. Of note, a com-
parison of myc, HA, FLAG and V5 epitope tags showed
that FLAG provides the best combination of efficiency
and specificity for immunoprecipitation (Kim,J.S. and
Waldman,T. unpublished data). As such, FLAG epitopes
were employed in the epitope-tagging vectors described
herein. The details of the mutagenesis reaction for

insertion of FLAG are described in Materials and meth-
ods section, and the scheme is depicted in Figure 2 (Step
III). Of note, this reaction was extremely robust and effi-
cient (42% of the resulting bacterial colonies contained the
FLAG insertion), and took �1 week to perform. The
resulting p53 epitope-tagging vector and the targeting
event it is designed to perform are depicted in Figure 3A.

Creation of human cells with endogenous
FLAG-tagged alleles of p53

Once the p53 epitope-tagging vector had been created, it
was packaged into AAV virions and used to infect human
cells. The four recipient cell lines chosen all harbor wild-
type p53 genes and include both immortalized primary
cells [hTERT-immortalized retinal pigment epithelial
(RPE) cells and hTERT-immortalized BJ fibroblasts]
and transformed cell lines derived from two different
tumor types (HCT116 colon cancer cells and A172 glio-
blastoma multiforme cells). Individual G418-resistant
colonies were obtained and tested by PCR for the presence
of homologous integration of the epitope-tagging
vector (Figure 3B). The efficiencies of targeted integration
were as follows: HCT116—14%, BJ–hTERT—40%,
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RPE–hTERT—43%, A172—30%. PCR sequencing
demonstrated that all the PCR-positive clones had under-
gone the desired modification in which a FLAG tag had
been inserted in-frame immediately after the initiating
methionine of the endogenous gene. Positive clones were
infected with a Cre-expressing adenovirus as described in
Materials and Methods section to remove the FLOXed
NeoR gene and restore the targeted allele to its natural
configuration.

Validation of human cells with epitope-tagged p53 genes

HCT116 and RPE–hTERT cells in which the endogenous
p53 gene had been modified via the addition of an amino-
terminus FLAG were then validated by immunoprecipita-
tion and western blot with antibodies to p53 and FLAG.
As depicted in Figure 3C, parental HCT116 cells had a
single molecular weight species of p53 protein, whereas
heterozygous epitope-tagged cells had equimolar amounts
of two molecular weight species—the endogenous protein,
and slightly larger protein reflecting the increased

molecular weight caused by the addition of the FLAG
tag. Similarly, IP/western blots performed with FLAG
antibodies demonstrated the presence of FLAG-p53
protein in epitope-tagged RPE–hTERT cells but not in
parental cells (Figure 3C).
Herpesvirus-associated ubiquitin-specific protease

(HAUSP) is a recently discovered p53-binding protein
that regulates its stability (15). To determine if epitope-
tagged cells could be employed to confirm this interaction
in HCT116 cells with endogenous proteins, nuclear lysates
were prepared from parental and p53 epitope-tagged cells,
immunoprecipitated using a FLAG affinity matrix and
interrogated by western blot with antibodies to HAUSP.
As depicted in Figure 3D, endogenous HAUSP clearly
interacted with endogenous epitope-tagged p53 in
HCT116 cells, demonstrating the functional integrity
of the epitope-tagged allele of p53 and providing
proof-of-principle for the use of cells with endogenous
epitope-tagged alleles for the confirmation of endogenous
protein–protein interactions.
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Figure 3. Epitope tagging of p53 in human cells. (A) The FLAG-p53 epitope-tagging vector is designed to recombine into intron I/exon II/intron II/
exon III/intron III of human p53, adding a FLAG epitope immediately following the initiating methionine of p53 in exon II. Subsequent Cre-
mediated recombination removes the IRES-NeoR gene, leaving behind FLAG coding sequences in exon II and a single LoxP site in intron III (not
shown). (B) PCR-based identification of epitope-tagged alleles. Depicted are PCR results from HCT116, RPE, BJ and A172 epitope-tagged cells. þ/þ
refers to homozygosity for the unmodified parental allele, whereas þ/F refers to derivatives in which one allele has been modified by the addition of
an in-frame amino-terminus FLAG epitope. (C) Western blot-based confirmation of epitope-tagged alleles. The left panel depicts a direct western blot
using p53 antibodies on lysates from parental HCT116 cells (þ/þ) and two independently-derived heterozygous (þ/F) FLAG-p53 epitope-tagged
clones. The addition of a FLAG epitope increases the size of the encoded protein by �1 kDa. The right panel depicts a FLAG IP/FLAG western blot
from parental RPE cells (þ/þ) and two independently derived epitope-tagged derivatives (þ/F). (D) Identification of the p53-interacting protein
HAUSP by immunoprecipitation. Nuclear extracts (125mg) from parental HCT116 cells (þ/þ) and epitope-tagged derivatives (þ/F) were incubated
with a-FLAG M2 agarose beads followed by FLAG-peptide elution, TCA precipitation, SDS–PAGE and HAUSP western blot.
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Creation, validation and application of human cells with
epitope-tagged PTEN genes

To further demonstrate the generality of the approach, an
epitope-tagging vector designed to add a FLAG epitope
tag to the amino terminus of the PTEN tumor suppressor

gene was created (Figure 4A). The vector was packaged
into AAV virions and used to infect HCT116 colon cancer
cells and LN229 glioblastoma multiforme cells, both of
which harbor wild-type PTEN genes. Individual G418-
resistant colonies were obtained and tested by PCR for
the presence of homologous integration of the vectors
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mass spectrometry, as described in Materials and Methods section. Depicted are the peptide counts from individual proteins that were present in
immunoprecipitates from epitope-tagged cells but not in immunoprecipitates from parental cells.
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containing the epitope tag (Figure 4B). The efficiencies of
targeted integration were as follows: HCT116—25%,
LN229—4%. Positive clones were infected with a Cre-
expressing adenovirus to remove the FLOXed NeoR

gene and restore the targeted allele to its natural
configuration.

HCT116 and LN229 cells in which the endogenous
PTEN gene had been modified via the addition of an
amino-terminus FLAG were then validated by immuno-
precipitation and western blot with antibodies to PTEN
and FLAG. As depicted in Figure 4C, parental HCT116
cells had a single molecular weight species of PTEN pro-
tein, whereas heterozygous epitope-tagged cells had equi-
molar amounts of two molecular weight species—the
endogenous protein, and slightly larger protein reflecting
the increased molecular weight caused by the addition of
the FLAG tag. Similarly, IP/western blots performed with
FLAG antibodies demonstrated the presence of FLAG-
PTEN protein in epitope-tagged HCT116 cells and LN229
cells but not in parental cells (Figure 4D).

To provide proof-of-principle that cells with endogen-
ous epitope tags could be valuable for mass spectrometric
analysis of protein complexes, cytoplasmic lysates from
parental and epitope-tagged cells were affinity purified
using a FLAG affinity matrix. After concentration by
TCA precipitation, eluents were separated by SDS–
PAGE, stained with Coomassie Brilliant Blue (not
shown) and gel lanes excised for comparative mass spec-
trometry as described in Materials and Methods section.
The majority of proteins identified in this analysis were
present in both samples, and correspond to well known
contaminants of FLAG purification (not shown).
However, 498 peptides corresponding to PTEN were pres-
ent in the epitope-tagged cells, and none in the parental
cells. The peptide counts for individual proteins present
exclusively in FLAG-PTEN cells are depicted in
Figure 4E. Interestingly, peptides corresponding to several
cellular proteins other than PTEN were uniquely present
in FLAG immunoprecipitates from the epitope-tagged
cells. These peptides undoubtedly correspond to a combi-
nation of bona-fide PTEN interacting proteins and false
positives; their confirmation and validation will be
described elsewhere.

DISCUSSION

There are a number of possible uses for the stable cell lines
harboring endogenous epitope-tagged genes. First, the
endogenous epitope-tagged cell lines will likely prove valu-
able for purification of endogenous proteins and the iden-
tification of novel protein complexes. Second, cells
harboring epitope-tagged endogenous alleles will be
useful for validating novel protein–protein interactions
discovered using other approaches (such as yeast two
hybrid) when sensitive and specific antibodies to the com-
ponents of the complex are unavailable. Third, such stable
cell lines may prove valuable in industry for the purifica-
tion of medically useful therapeutic proteins in situations
where ectopically expressed proteins are either inactive or

insufficiently active due to altered stoichiometry and other
issues.
The creation of endogenous epitope tags is a particu-

larly powerful use of human somatic cell gene-targeting
technology. One important limitation to the use of gene
targeting for the creation of complete knockouts in human
cells has been the need for sequential targeting of multiple
alleles. As such, attempts to create homozygous deletions
of genes in human cells have been limited to the few
known immortal human cell lines that are diploid (or
near-diploid). In contrast, the successful application of
endogenous epitope tagging only requires that a single
allele be modified, making it possible to create epitope
tags in virtually any diploid or aneuploid human cell
line that can be cultured, infected with AAV and cloned.
In fact, of the cells used in this study, RPE–hTERT,
BJ–hTERT and HCT116 are near-diploid, whereas A172
and LN229 are aneuploid.
During preparation of this manuscript, Zhang et al. (16)

described a related approach for the creation of endogen-
ous epitope tags in human cells and their application to
CHIP/CHIP studies. The approach they describe is differ-
ent from that described here in that the epitope tag was
prebuilt into the acceptor vector and as such simplifies
creation of epitope-tagging vectors by a single step.
However, one disadvantage of the vector architecture
described by Zhang et al. is that epitope tag must be
placed in the carboxyl terminus of the encoded protein.
Furthermore, the vector system described herein provides
the option of using the promoter trap architecture, leading
to substantially higher efficiencies of targeted integration
than those reported by Zhang et al. The next generation of
epitope-tagging vector systems will likely use a combina-
tion of the approaches described by Zhang et al. and those
described herein, and will also likely employ dual tags to
avoid the contaminants common to single tag
purifications.
In summary, here, we describe and implement a general-

izable approach that makes it possible to create epitope
tags of endogenous genes in human cells in the same time
frame that would otherwise be needed to create and vali-
date polyclonal antibodies. Further implementation and
refinement of this approach may ultimately make it pos-
sible to pursue large-scale proteomics approaches in
human cells in the same way as they are currently being
pursued in more genetically tractable model organisms.
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