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ABSTRACT

RNA ligases participate in repair, splicing and edit-
ing pathways that either reseal broken RNAs or alter
their primary structure. Here, we report the charac-
terization of an RNA ligase from the thermophilic
archaeon, Methanobacterium thermoautotrophi-
cum. The 381-amino acid Methanobacterium RNA
ligase (MthRnl) catalyzes intramolecular ligation
of 5’-PO4 single-strand RNA to form a cov-
alently closed circular RNA molecule through
ligase-adenylylate and RNA-adenylylate (AppRNA)
intermediates. At the optimal temperature of 658C,
AppRNA was predominantly ligated to a circular
product. In contrast, at 358C, phosphodiester bond
formation was suppressed and the majority of the
AppRNA was deadenylylated. Sedimentation analy-
sis indicates that MthRnl is a homodimer in solution.
The C-terminal 127-amino acid segment is required
for dimerization, is itself capable of oligomeization
and acts in trans to inhibit the ligation activity of
native MthRnl. MthRnl can also join single-stranded
DNA to form a circular molecule. The lack of speci-
ficity for RNA and DNA by MthRnl may exemplify an
undifferentiated ancestral stage in the evolution of
ATP-dependent ligases.

INTRODUCTION

RNA ligases catalyze the formation of phosphodiester
bonds between the 50-phosphate and 30-hydroxyl termini
of RNA via three sequential nucleotidyltransfer reactions
(1). First, the ligase reacts with ATP, forming a covalent
ligase–AMP complex with the release of pyrophosphate.
In the second step, AMP is transferred from the ligase to
the 50-phosphate terminus of RNA to form adenylylated
RNA (AppRNA). Finally, a 30-hydroxyl group attacks the

AppRNA, forming a 50–30 phosphodiester linkage and
releasing AMP.

There are two families of RNA ligases, Rnl1 and Rnl2,
which are distinguished by polynucleotide substrate speci-
ficity (2,3). Rnl1 ligases catalyze the joining of broken ends
of single-stranded RNA generated by a site-specific RNA
endonuclease. Bacteriophage T4Rnl1 functions to repair
breaks in the anticodon loop of tRNALys (4). In yeast and
plants, tRNA ligase (Trl1) participates in intron splicing
(5,6). The intron is cleaved by a site-specific endonuclease
that recognizes the fold of the pre-tRNA; Trl1 then joins
the two halves of the tRNA. Yeast Trl1 is also responsible
for nonspliceosomal splicing of mRNA in the unfolded
protein response pathway (7). An Rnl1-type enzyme has
been characterized in Autographa californica Baculovirus,
although the biological role of this ligase is unknown (8).

The second type of RNA ligase, Rnl2, repairs breaks in
double-stranded RNA. While this type of RNA ligase is
found in all three phylogenetic domains (3), a biological
function is firmly established only for the kinetoplastid
RNA ligases (9–11). Kinetoplastid RNA ligases are
involved in altering the translational reading frame of
mitochondrial mRNAs by the insertion or removal of uri-
dines, directed by a guide RNA sequence. In bacterioph-
age T4, a second RNA ligase (T4Rnl2) preferentially joins
nicks in double-stranded RNA or RNA termini bridged
together by a DNA template strand (2,3). Biochemical and
structural analysis of T4Rnl2 shows that specificity for
RNA is dictated by two terminal ribonucleotides on the
30-OH side of the nick, while the rest of the nucleotides can
be replaced by DNA (2,12).

T4Rnl1 and T4Rnl2 are monomeric proteins composed
of two structural domains (2,13,14). The N-terminal ade-
nylyltransferase domains of the enzymes are structurally
similar to each other and contain the defining sequence
motifs found in the covalent nucleotidyltransferase super-
family (15). Members of this family include ATP-depen-
dent DNA ligases and GTP-dependent mRNA capping
enzymes. In contrast, the C-terminal domain of T4Rnl1
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and T4Rnl2 are structurally and functionally distinct from
each other, as well as from the OB-fold of C-terminal
domain found in DNA ligases and mRNA capping
enzymes (2,13). Mutational analysis suggests that specifi-
city for RNA is dictated in part by the C-terminal domain.
The isolated adenylyltransferase domain of T4Rnl2 can
catalyze steps 1 and 3 of the ligation reaction, but is inac-
tive in overall nick-sealing activity and defective in binding
to a nicked duplex substrate (14). Residues important for
the second step of ligation were mapped within the
C-terminal domain of T4Rnl2 (16). In T4Rnl1, removal
of the C-terminal domain abolished specificity for tRNA
ligation (17). These findings suggest that the C-terminal
domain of RNA ligase is important for polynucleotide
substrate recognition and specificity.

All archaeal species encode intron-containing tRNAs
that are cleaved at a bulge-helix-bulge motif by a splicing
endonuclease (18–21). The two halves must be joined
enzymatically for the tRNA to function in protein synth-
esis. Several crenarchaeon pre-rRNAs are known to form
circular RNA intermediates during rRNA processing,
generated by intramolecular ligation events of two RNA
termini (22,23). An intron has been reported in at least one
protein-coding gene in the crenarchaea (24,25). The pre-
sence of bulge-helix-bulge-like motifs in pre-rRNA and
pre-mRNA at the processing sites suggests that the
intron sequences are removed by the same splicing endo-
nuclease. While the processes of tRNA end-joining and
rRNA circularization have been detected in cell extracts
(26–30), the enzymes that catalyze the ligation reactions
have not been identified.

A search for polypeptides resembling T4Rnl2 identified
candidate RNA ligases from six species of archaea (3). The
N-terminal segment of the putative archaeal RNA ligases
contained all the defining sequence motifs of the covalent
nucleotidyltransferase superfamily. Remarkably, the
C-terminal segment bears no resemblance to the primary
structure of any known polynucleotide ligases or capping
enzymes. These findings raise questions about the evolu-
tion and substrate specificity of archaeal ligases.

Here, we characterized the RNA ligase encoded by
Methanobacterium thermoautotrophicum DH open reading
frame MTH1221, which we have named MthRnl. We
demonstrated that this 381-amino acid MthRnl is a ther-
mophilic ligase that catalyzes intramolecular ligation of
single-stranded RNA through ligase-adenylylate and
AppRNA intermediates. MthRnl is also able to circularize
single-stranded DNA. MthRnl is a homodimer in solu-
tion, and the C-terminal segment is required for dimeriza-
tion, thermoreactivity and strand-joining activity.

MATERIALS AND METHODS

Cloning, expression and purification of recombinantMthRnl

Methanobacterium thermoautotrophicum DH genomic
DNA was used as a PCR template to amplify the
MTH1221 ORF. Oligonucleotide primers were designed
to introduce an NdeI restriction site 50 of the predicted
translation start codon and a BamHI site at the 30 of the
predicted stop codon. A 1.1-kb NdeI–BamHI fragment

was inserted into pET16b (EMD Chemicals, Madison,
Wisconsin, USA) to generate the plasmid pET-MthRnl.
Using this method, the MTH1221 ORF was fused in-
frame with a 20-amino acid N-terminal leader peptide
containing 10 tandem histidines, under the control of a
T7 RNA polymerase promoter. A C-terminal truncation
mutant MthRnl (1–253) was constructed by PCR ampli-
fication using an antisense primer that introduced transla-
tion stop codon in lieu of the codon for Ala254 and a
BamHI site immediately 30 of the new stop codon. An
N-terminal truncation mutant MthRnl (255–381) was
constructed by PCR amplification using a sense primer
that introduced a start codon in lieu of Ala 254 and NdeI
site at the new start codon. The PCR products were
digested with NdeI and BamHI, and then inserted into
pET16b. DNA sequencing confirmed that no alterations
in the inserted DNA sequence were introduced during the
PCR amplification and cloning procedures.
The pET-MthRnl plasmid was transformed into

Escherichia coli strain Rossetta2-(DE3) (EMD
Chemicals, Madison, Wisconsin, USA). A 0.5 l culture
of E. coli Rossetta2-(DE3)/pET-MthRnl was grown at
378C in Luria-Bertani medium containing 0.1mg ampicil-
lin/ml until the A600 reached 0.3. Isopropyl-b-D-thiogalac-
topyranoside (IPTG) was then added to the culture to a
final concentration of 0.3mM. Incubation was continued
at 378C for 3 h. Cells were harvested by centrifugation and
resuspended in 20ml buffer A [50mM Tris–HCl (pH 7.5),
250mM NaCl, 10% sucrose]. Lysozyme was added to a
final concentration of 25 mg/ml. The sample was then soni-
cated for 30 s. Triton X-100 was added to 0.1% final con-
centration and sonication was repeated. Insoluble material
was removed by centrifugation. The soluble extract was
then applied to a 1-ml column of Ni-NTA agarose
(Qiagen, Valencia, California, USA) that had been equili-
brated with buffer A containing 0.1% Triton X-100. The
column was washed with the same buffer and then eluted
stepwise with buffer B [50mM Tris–HCl (pH 8.0), 250mM
NaCl, 10% glycerol] containing 0, 50, 100, 200, 500 and
1000mM imidazole. The polypeptide composition of the
column fractions was monitored by SDS–polyacrylamide
gel electrophoresis (PAGE). The recombinant MthRnl
protein was retained on the column and was recovered
predominantly in the 200mM fraction (�2mg of total
protein). For expression of MthRnl (1–253) and MthRnl
(255–381) proteins, E. coli cells were grown at 378C until
A600 reached 0.4. Cultures were then placed on ice for
10min, adjusted to 2% ethanol and 0.4mM IPTG and
were further incubated at 178C for 18 h with constant
shaking. Both proteins were purified by Ni-NTA chroma-
tography as described above. Protein concentrations were
determined by the Bio-Rad dye-binding assay, using
bovine serum albumin (BSA) as the standard.

Adenylyltransferase assay

Standard reaction mixtures (20ml) containing 50mM
Tris–HCl (pH 8.0), 5mM dithiothreitol (DTT), 0.5mM
MgCl2, 5 mM [a32P]ATP and 40 pmol of MthRnl were
incubated for 5min at 508C, unless otherwise specified.
The reactions were quenched with 1% SDS and the
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products were separated by SDS–PAGE. The radiolabeled
ligase–AMP adduct was visualized by autoradiography of
the dried gel and quantified by scanning the gel with a
Storm PhosphorImager.

Ligation assay

Standard reaction mixtures (10 ml) containing 50mM Tris–
HCl (pH 6.5), 0.5mM MgCl2, 0.5 pmol 32P-labeled RNA
or DNA and T4Rnl2 or MthRnl, with or without ATP,
were incubated for 30min at indicated temperatures.
Reactions were initiated by adding enzyme and terminated
by the addition of 10 ml of 98% formamide/20mM EDTA.
Products were resolved on denaturing 18% polyacrylamide
gel containing 7M urea in 0.5� TBE. The extent of ligation
(circular/circular+ single stranded) was quantified by
scanning the gel with a PhosphorImager.

Glycerol gradient sedimentation

Aliquots (30mg) of the Ni–agarose preparations of the
full-length or truncated MthRnl proteins were mixed
with marker proteins (catalase, BSA and cytochrome c)
in 0.1ml of buffer B. The mixtures were layered onto
4.8ml 15–30% glycerol gradients containing buffer C
[50mM Tris–HCl, (pH 8.0), 150mM NaCl, 2mM DTT,
0.05% Triton X-100]. The gradients were centrifuged in
a Beckman SW50i rotor at 45 000 r.p.m. for 18 or 23 h at
48C. Fractions (�0.2ml) were collected from the bottoms
of the tubes. Aliquots (20ml) were analyzed by SDS–
PAGE. Polypeptides were visualized by staining with
Coomassie blue dye. Aliquots (2 ml) of each fraction were
assayed for adenylyltransferase activity as described above.

Ligation substrates

Synthetic 24-mer RNA (50-AUUCCGAUAGUGCGUG
UCGCCCUU) and DNA (50-ATTCCGATAGTGCGT
GTCGCCCTT) oligonucleotides were labeled with
[g-32P]ATP at the 50-end using T4 polynucleotide kinase.
Radiolabeled AppRNA was prepared by ligase-mediated
AMP transfer of 32P-labeled pRNA in the presence of
1mM ATP as described (14). Radiolabeled products
were then purified by electrophoresis through a nondena-
turing polyacrylamide gel.

RESULTS

Purification and adenylyltransferase activity ofMthRnl

We produced the 45-kDa MthRnl as a His10-tagged fusion
protein in E. coli and purified the recombinant protein by
Ni–agarose chromatography (Figure 1A). The initial liga-
tion step involves formation of a covalent enzyme–AMP
intermediate (EpA). EpA formation by MthRnl was
detected with high sensitivity and specificity by label trans-
fer from [a-32P]ATP to the enzyme (Figure 1B). Note that
the lower molecular weight species associated with adeny-
lyltransferase activity was recovered in the peak Ni–agar-
ose fraction, suggesting that some MthRnl was
proteolyzed during expression in E. coli. The native size
of the MthRnl was determined by sedimentation through
a 15–30% glycerol gradient (Figure 1C). A single activity

peak (Figure 1C) coincided with MthRnl polypeptide
(data not shown). An S value of 6.1 was determined rela-
tive to protein standards sedimented in a parallel gradient,
suggesting that MthRnl is a homodimer in solution.

Figure 1. Purification and adenylyltransferase activity. (A) Purification
of MthRnl. Aliquots (10 ml) of the Ni–agarose preparation of His-
tagged MthRnl were resolved by SDS–PAGE followed by Coomassie
blue staining. The MthRnl polypeptide is denoted by an arrow. The
positions and sizes (kilodalton) of marker polypeptides are indicated on
the left. (B) Adenylyltransferase activity. Aliquots (1 ml) of indicated
Ni–agarose fractions were assayed for adenylyltransferase activity. A
32P-labeled ligase–AMP intermediate, denoted by an asterisk, was
visualized by autoradiography of the dried gel. (C) Sedimentation ana-
lysis. MthRnl was centrifuged in a 15–30% glycerol gradient as
described in Materials and methods section. Aliquots (1 ml) of the gra-
dient fractions indicated were assayed for adenylyltransferase activity,
gauged by the signal intensity of the radiolabeled MthRnl polypeptide
(PSL, photo stimulatable luminescence). The peaks of the marker pro-
teins, catalase (11.3 S), BSA (4.3 S) and cytochrome c (1.8 S), are
indicated.
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The adenylyltransferase activity was optimal between
558C to 658C and declined as the temperature was elevated
to 858C (Figure S1A). The extent of EpA formation
increased in proportion with the amount of input protein
(Figure S1B). EpA formation depended on a divalent
cation cofactor. This requirement was satisfied by 2mM
magnesium, manganese, cobalt and, to a lesser extent, by
calcium and zinc (Figure S1C). The activity was optimal
between 1–2mM MnCl2 and 0.5–1mM MgCl2 (data not
shown). EpA formation increased as a function of ATP
concentration and reached saturation near 10 mM ATP
(Figure S1D). Half saturation was achieved at �1 mM
ATP. Based on the molar amount of AMP transfer
versus the amount of ligase added, we estimated that
�2% of input enzyme molecules were converted to
32P-EpA at saturating ATP. The remaining enzyme pre-
paration likely consisted of preadenylylated enzyme.

Ligation activity

We assayed the ligation activity of MthRnl using
32P-labeled 24-mer RNA (pRNA), at either 378C or
658C, in the presence or absence of ATP. At 378C in the
absence of ATP, MthRnl formed trace amount of circular

RNA product, which migrated �2-nt faster than the input
pRNA (Figure 2A). When the reaction temperature was
elevated to 658C, MthRnl converted most of input 24-mer
strand to a circular RNA. Inclusion of 1mM ATP in the
reaction suppressed the formation of ligated circle, and
accumulated AppRNA, which migrated 1-nt slower than
the input pRNA. As the ATP concentration was
increased, a transition from the circular product to
AppRNA was observed, with a midpoint at �50 mM
ATP (Figure S2A). As previously noted for T4Rnl2, the
excess ATP reacts with a free ligase and dissociate prema-
turely from AppRNA (31). The adenylylated ligase is
unable to bind to and seal the AppRNA strand.
We asked whether MthRnl is capable of joining

32P-labeled DNA oligonucleotide (pDNA) (Figure 2B).
In the presence of ATP at 658C, MthRnl readily trans-
ferred the AMP to pDNA to form adenylylated DNA
(AppDNA). In the absence of ATP, MthRnl converted
pDNA into a DNA circle. In contrast, T4Rnl2 is unable
to circularize the DNA strand. Furthermore, MthRnl was
capable of circularizing chimeric 24-mer pDNA–RNA oli-
gonucleotides (12 nt of deoxyribonucleotides at 50-PO4

followed by 12 nt ribonucleotides at the 30-OH), or

Figure 2. MthRnl can circularize single-stranded RNA and single-stranded DNA at elevated temperature. (A) RNA ligation. Standard ligation
reactions containing 5 pmol MthRnl or T4Rnl2, with or without 1mM ATP, were incubated for 30min at either 378C or 658C as indicated. Reaction
products were resolved by denaturing PAGE. An autoradiogram of the gel is shown. Position of pRNA, AppRNA and circularized RNA (RNA
circle) are indicated. A control reaction, lacking enzyme, is shown in the lane indicated by (�). (B) DNA ligation. Identical to (A) except that the
substrate for ligation was 32P-labeled 24-mer DNA (pDNA). Reaction products, AppDNA and circularized DNA (cDNA) are indicated. (C) Kinetics
and temperature-dependency. A reaction mixture (50 ml) containing 50mM Tris–HCl (pH 6.5), 0.5mM MgCl2, 2.5 pmol pRNA and 10 pmol MthRnl
was incubated at either 358C, 558C, 658C or 758C. Aliquots (10 ml) were withdrawn at the times indicated and quenched immediately with
formamide–EDTA. The level of circular RNA product is plotted as a function of incubation time. (D) Identical to (C) except that the substrate
for ligation was 24-mer DNA.
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24-mer pRNA–DNA (12 nt ribonucleotides at 50-PO4

followed by 12 nt deoxyribonucleotides at the 30-OH)
(data not shown). These results indicate that MthRnl
does not discriminate between RNA and DNA for phos-
phodiester bond formation.
The rates of pRNA and pDNA circularization by

MthRnl at various temperatures are shown in Figure 2C
and D. The ligation activities were optimal at 658C for
both pRNA and pDNA circularization, but declined sig-
nificantly as the temperature decreased to 358C. While the
enzyme was initially active at 758C, the yield of circular
products ceased after a 10-min incubation. Approximately
0.5 pmol pRNA or 0.2 pmol pDNA can be circularized
per picomole of MthRnl in 30min. The rate of ligation
represents a single turnover reaction by the preadenyly-
lated enzyme, as ATP was omitted from the reaction to
detect overall ligation.
A native gel mobility shift assay was used to compare

the binding of MthRnl to pRNA and pDNA (Figure 3).
Binding reactions were performed in the absence of metal
to preclude the conversion of substrate to product during
incubation. Incubating MthRnl with pRNA or pDNA
resulted in formation of a discrete ligase-oligonucleotide
complex, which migrated slower than the free substrate.
The apparent dissociation constant, calculated as
described by Riggs et al. (32), was �1.5 mM for pRNA
binding. MthRnl also forms complex with pDNA with
comparable binding affinity (Kd=� 2 mM). These results
further support the finding that MthRnl do not discrimi-
nate between DNA and RNA.
Further characterization of MthRnl ligation activity

was performed using pRNA substrate. Ligation activity
required a divalent cation cofactor (Figure S2B).

Activity was optimal between 0.2 and 2mM magnesium
or manganese (data not shown). Cobalt supported liga-
tion, whereas zinc failed to promote formation of
AppRNA (Figure S2B). Trace amounts of AppRNA
were detected with copper. In the presence of calcium,
MthRnl accumulated AppRNA, suggesting that calcium
cannot support the third step of the reaction. The effect of
pH on circularization of pRNA was examined over a pH
range of 4.0–9.0 in the absence of ATP (data not shown).
The yield of circular product was optimal between pH 5.5
and 7.5. Reducing the pH to 5.0 resulted in accumulation
of AppRNA, and suppression of the intramolecular liga-
tion reaction. Further reduction of the pH below 4.5 abol-
ished all activities. Activity also declined gradually at
alkaline pH levels, such that the yield of circular product
at pH 9.0 was 20% of that at pH 7.0, without accumulating
AppRNA. Similar pH effects were found previously for
T4 and KVP40 Rnl2 (3,31). The standard ligation
reaction contained 25mM NaCl from the enzyme
solution. Activity was reduced by 20% in the presence of
100mM NaCl (data not shown) and by �50% in 200mM
NaCl.

Phosphodiester formation at a preadenylylated RNA

We examined step 3 of the ligation reaction in isolation
using preadenylylated RNA substrate. In the presence of
magnesium without added ATP, formation of a phospho-
diester bond was proportional to the amount of input
MthRnl at 658C (Figure 4A). MthRnl can also deadeny-
lylate AppRNA, by a reversal of step 2 of the ligation
pathway. This is evidenced by the appearance of pRNA,
which migrates between AppRNA and circular RNA. At
saturating concentrations of MthRnl, �80% of the input
AppRNA substrate was converted to ligated circles,
whereas the rest was deadenylylated to pRNA.

The extent of phosphodiester bond formation (step 3)
and deadenylylation (the reverse of step 2) of AppRNA
was analyzed at various temperatures (Figure 4C). Similar
to what was found for the overall ligation reaction, the
optimum temperature for phosphodiester bond formation
was 658C. At lower temperatures, however, the reverse
reaction is favored. This is shown by the shift in the dis-
tribution of pRNA and ligated circles. At 358C, nearly
40% of the input AppRNA was deadenylylated to form
pRNA, whereas only 20% was ligated to circular RNA.
Thus, under an optimum temperature, MthRnl promotes
the reaction forward in the direction of phosphodiester
bond formation and against deadenylylation.

Circularization and deadenylylation of AppRNA
requires the presence of a divalent cation (Figure 4B).
This requirement can be satisfied by 2mM magnesium,
manganese or cobalt, but not by copper or zinc. We
note that a reaction with calcium failed to convert the
AppRNA into a circular product. Instead, 50% of the
input AppRNA was deadenylylated to pRNA. This
result is in agreement with the effect of calcium in overall
ligation reaction (Figure S2B). MthRnl displayed a strong
step 3 arrest in the presence of calcium that resulted in
accumulation of the AppRNA intermediate.

Figure 3. Nucleic acid binding. (A) RNA binding. Reaction mixtures
(10ml) contained 50mM Tris–HCl (pH 8), 5% glycerol, 1 pmol pRNA
and 3.8, 7.5, 15, or 30 pmol MthRnl (from left to right within each
titration series). A control reaction, lacking enzyme, is shown in the
lane indicated by (�). After incubation for 5min at 228C, products
were analyzed by native PAGE and visualized by autoradiography.
(B) Identical to (A) except that the substrate for ligation was pDNA.
(C) The extent of pRNA binding and pDNA binding by MthRnl.
Percentage of protein–RNA complex (pRNA) and protein–DNA com-
plex (pDNA) formed was plotted as a function of input protein. The
data shown represent the average of three separate binding experi-
ments. Standard error bars are included for each datum point.
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Deletion analysis

To determine how the C-terminal segment contributes to
MthRnl function, the protein was split into two segments,
N-terminal MthRnl (1–253) and C-terminal MthRnl
(255–381). These truncated proteins were produced in
E. coli as His10-tag fusions and were purified from soluble
lysates by Ni–agarose chromatography. SDS–PAGE ana-
lysis revealed proteins of expected sizes (Figure 5A).

MthRnl (1–253) was defective in overall ligation but
retained the ability to form EpA intermediate, bind to
pRNA and transfer AMP to pRNA, albeit less efficiently
than wild-type ligase (Figure 5). Deletion of C-terminal
segment from MthRnl altered the thermoreactivity of

Figure 5. Characterization of MthRnl (1–253) and MthRnl (255–381).
(A) Purification. Aliquots (4mg) of Ni–agarose preparations of full-
length MthRnl, MthRnl (1–253), and MthRnl (255–381) were analyzed
by SDS–PAGE followed by Coomassie blue staining. The positions and
sizes (in kilodalton) of marker proteins are indicated on the left.
(B) EpA formation. Aliquots (0.2mg) of purified proteins in (A) were
assayed for adenylyltransferase activity with 0.16mM [a-32P]ATP at
508C. EpA complex was visualized by autoradiography of the dried
gel. (C) Effect of temperature on MthRnl (1–253)–AMP formation.
Standard adenylyltransferase reaction mixtures contained 250 pmol of
MthRnl (1–253). Reaction was incubated at indicated temperature.
Autoradiography of the dried gel is shown. (D) Effect of temperature
on MthRnl (1–253) ligation. Standard ligation reactions containing
20 pmol MthRnl (1–253) was incubated at indicated temperature
in the absence of ATP. Control reaction with 10 pmol of full-
length MthRnl incubated at 758C is indicated by (+). (E) RNA bind-
ing. Reaction mixtures contained 50mM Tris–HCl (pH 8), 2%
glycerol, 1 pmol pRNA and either 7.5, 15 and 30 pmol of
MthRnl(1–253) or MthRnl (255–381). Control reactions with 30 pmol
of full-length MthRnl or without protein are indicated by (+) and (�),
respectively.

Figure 4. Ligation of preadenylylated RNA substrate. (A) Protein titra-
tion. Reaction mixtures (10ml) containing 50mM Tris–HCl (pH 6.5),
0.5mM MgCl2, 0.5 pmol AppRNA and 0.5, 1, 2, 4, 8 pmol of MthRnl
(proceeding from left to right within each titration series) were incu-
bated for 30min at 658C. A control reaction, lacking enzyme, is shown
in the lane indicated by a (–). An autoradiogram of the gel is shown.
Positions of pRNA, AppRNA and RNA circle are indicated. (B) Metal
specificity. Reaction mixtures (10 ml) containing 50mM Tris–HCl (pH
6.5), 0.5 pmol AppRNA, 5 pmol MthRnl and either 0.5mM MgCl2,
MnCl2, CaCl2, CoCl2, CuSO2 or ZnSO2, were incubated for 30min
at 658C. Control reaction without divalent cation is indicated by (�).
(C) Temperature dependency. Reaction mixtures (10 ml) containing
50mM Tris–HCl (pH 6.5), 0.5mM MgCl2, 0.5 pmol AppRNA,
5 pmol MthRnl were incubated for 15min at either 358C, 458C, 558C,
658C and 758C. Level of AppRNA, RNA circle and deadenylylated
pRNA, are plotted as functions of temperature.
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the enzyme. The EpA and AppRNA formation was opti-
mum at 258C and 378C, respectively (Figure 5C and D).
The extent of EpA formation by MthRnl (1–253) at 258C
was 10% of the native MthRnl at 508C (Figures S1B and
S3B). MthRnl (1–253) accumulated AppRNA in the com-
posite ligation assay, either in the presence or absence of
ATP (Figure 5D and data not shown), and was unable to
convert isolated AppRNA to a circular RNA in the tem-
perature range of 25–758C (data not shown). Binding of
MthRnl (1–253) to pRNA was reduced to �30% seen
with the full-length protein at equivalent protein concen-
trations (Figure S3C). The extent of AppRNA formation
by MthRnl (1–253) at 258C was <10% of the native
enzyme at 658C (Figure S3D). The 30-kDa MthRnl
(1–253) sedimented as a single discrete component
between BSA and cytochrome c with an observed sedi-
mentation coefficient of 3.6, suggesting that MthRnl (1–
253) is a monomer (Figure 6A).
As expected, MthRnl (255–381) was inert for EpA for-

mation (Figure 5B). MthRnl (255–381) failed to form a
detectable protein–pRNA complex (Figure 5E) and did
not support overall ligation or AppRNA circularization
(data not shown). Mixing MthRnl (1–253) and MthRnl
(255–381) together did not restore ligation activity (data
not shown). Sedimentation analysis revealed that 17-kDa
MthRnl (255–381) self-associates to form a high-molecular
weight oligomeric species with S values ranging from 7.6 to
12.4 (Figure 6B). We conclude that the 253-amino acid seg-
ment at the N-terminal is capable of ligase-adenylylation
and RNA-adenylylation. The 127-amino acid segment at
the C-terminal has an intrinsic ability to self-associate and
this region is required for the phosphodiester bond forma-
tion and dimerization.
To further evaluate the role of the C-terminal region in

dimerization, we asked whether MthRnl (255–381) can
potentially associate with MthRnl and alter the ligation
activity. Full-length MthRnl was mixed with increasing
amounts of MthRnl (255–381) protein and then assayed
for ligation activity in the presence and absence of ATP.
Addition of MthRnl (255–381) inhibits the overall ligation
of native enzyme to circularize pRNA (Figure 7A). At 1:1
molar ratio, the activity was reduced to 60% of the
activity of MthRnl alone. Activity progressively declined
as concentration of MthRnl (255–381) was increased.
MthRnl (255–381) had little or no effect on ligase-
adenylylation or sealing preformed AppRNA (Figure 7B
and D), but elicited a concentration-dependent inhibition
on RNA adenylylation (Figure 7C). The inhibitory effect
was specific to MthRnl, as MthRnl (255–381) had little or
no effect on overall ligation or AppRNA formation by
T4Rnl2. The most likely explanation for these observation
is that inhibition is due to hetrodimerization between
MthRnl and MthRnl (255–381). MthRnl (255–381) may
disrupt MthRnl homodimerization and block the RNA
adenylylation step of the ligation pathway.

DISCUSSION

Here, we show that archaea possess a strand-joining
enzyme that can catalyze intramolecular ligation of

single-stranded RNA. Recombinant MthRnl reacts
with ATP to form a covalent ligase–AMP complex,
then transfers AMP to pRNA to form an AppRNA inter-
mediate and finally seals AppRNA to form a circular
RNA product. All three steps of the ligation reactions
require a divalent cation as a cofactor. We also determined
that calcium can support AppRNA formation, but does
not support phosphodiester bond formation, which is a
property shared with Methanobacterium DNA ligase
(33). The optimal temperature for strand-joining activity
was 658C, which is also the growth temperature of
M. thermoautotrophicum. Using the AppRNA intermedi-
ate as a substrate, we showed that MthRnl, at its optimal
temperature, favors phosphodiester bond formation to
promote the ligation reaction forward to completion.
Under suboptimal temperatures, however, deadenylyla-
tion of AppRNA was the preferred reaction. These results
suggest that MthRnl may alter its protein conformation
during the transition from step 2 and step 3 reactions. Rem-
odeling of active site in transition of step 2 to step 3 cata-
lysis has been suggested by the structures of T4Rnl2 (2).

Figure 6. Sedimentation profile of MthRnl (1–253) and MthRnl (255–
381). (A) Sample containing MthRnl (1–253) and marker proteins were
centrifuged in a 15–30% glycerol gradient at 45 000g for 23 h at 48C.
Aliquots of the gradient fractions were resolved by SDS–PAGE fol-
lowed by Coomassie blue staining. The glycerol gradient fraction num-
bers are specified above each lane. The identities of the polypeptides are
indicated. (B) Sample containing MthRnl (255–381) and marker pro-
teins were centrifuged in glycerol gradient. Distribution of MthRnl (1–
253) and MthRnl (255–381) was unaffected by the marker proteins in
the gradient (not shown).

6224 Nucleic Acids Research, 2008, Vol. 36, No. 19



A defining property of MthRnl is the apparent lack of
specificity to seal a polynucleotide substrate. MthRnl
forms a stable complex with both pRNA and pDNA
and the rate of circularization was comparable. The sub-
strate specificity of MthRnl differs from that of T4Rnl2
and Deinococcus ligase, which both discriminate between
RNA and DNA (12,34). MthRnl more closely resembles
T4Rnl1 and RM378 Rnl1, both of which are able to cir-
cularize DNA but less efficiently than RNA (35–37). Our
preliminary experiments show that MthRnl was unable to
join a nick on a double-stranded DNA substrate (Gu,H.,
Yoshinari,S. and Ho,C.K., unpublished data).

Another distinct feature of MthRnl is its ability to self-
associate to form a homodimer. Archaeal RNA ligase is
the only polynucleotide ligase known to homodimerize.
RNA ligases from phages (T4Rnl1, T4Rnl2 and KVP
40) and Deinococcus (DraRnl) are monomeric
(3,13,31,34) as are most DNA ligases. In this study, we
showed that the C-terminal segment (residues 255–381) is
required for homodimerization and is itself capable of

oligomerization. While this article was in preparation, the
van Tilbeurgh group reported a crystal structure of
Pyrococcus abyssi RNA ligase (an ortholog of MthRnl)
in complex with AMPPNP (38). Pyrococcus RNA ligase
adopts a homodimeric structure with an N-terminal
nucleotidyltransferase and C-terminal dimerization
domains. The dimerization interface is formed by a four-
helix bundle, from residues 245 to 313 in the Pyrococcus
RNA ligase (equivalent of MthRnl residues 243–310).
Additional contacts are found at the C-terminal end of
the protein, which protrudes into the active sites of the
partner molecules. Our results are in agreement with the
structure of Pyrococcus RNA ligase in that the C-terminal
domain of archaea ligase is responsible for dimerization.
Based on our deletion analysis, dimerization likely

contributes to the strand-joining activity of MthRnl.
Removal of the C-terminal segment significantly dimin-
ished the ligase-adenylylation and RNA-adenylylation
steps, and completely abolished phosphodiester bond
formation. The isolated C-terminal domain can suppress

Figure 7. Inhibition of MthRnl ligation activity by MthRnl (255–381). (A) Effect on overall ligation. Ten picomole of MthRnl was preincubated with
indicated amount of MthRnl (255–381) for 5min at 658C followed by standard ligation assay in the absence of ATP. (B) Effect on EpA formation.
Five picomole of MthRnl was preincubated with indicated amount of MthRnl (255–381), followed by standard adenylyltransferase assay. (C) Effect
on pRNA adenylylation. Identical to (A) except the ligation reaction contained 100mM ATP. (D) Effect on AppRNA-sealing activity. Identical to
(A) except that ligation reaction contained 0.5 pmol of AppRNA in the absence of ATP. Percent product were normalized to the control level in the
absence of MthRnl (255–381) (defined as 1.0) and then plotted as a function of added MthRnl (255–381) (closed circle). The data shown represent
the average of three separate experiments. Standard error bar are included for each datum point. For a control reaction in (A) and (C), 10 pmol of
T4Rnl2 was preincubated with indicated amount of MthRnl (255–381) for 5min at 258C prior to ligation assay at 258C as described (3). Percent
product were normalized to the control level in the absence of T4Rnl2 and then plotted as a function of added MthRnl (255–381) (open circle).
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the RNA-adenylylation step in trans. In light of the
structure of Pyrococcus RNA ligase, we envision that
C-terminal portion of the partner molecule makes direct
contact with RNA or active site residues to promote
strand-joining activity. Our preliminary experiments
show that deletion of 15 amino acid from the C-terminal
end severely reduces the MthRnl activity (Gu,H. and
Ho,C.K., unpublished data). We speculate that isolated
C-terminal domain associates with the monomeric
enzyme, but is incapable of inducing the conformation
changes necessary to catalyze the RNA-adenylylation
step. Alternatively, the N-terminal catalytic domains
need to be brought together as a dimer to promote the
step 2 reaction. Further mutational analyses should define
resides that are involved in dimerization, to address how
homodimerization contributes to ligation activity.
The physical and biochemical properties of MthRnl

raise interesting questions about the kinds of reactions
that MthRnl catalyzes in vivo. Archaea needs RNA
ligase to perform tRNA splicing. Introns are also found
in pre-rRNA as well as pre-mRNA in some crenarchaea
(22,23,25). These RNAs contain bulge-helix-bulge-like
motifs at the intron–exon boundary, which are cleaved
symmetrically by the splicing endonuclease to produce
single-stranded overhangs at both ends of exon and
intron. Evidence suggests that joining of exons and circu-
larization of introns take place concurrently (22,28). We
speculate that homodimeric structure of archaeal RNA
ligase may facilitate both ligation events simultaneously.
Studies of tRNA end-joining reaction in Haloferax vol-

canii cell extracts suggests that the mechanism of tRNA
ligation is likely different from that used by yeast and
plants. In yeast and plants, the intrinsic end-healing
activity of Trl1 first converts the 20-, 30-cyclic phosphate
and 50-OH ends, generated by endonuclease cleavage,
into 20-PO4/3

0-OH and phosphorylates 50-OH by GTP-
dependent kinase (5). The 30-OH and 50-PO4 are subse-
quently joined to yield a 30–50 phosphodiester bond at
the spliced junction. The end-joining activity of Trl1 is
similar to the ligation activity of MthRnl, in that they
both require a divalent cation and ATP for joining the
30-OH and 50-PO4 ends. However, in H. volcanii, tRNA
end-joining reaction does not require a divalent cation,
and the 20-, 30-cyclic phosphate and 50-OH are joined by
a single-step reaction to form a 30–50phosphodiester link-
age (28,30). These findings raise the possibility that an
RNA ligase other than MthRnl may be responsible for
tRNA ligation. Indeed the MtRnl-like enzyme is not ubi-
quitous in all archaea species. Of the 48 archaeal genomes
that have been published, a credible homologue of
MthRnl is found in 29 species. It is possible that some
archaea species may have two different types of RNA
ligases, similar to mammalian cells where both yeast/
plant-type and H. volcanii-type ligation activities have
been detected (39–41). Alternatively, different archaea spe-
cies may have different types of RNA ligases.
Ho et al. (3) proposed that members of the covalent

nucleotidyltransferase superfamily evolved by fusion of
common Rnl2-like catalytic domain to a variable
domain to provide biological specificity for RNA proces-
sing and DNA repair. The archaeal RNA ligases

apparently fused the N-terminal catalytic domain to a
novel C-terminal domain that can mediate homodimeriza-
tion. The lack of specificity for polynucleotide substrate
(RNA versus DNA) by MthRnl might exemplify an undif-
ferentiated ancestral stage in the evolution of ATP-depen-
dent ligases. We hypothesize that the C-terminal region of
archaeal RNA ligases may also contribute to the selectiv-
ity for certain types of RNA or DNA, or promote inter-
actions with other proteins that are involved in nucleic
acid repair.

ACKNOWLEDGEMENTS

We thank Dr Stewart Shuman (Sloan Kettering Institute)
for Methanobacterium genomic DNA and for helpful
discussion and advice; and Dr Paul Gollnick and
Dr Michael Yu (SUNY Buffalo) for critically reading
the manuscript.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

University at Buffalo Interdisciplinary Research Develop-
ment Fund (UB2020). Funding for open access charge:
Department of Biological Sciences, SUNY at Buffalo.

Conflict of interest statement. None declared.

REFERENCES

1. Uhlenbeck,O.C. and Gumport,R.I. (1982) T4 RNA Ligase.
In Boyer,P.D. (ed), The Enzymes, Vol. 15, Academic Press,
New York, pp. 31–58.

2. Nandakumar,J., Shuman,S. and Lima,C.D. (2006) RNA ligase
structures reveal the basis for RNA specificity and conformational
changes that drive ligation forward. Cell, 127, 71–84.

3. Ho,C.K. and Shuman,S. (2002) Bacteriophage T4 RNA ligase 2
(gp24.1) exemplifies a family of RNA ligases found in all phyloge-
netic domains. Proc. Natl Acad. Sci. USA, 99, 12709–12714.

4. Amitsur,M., Levitz,R. and Kaufmann,G. (1987) Bacteriophage T4
anticodon nuclease, polynucleotide kinase and RNA ligase repro-
cess the host lysine tRNA. EMBO J., 6, 2499–2503.

5. Abelson,J., Trotta,C.R. and Li,H. (1998) tRNA splicing. J. Biol.
Chem., 273, 12685–12688.

6. Englert,M. and Beier,H. (2005) Plant tRNA ligases are multifunc-
tional enzymes that have diverged in sequence and substrate speci-
ficity from RNA ligases of other phylogenetic origins. Nucleic Acids
Res., 33, 388–399.

7. Sidrauski,C., Cox,J.S. and Walter,P. (1996) tRNA ligase is required
for regulated mRNA splicing in the unfolded protein response. Cell,
87, 405–413.

8. Martins,A. and Shuman,S. (2004) Characterization of a baculovirus
enzyme with RNA ligase, polynucleotide 5’-kinase, and polynu-
cleotide 3’-phosphatase activities. J. Biol. Chem., 279, 18220–18231.

9. McManus,M.T., Shimamura,M., Grams,J. and Hajduk,S.L. (2001)
Identification of candidate mitochondrial RNA editing ligases from
Trypanosoma brucei. RNA, 7, 167–175.
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