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Molecular dynamics �MD� simulations generate a canonical ensemble only when integration of the
equations of motion is coupled to a thermostat. Three extended phase space thermostats, one version
of Nosé–Hoover and two versions of Nosé–Poincaré, are compared with each other and with the
Berendsen thermostat and Langevin stochastic dynamics. Implementation of extended phase space
thermostats was first tested on a model Lennard-Jones fluid system; subsequently, they were
implemented with our physics-based protein united-residue �UNRES� force field MD. The
thermostats were also implemented and tested for the multiple-time-step reversible reference system
propagator �RESPA�. The velocity and temperature distributions were analyzed to confirm that the
proper canonical distribution is generated by each simulation. The value of the artificial mass
constant, Q, of the thermostat has a large influence on the distribution of the temperatures sampled
during UNRES simulations �the velocity distributions were affected only slightly�. The numerical
stabilities of all three algorithms were compared with each other and with that of microcanonical
MD. Both Nosé–Poincaré thermostats, which are symplectic, were not very stable for both the
Lennard-Jones fluid and UNRES MD simulations started from nonequilibrated structures which
implies major changes of the potential energy throughout a trajectory. Even though the Nosé–
Hoover thermostat does not have a canonical symplectic structure, it is the most stable algorithm for
UNRES MD simulations. For UNRES with RESPA, the “extended system inside-reference system
propagator algorithm” of the RESPA implementation of the Nosé–Hoover thermostat was the only
stable algorithm, and enabled us to increase the integration time step. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2943146�

I. INTRODUCTION

Molecular Dynamics �MD� is a fundamental technique
used to study various molecular systems, and is especially
useful in the study of protein folding. MD generates a clas-
sical trajectory by integrating Newton’s equations of motion.
The first use of MD may be tracked back to the 1950’s, when
innovative work was done by Alder and Wainwright on the
equilibrium properties of hard-sphere particles to obtain the
equations of state and the Maxwell–Boltzman distribution of
velocities.1,2 Since then, MD has been used in condensed
matter and biophysical simulations, and is especially impor-
tant for protein folding studies.3 MD is useful because it
provides information, not only about the equilibrium proper-
ties �thermodynamic averages�, but also about the dynamical
�kinetic� properties of the system studied �which includes the
time dependence and fluctuation magnitude�.

Conventional MD generates a microcanonical ensemble
�NVE�, in which the total number of particles, volume of the
system, and energy are conserved. The benefit of this conser-
vation of energy is that it allows one to test the numerical
stability of the simulation. However, when comparing theo-

retical to experimental data, it is more common to use the
canonical ensemble �NVT�, in which temperature, instead of
energy, is conserved. Several extensions of MD algorithms
have been proposed to generate a canonical ensemble.

One of the earliest such algorithms, proposed by Ander-
son, applies stochastic collisions and randomly chooses the
particle for resetting the velocity from the Maxwell–
Boltzmann distribution for a given temperature.4 However,
due to discontinuities in the trajectories, and because the al-
gorithm does not provide a valid method to evaluate how the
system is working �because there is no conserved quantity
for which to test�, Andersen’s method is not used widely.
Employing the same principle used by Andersen, that of a
stochastic thermostat, Langevin dynamics may be used to
generate a canonical ensemble.

Langevin stochastic dynamics utilizes friction and ran-
dom forces to keep temperature constant. The average mag-
nitude of the random forces and the friction are related in
such a way as to guarantee that the fluctuation-dissipation
theorem is obeyed.5 Langevin stochastic dynamics closely
reproduces the physical principles which are responsible for
the generation of a canonical ensemble. Langevin dynamics
is often used as a reference for other thermostat algorithms.
The only disadvantage is that there is no conserved quantity
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with which to measure the accuracy of the Langevin stochas-
tic dynamics used in the simulation.6 Berendsen et al. modi-
fied this Langevin equation to introduce only global coupling
between the system studied and the heat bath.7 The global
coupling is realized by supplementing the equation of motion
by a first-order equation for the kinetic energy, in which the
difference between the instantaneous kinetic energy and its
target value is the driving force.7 Although Berendsen pro-
duced a very popular, stable algorithm, it is not associated
with a well-defined ensemble8 �i.e., it does not generate the
exact canonical ensemble�, and it still lacks a conserved
quantity; therefore, it is not an ideal algorithm.

In order to overcome the shortcomings of the Berendsen
algorithm, Nosé introduced a method that generates the exact
canonical distribution by extending the Hamiltonian.9,10 This
extended Hamiltonian �H� consists of the Hamiltonian of the
physical system and an additional term describing the kinetic
and potential energy associated with the degrees of freedom
representing the thermostat. Conservation of this extended
Hamiltonian may then be used to test the stability of the
algorithm. The Nosé–Hoover thermostat10,11 is obtained
through noncanonical transformations of the variables from
the equations of motion that do not leave the form of the
Hamiltonian equations invariant.12 This is the reason why the
symplectic algorithm �i.e., the algorithm whose numerical
solution is exact for the perturbed Hamiltonian up to an ex-
ponentially small error13� cannot be employed directly with
the Nosé–Hoover thermostat.

Bond et al.13 used Poincaré time transformations14 in
order to construct a system of invariant Hamiltonian equa-
tions which generate a canonical ensemble. This facilitates
implementation of the numerical integrator with the sym-
plectic property.13 Following this work, Nosé designed
an explicit symplectic integration algorithm for the
Nosé–Poincaré thermostat.15

All-atom MD studies of protein folding are impractical
because they do not allow a large enough time scale to be
used for comparison with experimental data.3 By contrast,
coarse-grained models, in which amino acids are represented
by a few centers of interaction, extend the time scale of the
simulation by several orders of magnitude. The time scale
may be extended further by using a multiple-step reversible
reference system propagator �RESPA�.16,17 In general,
multiple-time-step methods work by dividing the forces into
fast- and slow-varying ones; slow-varying forces are inte-
grated with regular �large� time steps, while fast-varying
forces are integrated with several, smaller substeps that are
an integral fraction of the regular time step. The united-
residue �UNRES� model is a physics-based coarse-grained
one developed in our laboratory over the last several years,
and has been extended for use with MD �Refs. 18 and 19�
and RESPA.20

In this work, we implemented the Nosé–Hoover and
Nosé–Poincaré algorithms in UNRES molecular dynamics,
both with and without RESPA, in an attempt to determine
which is the better algorithm �in terms of both stability and
computational time� for studying protein folding.

II. METHODS

The dynamics of a physical system consisting of par-
ticles with coordinates qi, momenta pi, masses mi, and inter-
actions described by the potential V is expressed by New-
ton’s equations of motion,

q̇i =
pi

mi
, ṗi = −

�

�qi
V�q� . �1�

These equations of motion can be integrated using the stan-
dard velocity Verlet algorithm.21,22 The ensemble generated
by solving these equations of motion is microcanonical
�NVE�, which conserves the total number of particles, vol-
ume of the system, and energy, and is the starting point for
our work with thermostats that produce a canonical �NVT�
ensemble, since NVE is not appropriate for comparing theo-
retical data with experimental data measured by NVT.

A key concern in MD simulations is the maintenance of
constant temperature, either by using Langevin dynamics, in
which friction and random forces compensate to maintain
constant temperature, or by coupling the system to a thermo-
stat. Our goal in implementing the Nosé–Hoover and Nosé–
Poincaré algorithms was to determine which one was the
most stable so that we could then integrate it with our UN-
RES model for MD simulations. Because Nosé–Hoover was
considered to be a weaker algorithm, i.e., it is not a Hamil-
tonian system, even though it does have a conserved quantity
�the total extended energy, Eext, defined in Eq. �3�� that can
be controlled and, although time reversible, it does not pro-
duce the desired canonical symplectic structure,13 we never-
theless decided to examine the performance of both Nosé–
Hoover and Nosé–Poincaré methods with UNRES. In work
by Bond et al.13 in 1999, the Nosé–Poincaré method was
shown to be more stable than Nosé–Hoover; this algorithm
was improved upon by Nosé in a paper from 2001.15 Here,
we first implement the Nosé–Hoover �NH96� algorithm,12

and then the Nosé–Poincaré �NP01 �Ref. 15� and NP99 �Ref.
13�� algorithms, and compare them with the results of Ber-
endsen and Langevin dynamics.

Both the Nosé–Hoover and Nosé–Poincaré thermostats
are based on an extended Hamiltonian, which consists of a
physical system of kinetic and potential energy, and also a
term for the thermostat represented by a virtual particle. For
our purposes, we introduced p̃ which describes the scaled
momenta of the physical particles in the system with masses
m; V represents the potential energy of the system as a func-
tion of its coordinates q. In the present context, V represents
the Lennard-Jones potential energy or the UNRES potential
energy. The position and momenta of the artificial particle
representing the thermostat are denoted as s and �, respec-
tively. A constant Q is the artificial mass of the thermostat
particle. The number of degrees of freedom of the system is
represented by g; k is the Boltzmann constant; and T is the
temperature of the bath. It should be noted that the real mo-
menta p= p̃ /s, and the kinetic energy of the system �Ek� is a
function of the real momenta. Coupling between the thermo-
stat and the physical system allows us to control and main-
tain the temperature constant.
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A. Nosé–Hoover

The Nosé–Hoover algorithm was implemented because
of its relevance to the other thermostats, even though it is not
symplectic and not Hamiltonian but it is time reversible. The
Nosé Hamiltonian is defined by

HNosé = Ek�p� + V�q� +
�2

2Q
+ �g + 1�kT� , �2�

where �=ln s. The integration scheme used here is the one
introduced by Martyna et al.12 �which is denoted here as
NH96�. In this scheme, the total extended energy �Eext�, as
opposed to the Hamiltonian �HNosé�, is the conserved quan-
tity, but Eext and HNosé are similar in form.

Eext = Ek�p� + V�q� +
�2

2Q
+ gkT� . �3�

The equations of motion for the system may now be written
as follows instead of Eq. �1�:

q̇i =
pi

mi
, ṗi = −

�

�qi
V�q� − pi

�

Q
, �4�

and, for the thermostat particle,

�̇ =
�

Q
, �̇ = 2Ek�p� − gkT . �5�

The integration scheme for NH96 is described by the
following equations, where the indices i indicate the real
system particle number, the indices n and n+1 represent the
discrete time step ŝ�1 /s, and the other superscripts n+1 /2,
*, and ** represent the intermediate variables between the

nth and �n+1�th time steps.

�* = �n +
�t

4
�2Ek�pi

n� − gkT� , �6�

ŝ = exp�−
�*�t

2Q
� , �7�

�n+1/2 = �n +
�*�t

2Q
, �8�

�n+1/2 = �* +
�t

4
�2Ek�pi

nŝ� − gkT� , �9�

pi
n+1/2 = pi

nŝ − � �V

�qi
�

n

�t

2
, �10�

qi
n+1 = qi

n +
pi

n+1/2

mi
�t , �11�

p
i
* = pi

n+1/2 − � �V

�qi
�

n+1

�t

2
, �12�

�** = �n+1/2 +
�t

4
�2Ek�p*� − gkT� , �13�

ŝ = exp�−
�**�t

2Q
� , �14�

�n+1 = �n+1/2 +
�**�t

2Q
, �15�

�n+1 = �** +
�t

4
�2Ek�p*ŝ� − gkT� , �16�

pi
n+1 = p

i
*ŝ . �17�

In the NH96 scheme, there is a clear separation of the
propagation of thermostat variables and the particle variables
of the real system. Only the kinetic energy of the real system
is used to update the thermostat variables at both the begin-
ning and end of the scheme �Eqs. �6�–�9� and �13�–�16�,
respectively�. Update of the real system variables uses ŝ,
calculated during the thermostat updates, to scale the real
momenta �Eqs. �10� and �17��.

The integration scheme proposed by Martyna et al.12 al-
lows for multiple time steps and a higher-order algorithm to
be applied for the thermostat part of the evolution operator
�as seen in Eq. �29� of Martyna et al.12�. We did not apply
this feature in our studies so that the results could be com-
pared to Nosé–Poincaré algorithms which do not have this
feature.

B. Nosé–Poincaré

The Nosé–Poincaré Hamiltonian,13 H, is derived from
the original Nosé Hamiltonian HNosé by applying the
Poincaré transformation of time.14

H = s	Ek�p̃/s� + V�q� +
�2

2Q
+ gkT ln s − H0


= s�HNosé� − H0� = s�H , �18�

where HNosé� differs from HNosé with g replacing g+1. The
constant H0 is the value of HNosé� under the initial conditions
such that H will be initially zero. The equations of motion,
using the Nosé–Poincaré Hamiltonian from Eq. �18�, are as
follows:

q̇i =
p̃i

mis
, ṗ̃i = − s

�

�qi
V�q� , �19�

ṡ = s
�

Q
,

�̇ = 2Ek�p̃/s� − gkT − �H�q, p̃,s,��

= Ek�p̃/s� − gkT�1 + ln s� − V�q� −
�2

2Q
+ H0. �20�

The following is the NP01 algorithm15 which couples
the system and the thermostat defined by the Nosé–Poincaré
algorithm:

sn+1/2 = sn�1 +
�n

2Q

�t

2
�2

, �21�
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�* = �n��1 +
�n

2Q

�t

2
� , �22�

p̃i
n+1/2 = p̃i

n − sn+1/2� �V

�qi
�

n

�t

2
, �23�

qi
n+1 = qi

n +
p̃i

n+1/2

mis
n+1/2�t , �24�

p̃i
n+1 = p̃i

n+1/2 − sn+1/2� �V

�qi
�

n+1

�t

2
, �25�

�** = �* + �Ek�p̃i
n+1/2/sn+1/2� − 1

2 �V�qn� + V�qn+1��

− gkT ln sn+1/2 + H0 − gkT��t , �26�

sn+1 = sn+1/2�1 +
�**

2Q

�t

2
�2

, �27�

�n+1 = �**��1 +
�**

2Q

�t

2
� . �28�

Prior to this formulation of NP01 by Nosé,15 Bond et
al.13 had used the integration scheme �denoted here as NP99�
which we also implemented. The Hamiltonian used is H of
Eq. �18�. The following set of equations makes up the NP99
algorithm.13

p̃i
n+1/2 = p̃i

n − sn� �V

�qi
�

n

�t

2
, �29�

�n+1/2 =
− 2C

1 + �1 − C�t/Q
, �30a�

where C is the following constant from the solution of a
quadratic equation �Eq. 35�b� of Ref. 13�:

C =
�t

2
�gkT�1 + ln sn� − Ek�p̃i

n+1/2/sn� + V�qn� − H0� − �n,

�30b�

sn+1 = sn�1 +
�n+1/2

Q

�t

2
���1 −

�n+1/2

Q

�t

2
� , �31�

qi
n+1 = qi

n +
�t

2
� 1

sn+1 +
1

sn� p̃i
n+1/2

mi
, �32�

�n+1 = �n+1/2 +
�t

2
�2Ek�p̃i

n+1/2/sn+1� − gkT

− �H�qn+1, p̃n+1/2,sn+1,�n+1/2�� , �33�

p̃i
n+1 = p̃i

n+1/2 − sn+1� �V

�qi
�

n+1

�t

2
. �34�

This integration scheme involves the solution of a qua-
dratic term in Eqs. �30a� and �30b�. Therefore, unlike NP01,
it is not fully explicit, but may be considered effectively
explicit to distinguish it from methods which are implicit in

the force terms. Also, the propagation of the momenta and
coordinates of the real particles and those of the thermostat
occurs in a different order in NP99 and in NP01. Nosé–
Poincaré uses the virtual momenta p̃i instead of the real
ones,pi, that are used by Nosé–Hoover. NP01 and NP99 have
fewer steps than NH96. Also, unlike NH96, which uses four
steps to update the thermostat velocity ���, NP01 and NP99
use only two steps.

C. Berendsen thermostat

Besides Nosé–Hoover and Nosé–Poincaré, the Ber-
endsen algorithm and the Langevin algorithm were tested for
comparison. In the Berendsen algorithm,7 the velocities at
each step of the integration algorithm are scaled by a factor
�, as defined by Eq. �35�.

� = 	1 +
�t

�T
� T0

T�t�
− 1�
1/2

. �35�

Here, �t is the integration time step, T0 is the bath tempera-
ture, T�t� is the instantaneous temperature as calculated from
the kinetic energy, and �T is Berendsen’s coupling constant to
the thermal bath. The selected �T is a compromise between a
small value, which provides tight coupling to the thermostat,
and hence a less natural trajectory �because of small fluctua-
tions in kinetic energy and large fluctuations in the total en-
ergy�, and a large value which provides a microcanonical
rather than a canonical ensemble. In the Berendsen algo-
rithm, coupling between the thermostat and the real system
does not generate an exact canonical ensemble, and there is
no conserved quantity with which to control the accuracy of
the algorithm.

D. Langevin stochastic dynamics

The Langevin equation describes the stochastic dynam-
ics of the system; in addition to the forces from the potential
energy, friction and random forces are acting on each par-
ticle. The Langevin equation for a system of particles is de-
scribed by Eq. �36�.

mi
d2qi

dt2 = −
�

�qi
V�q� − �

dqi

dt
mi + Ri�t� , �36�

where Ri�t� denotes the stochastic force acting on the gener-
alized coordinate qi. Ri�t� is a �-correlated function with zero
mean, as expressed by Eqs. �36a� and �36b�.

Ri�t�� = 0, �36a�

Ri�t�Ri�t��� = 2miRT��t − t�� . �36b�

As before, qi and mi are the coordinates and masses of the
particles which interact with the potential V. Temperature is
represented by T, and k is the Boltzmann constant. The fric-
tion coefficient is � �obtained from Stokes law�.

E. Model systems

1. Lennard-Jones fluid

In an initial test, the above algorithms were implemented
with the model Lennard-Jones fluid system, which is the
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same model system used for the original development of all
three thermostats. The system consisted of 108 particles in a
cubic periodic box. The potential energy was calculated us-
ing a minimal image convention without cutoff distance as

VLJ�r� = 4���	

r
�12

− �	

r
�6� . �37�

The kinetic energy for the Lennard-Jones fluid was calcu-
lated using the equation

Ek�p� = �
i

pi
2

2mi
. �38�

To compare with the results from Bond et al.,13 reduced units
for �, 	, and m, all equal to 1, were used. The system was
simulated for half a million steps, under the following con-
ditions: constant density 
*=0.95 �reduced units, 
*=
	3�,
constant temperature T*=6 �also in reduced units, T*

=kT�−1�, and Q=0.1. The initial configuration was generated
by randomly placing the first particle in the box and then
placing each sequential particle in the box in such a way as
to prevent overlapping with the particles already inside. Ini-
tial velocities were generated from the Maxwell–Boltzmann
distribution.

Values for the integration time step �t* from 0.0001 to
0.01 were tested �with reduced units, t*= t	�1/2m−1/2�. Spe-
cifically, the velocities and temperatures were calculated
from the kinetic energy so that their distribution in compari-
son to the reference Boltzmann �Gaussian� distribution for a
given temperature could be analyzed. Also, the conservation
of the Hamiltonian and, in the case of Nosé–Hoover, the
conservation of the total extended energy was of interest.

2. Polyglycine in UNRES

The primary goal of this work is the implementation of
the most stable thermostat for coarse-grained UNRES MD
simulations. In UNRES, each amino acid is represented by
two centers of interaction: the united peptide group �p� lo-
cated between two consecutive C� atoms, and the united side
chain3,23 �SC� �Fig. 1�. The UNRES effective energy is de-
rived as a restricted free energy by integrating over the fine-
grained degrees of freedom of the all-atom system and by
using Kubo’s cumulant expansion.24

The UNRES energy function is described by the follow-
ing equation:

U = wSC�
i�j

USCiSCj
+ wSCp�

i�j

USCipj
+ wpp �

i�j−1
Upipj

+ wtor�
i

Utor��i� + wtord�
i

Utord��i,�i+1�

+ wb�
i

Ub�i� + wrot�
i

Urot��SCi
,�SCi

,i�

+ �
m=3

6

wcorr
�m� Ucorr

�m� + wbond�
i

Ubond�di� + wSS�
i

USS;i.

�39�

Here USCiSCj
, USCipj

, and Upipj
describe the inter-side-chain,

the side chain–peptide, and the peptide-peptide interactions,
respectively. The local terms, Utor, Utord, Ub, and Urot, corre-
spond to the virtual-bond torsional, the double torsional, the
virtual-bond angles , and the side-chain rotamers, respec-
tively. Finally, Ucorr

�m� are the correlation terms describing cou-
pling between backbone-local and backbone-electrostatic in-
teractions, while Ubond is the virtual-bond-stretching
potential and USS is the disulfide-bond potential term ac-
counting for breaking and forming of disulfide bonds.25 No
truncation of the forces is used in UNRES simulations in
contrast to the minimal image convention used in Lennard-
Jones fluid simulations.

The internal parameters of Upipj
, Utor, Utord, and Ucorr

�m�

were derived by fitting the analytical expressions to the re-
stricted free energy surfaces of model systems computed at
the quantum mechanical level.26,27 The internal parameters
of USCiSCj

, USCipj
, Ub, and Urot were derived28 by using dis-

tribution functions determined from the Protein Data Bank
�PDB�. The USCiSCj

potential was refined by using a hierar-
chical optimization to derive the 4P force field.29 The Ubond

has the form of a simple harmonic potential. The w’s are the
weights associated with each energy term and are determined
by hierarchical optimization.30 The most recent UNRES
force field, optimized for canonical simulations, based on the
1GAB training protein with temperature dependence of the
weights, was used.31 The energy-term weights are given in
the last column of Table V of Ref. 31.

FIG. 1. The UNRES model for a polypeptide chain with the following
centers of interaction: the united peptide group �pi� and the united side chain
�SCi� represented by dark circles and ellipsoids, respectively. The open
circles represent the C� atoms which serve only as geometric points. The
geometry of the chain is described by the virtual-bond angles i, virtual-
bond dihedral angles �i, and the angles �i and �i, and the bond lengths bsci

that define the location of the side chain.
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The Cartesian coordinates of the interacting sites in the
UNRES model �which do not include C�’s� are not sufficient
to define the UNRES conformations. Therefore, the
Lagrange formulation of the equations of motion has been
adopted to describe the time evolution of a system character-
ized by a set of generalized coordinates. For the UNRES
model, we chose the virtual-bond vectors Ci

�
¯Ci+1

� and
Ci

�
¯SCi as the generalized coordinates q.19 The Cartesian

coordinates x of the interacting sites and their velocities v are
related to the generalized coordinates q and generalized ve-
locities q̇ by Eqs. �40� and �41�, respectively.

x = Aq , �40�

v = Aq̇ , �41�

where A is the transformation matrix from the generalized
coordinates q to the Cartesian coordinates of the interacting
sites x.19 The equation of motion for the UNRES model can
be written as Eq. �42�.

Gq̈ = − �qU�q� , �42�

with the inertia matrix G defined by Eq. �43�.

G = ATMA + H , �43�

where U is the UNRES potential energy, M is the diagonal
matrix of the masses of the interacting sites, and H is the part
of the inertia matrix that corresponds to the internal �stretch-
ing� motions of the virtual bonds.19

The kinetic energy �Ek� for UNRES consists of two
parts: one part arising from the UNRES degrees of freedom,
and the second part arising from the average kinetic energy
due to integration over the fine-grained degrees of freedom.19

The second part was assumed to be constant.19 Hence, the
kinetic energy can be expressed by Eq. �44�.

Ek =
1

2
q̇TGq̇ =

1

2�
i=1

n

�i�i
2, �44�

with

� = Vq̇ , �45�

where the inertia matrix G is defined by Eq. �43�, �i, i
=1¯n, are the eigenvalues of G, and V is the matrix of the
eigenvectors of G.19 The velocities expressed in normal co-
ordinates ��1,�2 , . . . ,�n� have a normal distribution. The av-
erage distribution of velocities in the UNRES model is cal-
culated from these normal coordinates computed from the
generalized velocities q̇ using Eq. �45� and then scaled by
��i as expressed by Eq. �46�.

�̄i = ��i�i. �46�

The projection and scaling of generalized velocities are nec-
essary to analyze isothermal simulations in UNRES, as only

the scaled quantities �̄i, i=1,2 , . . . ,n, should obey identical
normal distributions with zero mean and variance equal to
RT.

The UNRES energy is expressed in kcal/mol, the mass
of the system is in g/mol, and the distance is in Å. The
natural units of time for UNRES simulations is 48.9 fs,

which is hereafter referred to as the molecular time unit
�mtu�.19 The effective UNRES unit of time is larger than
48.9 fs.32

As a model system for UNRES, a 20-residue polygly-
cine chain was used, and the system was simulated for two
million steps at a bath temperature of 300 K. The stability
was tested for time steps ranging from �t=0.01 to �t=0.30
with Q=0.5, and also with Q=1.0. The simulation was
started from the extended polyglycine chain, and Maxwell–
Boltzmann distributions were used to initialize the velocities
for the target temperature.18 The implementation of the Ber-
endsen and Langevin algorithms was described by Khalili et
al.32

F. RESPA for the Nosé–Poincaré thermostat

For Nosé–Hoover, there already were two versions of
multiple-time-step RESPA integration schemes designed by
Martyna et al.,12 extended system outside-reference system
propagator algorithm �XO-RESPA� and extended system
inside-reference system propagator algorithm �XI-RESPA�.
However, because neither of the Nosé–Poincaré algorithms
had been designed for RESPA, it was necessary to augment
those algorithms here to fit RESPA.

RESPA versions of the Nosé–Poincaré algorithms NP99
and NP01 can be derived12,16,17,33 following the general rules
of Trotter factorization of the Liouville operator correspond-
ing to the extended Hamiltonian given by Eq. �18�, by split-
ting the Hamiltonian into two terms: fast-varying Hf, which
allows only smaller time substeps, and slow-varying Hs,
which allows large time steps, as expressed by Eqs.
�47�–�49�.

H =
1

2
Hs + �

k=1

r
1

r
Hf +

1

2
Hs, �47�

Hs = s�Vs�q� + Csplit − H0� , �48�

Hf = s	Ek�p̃/s� + Vf�q� +
�2

2Q
+ gkT ln s − Csplit
 , �49�

where Vs is the slow-varying potential energy, Vf is the fast-
varying potential energy, and the total potential energy is V
=Vs+Vf.

20 The constant Csplit is chosen so that both Hf and
Hs are zero at t=0. The time step for the small substep �t� is
an integral fraction of the large time step, �t�=�t /r, selected
with RESPA split r. The equations of motion for Hs are as
follows �without changing q or s in the integration of Hs�:

q̇i = 0, ṗ̃i = − s
�

�qi
Vs�q� , �50�

ṡ = 0, �̇ = H0 − Csplit − Vs�q� . �51�

The equations of motion for Hf are almost identical to those
for the full Hamiltionian,

q̇i =
p̃i

mis
, ṗ̃i = − s

�

�qi
Vf�q� , �52�
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ṡ = s
�

Q
, �̇ = Ek�p̃/s� − gkT�1 + ln s� − Vf�q� −

�2

2Q

+ Csplit. �53�

Applying the Nosé–Poincaré scheme to integrate the Hf

Hamiltonian is the same as applying it to the full Hamil-
tonian except for the use of the fast-varying energy Vf, in
place of the full potential energy V, and Csplit in place of H0.

The RESPA algorithm in both NP01 and NP99 versions
has similar structure: in the first part of the large step, the
velocities are propagated to half of the large time step using
slow-varying forces; next, small substeps are iterated in a
loop using fast-varying forces and the full NP01 or NP99
scheme with Vf, in place of the full potential energy V, and
Csplit in place of H0; and, in the second part of the large step,
the velocities are propagated from half of the large time step
to the full large step using slow-varying forces.

RESPA was tried for all three of the aforementioned
thermostats, each for several different numbers of substeps.
A split �number of substeps� equal to 1 was used initially in
order to compare the performance to that of the regular MD
tests without RESPA, as they should correspond. Simulations
were also run using splits equal to 2 and 4 �for both the
Lennard-Jones system and polyglycine with UNRES�, and 8
and 16 �for UNRES only�. The split number was constant for
a given run. For the Lennard-Jones fluid, we divided the
forces acting on a given particle into slow- and fast-varying
ones depending on the distance between the atom and the
atom exerting force on it, as given by Eqs. �60� and �61� of
Ref. 12; we used the same parameters of those equations as
given in Ref. 12. For UNRES, the components were classi-
fied into slow- and fast-varying forces as in the work of
Rakowski et al.20 Once again, the stability was tested for
time steps ranging from �t=0.01 to �t=0.30 with Q=0.5.
Each simulation ran for two million regular steps.

III. RESULTS AND DISCUSSION

A. Lennard-Jones fluid

In order to test our implementation of the Nosé–Hoover
�NH96� and Nosé–Poincaré �NP01 and NP99� thermostats,
several MD simulations of a Lennard-Jones fluid were car-
ried out. The distribution of the components of the velocity
vectors was analyzed and compared with the Boltzmann
�Gaussian� distribution for the given temperature �T*=6�, as
seen in Fig. 2�a�. The temperature distribution was also ana-
lyzed and compared to the theoretical distribution �Fig. 2�b��.
For all three thermostats, the distribution of velocities almost
perfectly reproduced the theoretical distribution. For both
�t*=0.003 and �t*=0.006, the differences between the
simulated and theoretical distributions are very small, al-
though the differences are slightly larger for �t*=0.006 �Fig.
2�a��. For the temperature distribution, however, only NH96
fits the theoretical distribution well; NP99 is close, but NP01
is shifted from the theoretical �Fig. 2�b��. The results for
temperature are closer to the theoretical distribution for �t*
=0.003 than for �t*=0.006 �the distributions for �t*
=0.003 are represented in Fig. 2�c��. The shift in kinetic
energy distribution was studied by others and commonly is

associated with insufficient ergodicity to provide the correct
energetic distributions on the time scale of simulations or
with a nonoptimal value for the thermostat mass Q,34,35 but
in these two simulations the only difference is the larger time
step which should not affect the ergodicity.

We have also investigated some dynamical quantities as-
sociated with time-correlated functions: the velocity autocor-
relation functions �Fig. 2�d�� and mean-square displacements
�Fig. 2�e�� as function of time for all three thermostats stud-
ied. In MD simulations, for this analysis we have used the
same parameters as in Ref. 13 �T*=1.5, 
*=0.95, Q=1.0,
�t*=0.005�. Dynamics associated with all three algorithms,
NH96, NP99, and NP01, evolve with the same time scale,
and both the velocity autocorrelation function and mean-
square displacement curves are almost identical for all three
thermostats. The results are also close to the original data
presented for the NP99 algorithm.13

To test the stability of the methods, the relative energy
error ��E� was calculated with the formula

�E = �E�t� − E�0�
E�0�

� , �54�

where E is Eext for Nosé–Hoover, and HNosé in the case of
Nosé–Poincaré, at times zero and t, respectively. The results
of these calculations may be seen in Fig. 3. For the small
time step, �t*=0.003, each method has a relatively stable
and small �E �less than 0.005� whereas, for the larger time
step, �E increases continuously, although still relatively
small. For the small time step, NH96 had the largest �E,
which is nearly twice as large as that of both NP01 and
NP99. For the large time step, however, the situation is re-
versed; although the relative energy errors increase for each
method, NH96 has the smallest values and NP01 the largest.
The results with the NP99 method are similar to those of
Bond et al.;13 the slightly larger �E’s appear here because no
potential energy smoothing was imposed. Bond et al.13 used
a truncated, shifted, and smoothed Lennard-Jones potential,
while a simple truncated potential was used here. Numerical
tests for the Lennard-Jones fluid illustrate that our implemen-
tations of the three thermostats are numerically stable.

B. UNRES model of polyglycine

Turning to UNRES, the distributions of velocities from
both Nosé–Poincaré and Nosé–Hoover algorithms were ana-
lyzed and compared with Langevin stochastic dynamics and
the Berendsen thermostat �Fig. 4�a��. The velocity distribu-
tions for NVE simulations were not analyzed because NVE
was used only as a reference for the stability of our algo-
rithms. It is clearly visible that the Berendsen thermostat
produces a non-Gaussian distribution of velocity with a
much higher maximum at zero velocity. Langevin provides
an exact Boltzmann �Gaussian� distribution, and the other
three thermostats introduced in this work for UNRES pro-
duced distributions of velocities close to Gaussian with only
slightly higher maxima for zero velocity for Q=1.0. Detailed
analysis of the distributions of all components of the scaled
normal velocities shows that this slightly higher maximum is
associated with the movement of the last virtual-bond vector
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which is not correlated enough with movement of the other
virtual-bond vectors and with the thermostat. The problems
with equipartition of kinetic energy have been reported for
all-atom simulations in which the thermal distribution of
light and heavy degrees of freedom converges very slowly to

the average distribution.34 For smaller Q �0.1 and 0.5� the
average distribution of velocities for NP01, NP99, and NH96
were also close to Boltzmann �Gaussian�, but the peaks were
higher and slightly narrower.

Figure 4�b� shows the distributions of temperatures from

FIG. 2. �a� Comparison of velocity distribution for Lennard-Jones fluid �108 particles, T*=6, 
*=0.95, �t*=0.006�. Histograms were generated from
simulations using thermostats: NP01 �pluses�, NP99 �x’s�, and NH96 �stars�. The solid line is the theoretical Boltzmann �Gaussian� distribution:
��1 /2�kT�exp�−v2 /2kT�. �b� Comparison of temperature distribution for �t*=0.006 �other same parameters as in �a��. The theoretical distribution is of the

form P�T̄���T̄�g−2�exp�−gT̄ /2T�. The y axis is in a logarithmic scale. NP01 is represented by circles, NP99 by triangles, and NH96 by stars. �c� Comparison
of temperature distribution for �t*=0.003 �other parameters are the same as in �b��. �d� Normalized velocity autocorrelation function for NP01 �dotted line�,
NP99 �dashed line�, and NH96 �solid line�. �e� The mean-square displacement as a function of time; both axes are in a logarithmic scale �line styles are the
same as in �d��.
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the same simulations as those used for the velocity analysis.
The theoretical distribution was calculated from the equation

P�T̄� � �T̄�g−2� exp�−
gT̄

2T
� , �55�

where T̄ is the instantaneous temperature calculated from the
actual kinetic energy, while T is the bath temperature
�300 K�, and g is the number of degrees of freedom �60�. For
the Nosé–Hoover and Nosé–Poincaré thermostats with Q
=1.0, very good agreement was obtained. Conversely, the
distribution for Berendsen obtained with �T=1.0 mtu has a
very sharp peak at the bath temperature, and a much nar-
rower distribution. For smaller Q, the distributions for Nosé–
Hoover and Nosé–Poincaré were also narrower and they de-
viate from the shape of the theoretical distribution. The best
value for Q is problem dependent,13 and UNRES simulations
are more sensitive to different values of Q than Lennard–
Jones fluid simulations. Different methods for determining
the optimal value of Q were reviewed by Barth et al.34

We have also analyzed distributions of the radius of gy-
ration from the same simulations as those used for the veloc-
ity and temperature distribution analyses. The distributions
of the radius of gyration for the Nosé–Hoover �NH96� and
Nosé–Poincaré �NP99 and NP01� thermostats, shown on Fig.

4�c�, are very similar to each other and are only slightly
shifted and wider when compared to the distribution of the
radius of gyration calculated from the Langevin simulation,
which can be used as a reference. Conversely, the distribu-
tion for Berendsen, obtained with �T=1.0 mtu has a very
sharp peak shifted to smaller values of the radius of gyration.

To investigate dynamical quantities associated with
time-correlated functions, we calculated the velocity autocor-
relation functions �Fig. 4�d�� as functions of time for all five
thermostats studied. For Langevin simulations, which we
consider as a reference, the velocity autocorrelation function
decreases fast to nearly zero after less than 20 mtu and ex-
hibits negligible oscillations about zero after that time. Con-
versely, the velocity autocorrelation function, computed from
Berendsen simulation, has the shape of a slowly damped sine
curve with a period of �90 mtu. Small oscillations are su-
perposed on the sine curve. The autocorrelation functions
corresponding to the NH96, NP99, and NP01 thermostats
also exhibit large-period sine behavior; however, the ampli-
tude of the sine curve is about 1

4 of that corresponding to the
Berendsen thermostat �with �T=1.0 mtu�, and it decays
quickly for all but the NP01 thermostat. It can, therefore, be
concluded that at least the NH96 and NP99 thermostat quali-
tatively reproduce the velocity autocorrelation function of
Langevin dynamics runs with UNRES, while the Berendsen
thermostat introduces a pronounced velocity correlation.

The stabilities of all the algorithms were then tested, this
time using the absolute energy error �H−H0� as opposed to a
relative energy error. For UNRES, the energy for the
polypeptide chain is parameterized to give proper energy dif-
ferences for different conformations, but the total value of
the energy is not so well defined, and thus we can consider
only the absolute energy error. As a reference, the stability of
NVE UNRES MD �Ref. 19� was used. For this NVE simula-
tion, the starting helical conformation was obtained by short
equilibration at 300 K using canonical UNRES MD, so that
the fluctuation of total energy was comparable to canonical
MD simulations at 300 K. NVE simulations, starting from an
extended structure which has a much higher energy, equili-
brated to approximately 800 K. Two sets of simulations with
NH96, NP01, and NP99 were carried out: the first one
started from the extended conformation �thermostats should
allow fast equilibration to the desired temperature�, and the
second set started from the all-�-helical conformation ob-
tained by short equilibration at 300 K as in case of NVE.

Figure 5�a� shows the maximum energy error as a func-
tion of step size for NH96, NP01, and NP99 for UNRES
simulations started from the high-energy extended structure
and also for NVE UNRES MD. Errors for NH96 were com-
parable to those for NVE up to a step size �t=0.10; for �t
=0.15 only NVE was stable with errors up to 1 kcal /mol.
Both NP01 and NP99 give larger errors for all time steps and
are stable up to �t=0.05 for NP01 but 0.10 for NP99. Details
of the simulations for �t=0.10 are shown in Fig. 5�b�. Al-
though both NP99 and NH96 are stable, the errors for NP99
are larger and grow over the first half million steps and then
stabilize around 10 kcal /mol. NP01 is not stable, as the er-
rors quickly grow to large values. Figure 5�c� shows the
maximum energy error as a function of step size for NH96,

FIG. 3. The relative energy errors, as a function of the number of steps,
from the MD simulations of the Lennard-Jones fluid using step size �a�
�t*=0.003 and �b� �t*=0.006 for two versions of Nosé–Poincaré �NP01,
dotted line, and NP99, thick solid line� and Nosé–Hoover �NH96, thin solid
line� thermostats. The relative energy error is in a logarithmic scale.
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NP01, NP99, and NVE for UNRES simulations started from
the pre-equilibrated helical conformation. Errors for NH96
are comparable to those for simulations started from the
high-energy extended structure. Both NP01 and NP99 give
smaller errors for all time-steps compared to simulations
started with the high-energy extended structure but are not
stable for larger time steps.

The computational time cost for each thermostat is com-
pared in Table I. Berendsen is the cheapest and Langevin is
the most expensive method. The thermostats in this work are
only slightly more expensive than Berendesen, with NP01
the cheapest and NH96 the most expensive. This is reason-
able, considering the number of steps taken in each integra-
tion scheme �see the Methods section for the algorithms�:
NP01 has eight steps, NP99 has seven but involves solving a
quadratic equation, and NH96 has 12 steps.

C. RESPA with Lennard-Jones fluid

The results reported in Sec. III A pertain to a high simu-
lation temperature �3000 K or 6 reduced temperature units�
at which the system is disordered. However, in our applica-
tion of the thermostats, we are interested in folded proteins
which are ordered systems. We found that, at T=300 K �0.6
reduced temperature units�, the Lennard-Jones fluid becomes
ordered with particles arranged in rows. The approximate
transition temperature is 400 K and the system becomes
definitely disordered at 600 K. We, therefore, have examined
the NH96 and NP99 thermostats for the Lennard-Jones fluid
at 300 K. The maximum absolute error after 500 000 MD
steps for runs with the NH96 and NP99 thermostats and for
NVE runs as reference are plotted in Fig. 6. The NVE runs
were always started from structures equilibrated at T
=300 K because they are not thermostated during the course
of a run.

FIG. 4. �a� Comparison of velocity distribution for a 20-residue polyglycine chain in UNRES �T=300 K, �t=0.05; Q=1.0 for NP01, NP99, and NH96; �T=1
for Berendsen; and �=0.01 for Langevin�. Histograms of scaled normal coordinate velocities �̄i �Eq. �46�� were generated from simulations using thermostats:
NP01 �circles�, NP99 �squares�, NH96 �triangles�, Langevin �stars, and a solid-line Gaussian fit�, and Berendsen �pluses, which deviates from a solid-line

Gaussian distribution�. �b� Comparison of temperature distribution �same parameters as in �a��. The theoretical distribution is of the form P�T̄�

��T̄�g−2�exp�−gT̄ /2T�. The y axis is in a logarithmic scale. NP01 is represented by pluses, NP99 by x’s, NH96 by stars, Langevin by squares, Berendsen by
a thin solid line, and the theoretical distribution by a thick solid line. �c� Comparison of distributions of radius of gyration for a 20-residue polyglycine chain
in UNRES MD generated from simulations using thermostats: NP01 �thin solid line�, NP99 �dashed line�, NH96 �dotted line�, Langevin �thick solid line�,
Berendsen �dot-dashed line�. �d� Comparison of normalized velocity autocorrelation functions for a 20-residue polyglycine chain in UNRES MD generated
from simulations using thermostats: NP01 �thin solid line�, NP99 �dashed line�, NH96 �dotted line�, Langevin �dot-dashed line�, and Berendsen �thick solid
line�.
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For runs started from structures equilibrated at T
=300 K �Figs. 6�a� and 6�c��, introducing RESPA with
split=4 improves the performance of the NH96 and NP99
algorithm, as well as of the reference NVE runs. However,
when runs are started from higher-temperature and, conse-
quently, a nonequilibrated structure, use of RESPA �with
split=4� does not improve the performance of the NP99 al-
gorithm for �t*�0.004; however, it does for the NH96 al-
gorithm in both the XI �Ref. 12� and XO �Ref. 12� versions.

D. RESPA with UNRES

To enable a large step size to be used, multiple-time-step
RESPA MD �Ref. 20� runs with Nosé–Hoover �both XI-
RESPA and XO-RESPA NH96 �Ref. 12�� and Nosé–Poincaré
�NP01 and NP99� thermostats were simulated. Figure 7
shows a comparison of the maximum energy error as a func-
tion of step size for different methods and different RESPA
splits for simulations started with high-energy extended
structure. RESPA with split=1 divides the forces into two
groups, fast and slow varying, but does not introduce a time
split for the fast-varying forces, and thus should be compa-
rable to UNRES MD simulations �Fig. 5�a��. This is the case
for all but NP01, which was less stable for RESPA with
split=1 than for regular UNRES MD with the same time
step. After introducing a time split, both NP99 and NP01 led
to large errors for all splits even for small time steps,
whereas NH96 is much more stable. XI-RESPA and XO-
RESPA NH96 led to comparable errors for split=1, and de-
viate for larger splits. XI-RESPA NH96 is the most stable

FIG. 5. �a� The maximum absolute energy errors as a function of the step size from the UNRES MD simulations of 20-residue polyglycine starting from the
high-energy extended structure for two versions of Nosé–Poincaré �NP01 and NP99� and Nosé–Hoover �NH96� thermostats, and, as a reference, results of
microcanonical �NVE� simulations started from the preequlibrated low-energy helical structure. Step sizes range from �t=0.01 to �t=0.15; Q=0.5. The
maximum absolute energy error is in a logarithmic scale. �b� The absolute energy error as a function of number of steps for Nosé–Poincaré �NP01 and NP99�
and Nosé–Hoover �NH96� thermostats at �t=0.10 for simulations starting from the high-energy extended structure. �c� The maximum absolute energy errors
as a function of the step size from the UNRES MD simulations of 20-residue polyglycine starting from the pre-equilibrated low-energy helical structure for
two versions of Nosé–Poincaré �NP01 and NP99� and Nosé–Hoover �NH96� thermostats, and microcanonical �NVE� simulations; the other parameters are the
same as in �a�.

TABLE I. Comparison of computational cost. �UNRES MD simulation us-
ing �t=0.05, Q=0.5, for 350 000 steps.�

Method Total time �s�

Nosé–Poincaré �NP01� 204
Nosé–Poincaré �NP99� 207
Nosé–Hoover �NH96� 217
Langevin 272
Berendsen 195
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method for all splits, with errors only slightly larger than
NVE RESPA, which was used as a reference. While it should
be true that errors decrease with increasing RESPA split, this
was observed only for NH96 and NVE in comparison to
regular UNRES MD �i.e., UNRES with no RESPA�. Only for
XI-RESPA NH96 were significant improvements obtained
with RESPA, although RESPA split=16 produced lower er-
rors only for larger time steps compared with RESPA split
=8. For the second set of simulations started from the pre-
equilibrated helical conformation, the errors for all algo-
rithms were more comparable to each other, as shown in Fig.
8. The errors did not decrease significantly with increasing
RESPA split but this increase allows larger time steps for all
methods studied when there are no large changes in the po-
tential energy of the simulated system. From a practical point
of view, this is less important as thermostats should allow
fast equilibration to the desired temperature and should not
be sensitive to changes in the potential energy of the system.

Details of the absolute energy errors as a function of the
number of steps for XI-RESPA NH96 RESPA simulations
started from the extended structure, at �t=0.15, are seen in
Fig. 9. UNRES MD without RESPA �i.e., split=0� is not
stable for such a large time step. Absolute energy errors grow
for split=2 and 4, but are still acceptably small. Increase of

the time split to 8 makes the errors smaller �oscillating
around the constant value, approximately 0.1�, but an in-
crease still further to 16 leads to no improvement. RESPA
thus allows an increase of the time step to larger values than
those used for regular UNRES MD.

Apart from conservation of the extended energy which
serves as a measure of the stability of a run, a feature of
interest of the algorithms under consideration is the behavior
of the distribution of temperature and other observables, par-
ticularly when the extended energy fails to be conserved. The
temperature distributions of the 20-residue polyglycine sys-
tem simulated using UNRES with the NH96 and NP99 ther-
mostats with RESPA �split=8� for various time steps, and
starting from either the extended or the equilibrated �-helical
structure, are shown in Fig. 10. It can be seen that the tem-
perature distribution for the system run with the NP99 ther-
mostat with �t=0.05 mtu, in which large nonconservation of
the extended energy is observed �Fig. 7�d��, differs signifi-
cantly from the theoretical temperature distribution and from
the distributions obtained for the other runs in which non-
conservation of the extended energy is not so pronounced.
On the other hand, the distributions of the radius of gyration
and the velocity autocorrelation function do not differ sig-
nificantly �data not shown�.

FIG. 6. The maximum absolute energy errors as a function of the step size from the Lennard-Jones fluid MD simulations at T=300 K �0.6 reduced
temperature units� without RESPA ��a� and �b�� and with RESPA with split=4 ��c� and �d��. The types of runs are as follows: NVE �stars�, NH96 �triangles�,
and NP99 �squares�, and the values of the time step were �t*=0.001, 0.003, 0.005, 0.006, and 0.01, respectively, for all runs. Runs �a� and �c� were started
from a system equilibrated at T=300 K while runs �b� and �d� were started from a system equilibrated at T=600 K.
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The computational time cost for XI-RESPA NH96 for
different splits is compared in Table II. The increase in com-
putational time is linear since the main cost is the evaluation
of the fast-varying forces at additional time steps. Introduc-
tion of multiple time steps increases the computational cost,
but enables us to use larger integration time steps. The larg-
est possible �t without RESPA is 0.10 for NH96 and NP01

thermostats �although NP01 leads to much larger errors�.
Upon introducing RESPA splits, 0.15 is the largest stable
time step for split=2 and 4, with errors smaller for split=4.
Further increase of RESPA split allows the increase of �t to
0.20. However, such an increase is not practical due to the
increase in computational time cost, as shown in Table II.
Small errors for simulations using �t=0.20 are produced

FIG. 7. The maximum absolute energy errors as a function of the step size from the UNRES MD simulations with RESPA of 20-residue polyglycine starting
from the high-energy extended structure for two versions of Nosé–Poincaré �NP01 and NP99� and Nosé–Hoover �NH96� thermostats and microcanonical
�NVE�. Nosé–Hoover was run with a XI-RESPA and a XO-RESPA version. Step sizes range from �t=0.01 to �t=0.30; Q=0.5. Simulations ran for two
million steps. The maximum energy error �y axis� is in a logarithmic scale. �a� RESPA with split=1, for �t=0.01 to �t=0.15. �b� RESPA with split=2, for
�t=0.01 to �t=0.15. �c� RESPA with split=4, for �t=0.01 to �t=0.15. �d� RESPA with split=8, for �t=0.01 to �t=0.20. �e� RESPA with split=16, for
�t=0.01 to �t=0.30.
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only with RESPA split=16, which is five times more expen-
sive than regular UNRES MD with �t=0.10.

IV. CONCLUSION

Algorithms for Nosé–Hoover �NH96� and two versions
of Nosé-Poincaré �NP01 and NP99� thermostats have been
compared for two different model systems: a simple
Lennard-Jones fluid, and a 20-residue polyglycine chain
modeled with an UNRES force field. All three methods pro-

vide the proper velocity and temperature distributions, with
Q adjusted depending on the model system. Unexpectedly,
when rapid changes of the potential energy occur or for
larger time steps, the Nosé–Poincaré algorithm, which has a
canonical symplectic structure, gives larger errors for both
model systems in the conserved quantity than Nosé–Hoover,
which does not have a canonical symplectic structure. This
feature is manifested to a moderate extent for the Lennard-
Jones fluid for which the energy change when passing to the

FIG. 8. The maximum absolute energy errors as a function of the step size from the UNRES MD simulations with RESPA of 20-residue polyglycine starting
from the pre-equilibrated low-energy helical structure for two versions of Nosé–Poincaré �NP01 and NP99� and Nosé-Hoover �NH96� thermostats and
microcanonical �NVE�. All parameters are the same as in Fig. 6.
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ordered configuration is smaller, and to a great extent for the
20-residue polyglycine system with UNRES in which the
energy drops sharply upon folding. Nosé–Hoover is less
stable only for smaller time steps for a Lennard-Jones fluid.
For more complicated systems such as the UNRES polypep-
tide chain, the implementation of the Nosé–Hoover algo-
rithm by Martyna et al.12 and the Nosé–Poincaré algorithm
perform comparably when started from equilibrated struc-
tures, while the Nosé–Hoover algorithm is always more
stable when a nonequilibrated extended structure is used as a
starting point. In a recent review, Bond and Leimkuhler ana-
lyzed the numerical stability of different integration schemes
for Nosé dynamics and also found that there are examples of
efficient nonsymplectic integrators.34 They concluded that
the advantage of the nonsymplectic Nosé–Hoover algorithm
over the symplectic Nosé–Poincaré algorithm is that the
former works with a physical momentum variable pi. The

Nosé–Poincaré algorithms use the virtual momenta p̃i and
the thermostat variable s computed at staggered time points
which can produce instability when s approaches zero.34 The
symplectic structure and the choice of virtual versus physical
variables are mostly independent, but both affect the stability
of the algorithm.

The greater sensitivity of the Nosé–Poincaré algorithm
compared to the Nosé–Hoover algorithm can be explained as
follows. In the Nosé–Poincaré Hamiltonian, the potential en-
ergy V is multiplied by the variable s. Because V depends
only on coordinates and the error in coordinates �including s�
is fourth order36 in the time step, the error in the conserved
quantity scales as the fourth time derivative of V or Vs for
the Nosé–Hoover and Nosé–Poincaré algorithm, respec-
tively. The fourth time derivative of Vs contains all deriva-
tives of V, i.e., even less rapid changes of V will contribute to
error.

Introducing Nosé–Hoover �XI-RESPA and XO-RESPA
NH96� and Nosé–Poincaré �NP01 and NP99� for multiple-
time-step UNRES RESPA MD produced a similar conclusion
that Nosé–Hoover is more stable for this model system. Here
XI-RESPA NH96 enabled us to increase the integration time
step from �t=0.10 to �t=0.15. Further increase of the time
step is possible only with a detriment to the computational
cost; the time split RESPA cost grows linearly with only a
slight increase of the largest stable time step. In conclusion,
the optimum thermostat for use with UNRES is NH96 with
XI-RESPA.
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