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Abstract
Electrically interfaced cortical networks cultured in vitro can be used as a model for studying the
network mechanisms of learning and memory. Lasting changes in functional connectivity have been
difficult to detect with extracellular multi-electrode arrays using standard firing rate statistics. We
used both simulated and living networks to compare the ability of various statistics to quantify
functional plasticity at the network level. Using a simulated integrate-and-fire neural network, we
compared five established statistical methods to one of our own design, called center of activity
trajectory (CAT). CAT, which depicts dynamics of the location-weighted average of spatiotemporal
patterns of action potentials across the physical space of the neuronal circuitry, was the most sensitive
statistic for detecting tetanus-induced plasticity in both simulated and living networks. By reducing
the dimensionality of multi-unit data while still including spatial information, CAT allows efficient
real-time computation of spatiotemporal activity patterns. Thus, CAT will be useful for studies in
vivo or in vitro in which the locations of recording sites on multi-electrode probes are important.

Introduction
Modification of connectivity between cortical neurons plays an important role in the processes
of learning (Ahissar et al 1992, Buonomano 1998) and memory (Merzenich and Sameshima
1993). Connectivity at the synaptic level has been studied by administering stimuli while
simultaneously recording neural activity, and then quantifying plasticity by analyzing the
stimulus–response relationships. Culturing on multi-electrode arrays (MEAs) (figures 1(a) and
(b)) was introduced to help understand connectivity and plasticity in networks of neurons
(Gross 1979, Pine 1980). This allows long-term (months), non-invasive observation of the
electrical activity of multiple neurons simultaneously (Potter and DeMarse 2001)in a system
with less experimental complexity and greater control than preparations in vivo. External
factors such as sensory inputs, attention and behavioral drives are absent, while many aspects
of complex spatiotemporal spike patterns observed in animals remain (Gross and Kowalski
1999, Shefi et al 2002).

Many activity statistics have been used to quantify stimulus–response relationships from
simultaneous recordings of multiple neurons (Brown et al 2004). Most analyze the
dependences between spike trains, such as the maximum likelihood method (Chornoboy et
al 1988, Okatan et al 2005), product–moment correlation coefficient (Kudrimoti et al 1999),
functional holography (Baruchi and Ben-Jacob 2004), etc. However, only a few were applied
for measuring network plasticity. The most common of these was the firing rate (FR), which
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showed plastic modifications of network response induced by tetanic stimulation in cortical
cultures (Reich et al 1997, Jimbo et al 1998, Maeda et al 1998, Jimbo et al 1999, Wagenaar
et al 2006a) and dopamine-regulated plasticity in anesthetized rats (Rosenkranz and Grace
1999). Firing rate histogram (FRH) uses firing rates integrated over successive sequential
latency epochs to add detailed temporal information, and was applied to demonstrate adaptable
image processing and pattern recognition through training by tetanic stimulation in MEA
cultures (Ruaro et al 2005). Mutual information (MI) characterized the statistical dependence
between neuron pairs, exposing the strength of coupling between neurons and the functional
connectivity among cortical areas (David et al 2004). Cross-correlation histograms (CCH)
from pairs of neurons showed functional plasticity in the auditory cortex of behaving monkeys
(Ahissar et al 1998), and the more advanced shift-predictor corrected cross-correlogram
(SCCC) was used to quantify receptive field plasticity in the rat auditory cortex (Bao et al
2003). Joint peri-stimulus time histogram (JPSTH) characterized the causality of firing
between neuron pairs, and successfully demonstrated long-term facilitation of neural activity
involved in respiratory control (Morris et al 2003). Robust neuronal computation and encoding
is believed to involve the distribution of information over populations of neurons and synapses
in a combination of spatial and temporal domains. Observing only pairs of neurons (MI, CCH,
SCCC and JPSTH), neglecting temporal information (FR) and neglecting spatial information
(all) limit the ability of these to measure the complex plasticity of the brain.

We recently devised a statistic called the center of activity trajectory (CAT), which incorporates
both the physical locations of the recording sites and the timing of neural activity in order to
depict dynamics of the population activity in the neuronal circuitry space (Chao et al 2005).
The neuronal circuitry space is defined by the physical locations of the neurons, in our case
being the MEA’s two-dimensional plane. The center of activity (CA) component is analogous
to the center of mass, in that the ‘mass’ at an electrode location is determined by the recorded
firing rate. CAT is the sequence of CAs over successive time intervals. We discuss how the
inclusion of spatial and temporal information improved the detection of neural network
plasticity. The importance of the spatial location of neural activity has been widely emphasized
in other studies. For example, spatiotemporal dipole models were used to represent the spatial
distribution of underlying focal neural sources producing electroencephalographic (EEG) and
magnetoencephalographic (MEG) signals (Scherg 1990, Leahy et al 1998).

We used a simulated network to compare CAT’s ability to detect network plasticity to the
alternative statistics: FR, FRH, MI, SCCC and JPSTH. No ground truth about network
plasticity in living networks exists, because neuronal connectivity cannot be measured for more
than a few pairs of neurons simultaneously. Therefore, we could only cross-validate the amount
of plasticity detected by each statistic in a simulated network, in which the weights of all
synapses were observable. In simulation, we modulated neural plasticity in a controlled
manner, and quantified the ability of each statistic to reveal underlying changes in synaptic
connectivity.

In simulation, CAT showed the ability to detect smaller changes in the distribution of network
synaptic weights than did FR, FRH, MI, SCCC or JPSTH. CAT also detected more pronounced
changes in the network following tetanus than the alternate statistics in living MEA cortical
cultures.

By applying a shuffling method to the CAT analysis to erase spatial information about
recording location in its calculation, we found that changes in activity patterns recorded from
neighboring electrodes were not independent and contributed to the better performance of CAT
to detect plasticity. The network plasticity was region specific: despite the apparent random
connectivity of neurons, plasticity was not symmetrically distributed, and the location of
neurons played a role in stimulus-induced plasticity.
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Methods
Simulation

Simulated networks—We used the Neural Circuit SIMulator (Natschlager et al 2002) to
produce five artificial neural networks, as described previously (Chao et al 2005) (also see
supplemental materials 1 available at stacks.iop.org/JNE/4/294). Briefly, 1000 leaky-integrate-
andfire (LIF) model neurons, with a total of 50 000 synapses, were placed randomly in a 3 mm
by 3 mm area (see figure 1(c)). All synapses were frequency dependent (Markram et al
1998, Izhikevich et al 2004) to model synaptic depression. 70% of the neurons were excitatory,
with spike-timing-dependent plasticity (STDP) (Song et al 2000). We included an 8 by 8 grid
of electrodes; 60 of these were used for recording and stimulation as in a real MEA (four
excluded electrodes were corner electrodes 11, 18, 81 and 88, see figure 1(d)).

Setup of networks with different synaptic states—The synaptic state of a network
was determined by its connections and synaptic weight distribution. In order to generate
different synaptic states, we used five networks with different connectivity as reference
networks. We ran the networks for 5 h in simulated time until the synaptic weights reached a
steady state (see supplemental materials 1 available at stacks.iop.org/JNE/4/294). The set of
synaptic weights stabilized after 5 h of spontaneous activity, without external stimuli, and was
used as the initial state for the corresponding reference network.

For each reference network, we applied simulated tetanization at two randomly picked
electrodes at 20 Hz, and a series of subsequent networks (different synaptic states) were
collected after different tetanus durations (1, 2, 5, 10, 15, 20, 30 s and 1, 2, 5 min). That is,
starting from a reference network (S0), S1 was the network with the synaptic state at 1 s after
the start of tetanization, S2 at 2 s, and so forth. Therefore, for each pair of randomly chosen
tetanization electrodes, ten new networks with different synaptic states were obtained. This
process was repeated for each reference state using ten different tetanization electrode pairs.
By altering the five reference networks in this manner, a total of 500 new networks with
different synaptic states were obtained.

Tetanic stimulation induces long-lasting changes in synaptic transmission (Bliss and Lømo
1973), which shapes how neural circuits process information and is involved in behavioral
modifications, including simple forms of learning in motor control (Fisher et al 1997).
Administration of 20 Hz tetanization, as in our study, was widely used to induce long-term
facilitation (LTF) of post-synaptic potentials at crayfish neuromuscular junctions (Wojtowicz
and Atwood 1985, Delaney et al 1989), short-term synaptic plasticity in anesthetized fish
(Fortune and Rose 2000), long-term potentiation (LTP) in hippocampal slices (Miles and Wong
1987) and modification of synaptic strength in cortical cultures (Jimbo et al 1999). In our
simulated networks, tetanization induced both LTP and long-term depression (LTD) of
synapses through STDP: firing of a post-synaptic neuron immediately after a pre-synaptic
neuron results in LTP of synaptic transmission and the reverse order of firing results in LTD
(Levy and Steward 1983, Markram et al 1998, Bi and Poo 1998, Gerstner et al 1996).

Simulations with random probing sequence (RPS)—For each network, we ran ten
simulations with different 10 min random probing sequences (RPSs). Therefore, a total of 5050
simulations were performed separately on 505 networks (500 new networks and 5 reference
networks). The probe stimuli were applied to all 60 electrodes, one at a time, with inter-stimulus
intervals on a given electrode drawn from independent exponential distributions with a mean
of 60 s. Thus, each electrode stimulated the simulated network with different random
sequences, averaging 1 pulse per second for the whole array.
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In each simulation, there were 10.0 ± 3.1 (mean and standard deviation) stimuli delivered at
each electrode. The same Gaussian noise, introduced into neurons as fluctuations in membrane
voltage, was used for each simulation to control the effects of self-firing or of sub-threshold
fluctuation of membrane potential on activity. In order to ensure that the statistics calculated
from the same network correspond to the same synaptic state, the STDP algorithm was turned
off throughout the simulation to prevent ongoing activity changing the network state.

Plasticity statistics—Five commonly used statistics and the center of activity trajectory
(CAT) were measured from each simulation (see figure 7). The five commonly used statistics
were FR, FRH, mutual information (MI), SCCC and JPSTH (see supplemental materials 2
available at stacks.iop.org/JNE/4/294).

Center of activity trajectory (CAT)—CAT represents spatiotemporal patterns of network-
wide population activity. As applied here, it is a spatially weighted measure of temporally
binned responses to single-electrode stimuli in neuronal circuitry space. During each
simulation, stimuli at each electrode occurred multiple times (10.0 ± 3.1 times) in one RPS.

FRH from the recording electrode Ek to the stimulus at electrode Pi,  , was defined as
the average number of spikes counted in a 5 ms moving time bin with 500 μs time step over

trials.  (n) represents the value of  in k the n bin, and Col(Ek) and Row( th Ek)
are the column number and the row number of the electrode Ek, respectively. For example, the
electrode in column number 2 and row number 8 is 28 (see figure 1(d)). The value of CA in
the nth bin for the stimulation electrode Pi has X and Y components, which are defined as

(1)

where Rcol and Rrow are the coordinates of a reference point (the physical center of the 8 by 8
grid of electrodes, in our case). CA was calculated with an electrode number in the neuronal
circuitry space, which is equivalent to using the physical location since the inter-electrode
spacing is constant. The corresponding X and Y components for CAT are defined as

(2)

where N is the total number of bins in . Intuitively, CA is analogous to the center of mass,
where the ‘mass’ at an electrode location is determined by the recorded FR. CAT is the sequence
of CAs over successive time intervals.

CA reflects spatial asymmetry of neural activity about the reference point (the center of the
dish), and CAT represents the dynamics of CA. That is, if the network is firing symmetrically,
the CA will be at the center of the dish, whereas if the network fires mainly in one corner then
the CA will be found off-center toward that corner. CA reduces the dimensionality from 60 to
2, and it is not an injective (information-preserving) function of activity distribution. See
supplemental materials 3 (available at stacks.iop.org/JNE/4/294)forCATin a simulated
network, and Supplemental Materials 5 (available at stacks.iop.org/JNE/4/294) for CAT in an
MEA culture.

Evaluating the performances of different statistics—Performance of a statistic was
defined by the smallest change in network synaptic weights that could be detected as
significant. To evaluate performance in each simulation, we evaluated the statistic for evoked
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responses to all 60 stimulation electrodes and joined these together into a large vector
representing the whole stimulus–response information (input–output function) of the network.
We called this joint vector the whole-input–output (WIO) vector of the statistic. Figure 2
demonstrates the calculation of the WIO vector for CAT. A visualization of the change in WIO
vectors for CAT from S0 to S1–S10 appears in figure 3.

We measured the Euclidian distances E(Si) between ten WIO vectors (from ten simulations
with different RPSs) calculated at Si to the centroid calculated at S0 (shown as a cross in figure
3). We then compared E(Si) for S1–S10 to E(S0) separately, and the p-values (n 10 RPSs,
Wilcoxon signed rank test, which tests the magnitudes of the differences between paired
observations without assumptions about the form of the distribution of the measurements) were
computed to quantify the significance of differences. For each state, the relation between the
mean p-values (n 50, from five reference networks and ten tetanization electrode pairs per
reference network) and the mean absolute synaptic change (MASC) was quantified

(3)

where N is the number of excitatory synapses and Wk(Si) represents the synaptic weight of the
kth excitatory synapse at network Si. We normalized the absolute change in each synapse by
the possible range, 0 to 0.5, for excitatory synapses. We determined the performance of
different statistics as the minimum MASC for p-values below a significance threshold of 0.05;
this is termed ‘detectable MASC’. The smaller the MASC a statistic can detect, the better the
statistic’s performance.

Evaluation of the sensitivities and specificities of different statistics—Successful
performance can be artificially enhanced if a statistic mistakes some non-significant changes
as being significant. Therefore, analyzing sensitivity (ability to detect significant plasticity)
and specificity (ability to discount insignificant plasticity) can further determine the quality of
a statistic. Sensitivity was defined as the probability that a statistic indicated a significant
difference when calculated from two significantly different network synaptic states
(probability of a true positive). Specificity was defined as the probability that a statistic showed
no significant difference when calculated from networks with no significant difference in
synaptic state (probability of a true negative). Together, sensitivity and specificity described
the accuracy of a statistic.

For each reference network, the 500 new states (S1 to S10) were individually evaluated to
determine whether their synaptic weight distributions were significantly different from the
distribution of the reference state (two-sample Kolmogorov–Smirnov test, which tests whether
the two samples have the same distribution, two-tailed, α = 0.05). If a statistic showed a
significant difference (p-value < 0.05; see the previous section) for a state that was significantly
different than the reference state (according to the Kolmogorov– Smirnov test), then the result
was classified as being a true positive (TP). Conversely, if it showed no significance, then the
result was considered a false negative (FN). If a statistic showed significance when calculated
from a state that was not significantly different than the reference state, then the result was
considered a false positive (FP). If it showed no significance, then the result was considered a
true negative (TN). The numbers of TP, FN, FP, and TN were counted for the 500 new
networks, and the sensitivity and specificity were defined as

(4)
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Experiments in living cultures
Culture and experimental protocol—Dense networks of dissociated cortical neurons
were prepared and cultured as described in Potter and DeMarse (2001). Briefly, embryonic rat
cortices were dissected and dissociated using papain and trituration. Fifty thousand cells
(∼7000 cells mm−2) were plated on multi-electrode arrays (MultiChannel Systems,
Reutlingen, Germany) pre-coated with poly-ethylene-imine (PEI) and laminin. Cultures were
grown in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% horse serum.

Six experiments were performed on five cultures from four dissociations. Culture ages ranged
from 1 to 3 months (Potter and DeMarse 2001). We delivered biphasic stimuli (monopolar) at
500 mV and 400 μs per phase by using our custom-made stimulator (Wagenaar et al 2004,
Wagenaar and Potter 2004). Data acquisition, visualization, artifact suppression (Wagenaar
and Potter 2002) and spike detection were performed using MultiChannel Systems hardware
and our publicly available acquisition and analysis software, Meabench (Potter et al 2006).
Experiments were conducted in an incubator to control environmental conditions.

Each experiment consisted of a 2 hperiod of RPS followed by a 15 min tetanic stimulation
followed by another 2 h period of RPS (Wagenaar et al 2006a). In six experiments, the RPS
periods consisted of six electrodes stimulated in a random order at an aggregate frequency of
0.5 Hz (in one experiment, the RPS periods consisted of only four probe electrodes). Fewer
electrodes were used in RPS for living networks than simulated networks because not every
electrode was able to evoke responses. Two of these electrodes were used for the tetanic
stimulation: 150 trains of 20 paired pulse stimuli with 10 ms intervals between paired pulses,
50 ms intervals between pairs and 6 s intervals between the start of each train. Prior to an
experiment, every electrode was stimulated in a random order 20 times, and electrodes with
six (or four) highest responses (the total number of spikes counted within 100 ms latency after
stimuli over recording electrodes) were selected as probe electrodes. The tetanus electrodes
were randomly chosen from these.

Measures of CAT, FR, FRH and SCCC—We used evoked responses within 100 ms after
the stimuli of RPS for statistics calculations (see supplemental materials 2 available at
stacks.iop.org/JNE/4/294). We measured CAT from the evoked responses in the cultured
networks and compared it to the three most commonly used statistics: FR, FRH and SCCC.
MI was not measured, due to its poor performance in detecting network plasticity in simulations
(see results). JPSTH was not measured because of its high dimensionality and computation
time (see figure 7 and supplemental materials 2 available at stacks.iop.org/JNE/4/294).

Statistics—For each statistic, we calculated one WIO vector every 240 s (a ‘block’) for the
experiments with six probe stimulation electrodes, and every 160 s for the experiments with
four probe stimulation electrodes. Thus, there were 19.9 ± 4.2 (mean and standard deviation)
stimuli delivered at each electrode for each WIO vector. Three periods were used for statistics:
Pre1, Pre2 and Post1 (see figure 8(a)). Each period had a duration of 52.5 min, and the intervals
between Pre1 and Pre2 and between Pre2 and Post1 were 15 min. The 15 min interval between
Pre2 and Post1 was the tetanization. For each statistic, the mean distance of the WIO vectors
in Pre1 to the centroid of the WIO vectors in Pre2 (C) was compared to the mean distance to
their own centroid (D). The ratio of change to drift, C/D, was used to quantify the change from
Pre1 to Pre2 before the tetanus (no change if this ratio ≅1). A similar measure between Pre2
and Post1 was used to quantify the change across the tetanus. The performance of each statistic
to detect the tetanus-induced change was quantified by comparing the two C/Ds (n = 6
experiments, Wilcoxon signed rank test).
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Results
We tested the performances of six network plasticity statistics in simulated networks: FR, FRH,
MI, SCCC, JPSTH and CAT (all acronyms are shown in table 1). We then compared several
of these statistics in their ability to detect tetanus-induced network plasticity in living cultures
on MEAs.

Network simulation: CAT showed the highest performance and sensitivity for detecting
changes in the network synaptic state

In simulation, the synaptic connectivity can be easily controlled and monitored, and the way
(s) changes in synaptic connectivity affect a statistic’s value can be directly studied. Various
statistics were used to study functional connectivity in simulated networks under different
synaptic states. The performance of different activity statistics to small differences in network
synaptic connectivity was evaluated by measuring the statistical significance of the change in
each statistic under different network synaptic states, altered gradually by simulated tetanic
stimulation with STDP.

Our 1000 neuron LIF model and the living networks expressed similar spontaneous, and
evoked, activity patterns, demonstrating the ability of the LIF model to represent the activity
of biological networks. Raster plots and FRH of spontaneous activity and evoked responses
obtained from both MEA cultures and simulated networks are shown together for comparison,
and demonstrate a remarkable similarity of activity patterns (figure 4) (Chao et al 2005). For
example, the rates of barrages (the ongoing synchronized bursts of action potentials) were 0.70
Hz and 0.73 Hz, and the proportions of spikes in barrages were 76% and 71%, in spontaneous
activity of living and simulated networks respectively.

A set of simulated networks with different synaptic states was created by using different
electrode pairs and durations for tetanizations. In order to verify that different tetanization
electrode pairs with different durations changed the synaptic weight distribution in the
simulated networks, the centers of weights (CWs) (Chao et al (2005), see supplemental
materials 7 available at stacks.iop.org/JNE/4/294) that were found for network states (S0 to
S10) were calculated and are shown in figure 5(a).

CW represents the asymmetry of the network synaptic weights distribution. CW changed
differently for different initial network synaptic weight distributions, for different tetanization
electrode pairs and for different tetanization durations. Therefore, the various networks provide
a basis to test the ability of various activity statistics to discriminate between synaptic states.
The MASC of all different states (S1 to S10) relative to the initial S0 is shown in figure 5(b).
For each tetanization duration, the mean and standard deviation of MASC were calculated (n
= 50 networks, from five reference networks and ten tetanization electrode pairs per reference
network). Even with significantly different CWs, MASCs from different networks ‘collected’
at the same tetanization duration were similar in magnitude (standard deviation < 1%, n = 50),
suggesting that the magnitude of plasticity was dependent mainly on tetanus duration, as
opposed to the network structure.

Simulations with RPSs were performed on simulated networks with different synaptic weight
distributions. The various activity statistics of evoked responses to the RPS were calculated
from each simulation. An activity statistic with good discrimination of underlying synaptic
states should show different results in different networks, even with only small differences in
the distribution of synaptic weights.

CAT demonstrated the highest performance in detecting changes in state among the 6 statistics.
The performances of the statistics are shown in figure 6. For each state Si, the Euclidian
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distances E(Si) between each WIO vector of the statistic from Si to the centroid of the WIO
vectors from the corresponding S0 were measured. Ten E(Si), measured from ten RPSs in the
same network with the same tetanization electrode pair, were compared to ten corresponding
E(S0), and the p-value was calculated (n 10 RPSs, Wilcoxon signed rank test). For each state
Si,50 = p-values and 50 MASCs were collected from 50 networks (5 reference networks with
10 different tetanization electrode pairs per reference network). The mean and standard
deviation of the p-values were plotted versus the corresponding MASC averaged across the
networks (n = 50 networks). The detectable MASCs for CAT, JPSTH, SCCC, FRH, MI and
FR were 4.68, 6.65, 6.75, 9.3, 11.7 and 15.7% respectively. CAT detected the smallest MASC
and is therefore the best statistic.

The relative performance (the smaller the detectable MASC, the higher the performance),
average compute time and dimensionality are shown in figure 7. The performance of the
statistic shown in descending order is CAT, JPSTH, SCCC, FRH, MI and FR. The
dimensionality of each statistic from one stimulation electrode is described in supplemental
materials 2 (available at stacks.iop.org/JNE/4/294). The average compute times for CAT, FR,
FRH, MI, SCCC and JPSTH were 31.8 s, 1.2 s, 30.6 s, 3.9 min, 26.4 min and 70.4 min per
simulation respectively (MATLAB 7.0, AMD Athlon processor, 2.08 GHz, 512 MB RAM).
Among all six statistics, only FR and FRH had a shorter compute time than CAT, and only FR
had smaller dimensionality than CAT. However, CAT showed significantly higher
performance than FR and FRH.

Table 2 shows the occurrences of true positives, false negatives, false positives, true negatives
and the sensitivity and specificity (see methods) of each statistic. CAT showed a sensitivity of
88.7%, the highest among all, with a specificity of 82.4%, comparable to JPSTH and SCCC.
FRH, MI and FR showed high specificity, which was an artifact of their low sensitivities. Sixty-
eight out of the 500 new network states were found to not have significantly different
distributions of network synaptic weights as compared to their original reference states (two-
sample Kolmogorov–Smirnov test, two-tailed, α = 0.05).

By evaluating the performance, sensitivity, specificity and compute time, CAT was found to
be most sensitive and highly efficient at detecting synaptic changes in simulated networks.

The five alternative statistics are often applied to spike-sorted data. Spike sorting is used to
distinguish the spike trains of individual neurons (Ahissar et al 1998, Jimbo et al 1998, 1999,
Celikel et al 2004), and can aid studies of neural populations (Lewicki 1998), especially for
neural computations that use spike timing. In simulated networks, activity of individual neurons
can be directly observed. The analysis in figure 6 was repeated using sorted neurons to
investigate if the performance of the alternative statistics would improve. In the five reference
simulated networks constructed, 4.1 ± 1.8 neurons were recorded per electrode, and the six
statistics were recalculated based on about 250 neurons instead of 60 electrodes. CAT remained
unchanged as the sorted spikes were spatially summed as before (see equation (1) in methods).
Despite improved performance and sensitivity of the other five statistics, CAT still detected
the most plasticity. JPSTH, SCCC, FRH, MI and FR improved 11.1, 17.6, 11.0, 35.0 and 31.2%
in performance, respectively, and improved 1.9, 5.2, 9.7, 27.7 and 62.5% in sensitivity (see
supplemental materials 4 available at stacks.iop.org/JNE/4/294).

Experiments in living cultures: CAT revealed tetanus-induced long-term plasticity
significantly better than the other statistics

CAT was measured from the evoked responses to RPS in six experiments on living cultured
cortical networks (CATs from all experiments are shown in supplemental materials 6 available
at stacks.iop.org/JNE/4/294) and compared to the three most commonly used statistics: FR,
FRH and SCCC. For visualization purposes, principal components analysis (PCA) was applied
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to the series of multi-dimensional WIO vectors to capture the largest variances and graphically
demonstrate trends in changes. The first two principal components were normalized by
subtracting their means and then dividing by their standard deviations. The normalized first
principal component (PC1) was plotted versus the normalized second principal component
(PC2). An example comparing CAT, FR, FRH and SCCC is shown in figure 8(a). The
corresponding CATs before and after tetanization from every block (a 240 s window, see
methods) and the average CATs are shown in figure 8(b).

The change across the tetanus was significantly greater than the drift before the tetanus for
CAT (p < 1 × 10−4, Wilcoxon signed rank test), FRH (p < 0.01) and SCCC (p < 0.01), but not
for FR (p = 0.013). C/D was used to quantify the change before the tetanus and the change
across the tetanus (if the change is small, C/D ≅ 1). The statistics of C/D from six experiments
are shown in figure 8(c).

We did not perform spike sorting for experiments in living cultures. Standard spike sorting
methods sort neural signals based on variations in spike waveform. In MEAs, local field
potentials and overlapping action potentials distort the waveform to an extreme degree, and
the electrodes are too far apart to allow triangulating common signal sources. Spike sorting
was attempted, but proved to be unreliable.

Electrode shuffling demonstrates the importance of electrode locations shown by CAT
In order to get some idea of the degree of localization of function in cultured cortical networks,
the performance of CAT statistic with electrode locations shuffled (CAT-ELS) was calculated
(see supplemental materials 2 available at stacks.iop.org/JNE/4/294). In CAT-ELSs, the
information about the physical locations of the recording electrodes was removed. In both
simulations and experiments in living cultures, the electrode locations were shuffled ten times,
and ten different corresponding CAT-ELSs were generated. The performance of these CAT-
ELSs was evaluated and compared to the original CAT.

CAT, unlike the other statistics, incorporates the physical locations of the recording electrodes.
This is the primary difference between methods, and we attribute CAT’s superior performance
in both living and simulated networks to this feature. For simulated networks, the comparison
of the performance between CAT-ELS and original CAT is shown in figure 9(a). The detectable
MASC (threshold p-value = 0.05) for mean CAT-ELS was 10.8%, which was worse than
(4.68%). The decrease in performance (increase in detectable MASC) indicates that electrode
locations significantly affect the performance of CAT in simulated networks. Furthermore, the
sensitivity of CAT-ELS was 35.4%, significantly smaller than CAT’s 88.7% (see table 2).

For living MEA cultures, one example of the comparison between CAT and CAT-ELS is shown
in figure 9(b). The corresponding CAT-ELSs before and after tetanization from every block
are shown in figure 9(c). The electrode location shuffling ‘collapsed’ the patterns of CAT-
ELSs before and after tetanization (compare to figure 8(b)). The difference between pre-
tetanization and post-tetanization clusters found in CAT was also reduced in CAT-ELS (figure
9(b)).

The statistics of C/D for CAT-ELS (n = 60, six experiments, ten shuffles for each experiment)
are shown in figure 9(d). The change across the tetanus was significantly greater than the drift
before the tetanus for CAT (p < 1 × 10−4, Wilcoxon signed rank test), but not for CAT-ELS
(p = 0.19).
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Discussion
Statistics of functional plasticity in extracellular multi-electrode recordings

While comparisons of firing rates show plasticity in intracellular recordings, more detailed
statistics incorporating spatiotemporal population activity patterns are needed to reveal
plasticity in extracellular multi-electrode recordings. Electrode spacing on the order of
hundreds of microns means that any induced or observed plasticity will span pathways of
multiple neurons instead of neighboring monosynaptic neurons (Jimbo et al 1999).
Intracellularly, synaptic strength is directly observable by stimulating a pre-synaptic neuron
while recording from an adjacent post-synaptic neuron. Extracellularly, synaptic noise across
a chain of neurons and convergent pathways will obscure firing rate measures of stimulus-
induced plasticity.

Alternatively, by incorporating the timing and spatial flow of activity, spatiotemporal patterns
have been found both in vivo and in vitro. Spike sequences, imposed upon the network by
behavioral manipulations, recur spontaneously during subsequent sleep episodes (Nádasdy et
al 1999, Nádasdy 2000, Lee and Wilson 2002). Calcium imaging of cortical slices reveals
reactivation of sequences of neurons, ‘cortical songs’, with distinct spatiotemporal structures
over tens of seconds (Ikegaya et al 2004). Robust recurrent spike patterns were also found in
a detailed cortical simulation (Izhikevich et al 2004) and in living slices (Fellous et al 2004).
CAT provides a new and simple statistic to detect spatiotemporal patterns in networks and
extends the previous studies by quantifiably demonstrating its ability to discern plasticity.

Region-specific plasticity
Although FRH included detailed temporal information about the activity dynamics at all
electrodes, it was less capable of capturing network plasticity than CAT, which has the same
temporal resolution as the FRH but ‘condenses’ the spatial dimension by linear combination
(see equation (1)). We hypothesize that this was due to the inclusion of spatial information of
the electrode locations. The performance and the sensitivity of CAT with electrode locations
shuffled were significantly worse than unshuffled CAT, both in simulation (the detectable
MASC increased from 4.68% to 10.8% and the sensitivity decreased from 88.7% to 35.4%)
and in living networks (the change across the tetanus was significantly greater than the drift
before the tetanus for CAT, but not for CAT-ELS) (see figure 9 and table 2). This indicates
that activity varied systematically with the electrode location, and also suggested that the
observed network plasticity was region specific: the plasticity was not symmetrically
distributed throughout the network. This further suggests that despite the apparent random
connectivity of cultured neurons, neuron location played a role in tetanus-induced plasticity.

Region specificity was not limited to plasticity induced by tetanization. In simulation, we also
altered the weights of randomly selected synapses in reference networks to different degrees
to generate different new network states. CAT still showed the highest sensitivity to changes
in MASC, and furthermore, the sensitivity of CAT-ELS was still significantly lower (data not
shown). Despite the synaptic plasticity not being region specific, the spatiotemporal flow of
neural activity was region dependent, effectively making the plasticity of neural activity region
specific. This result supports the notion of synfire chains or braids of neural activity (Ikegaya
et al 2004, Izhikevich 2005), where information is transmitted in a pipeline of neighboring
pathways as opposed to a single string of connections. In this study, tetanization was used to
obtain different synaptic states since it provided a realistic form of plasticity and a
straightforward comparison to our study of local functional plasticity in living networks.

A common misconception regarding dissociated cultures is that they are random, homogeneous
and lack structure, and thus cannot support stable changes to synaptic weights associated with
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memory formation. While plated from a random cell suspension, microscopic observation
reveals that a heterogeneous arrangement develops over time (Gross and Kowalski 1999, Segev
et al 2003). Although very different than structures found in vivo, the ability of neurons and
glia to interact remains and a network having a diverse array of activity arises spontaneously
(Wagenaar et al 2006b). Altering sensory input of thalamic relays to cortical areas has
demonstrated that the cortex develops structure according to the type of the sensory input (Sur
et al 1988), which suggests an important relationship between neural structure and function.
CAT demonstrates that structure is also relevant to neural function in a cultured network, and
that tetanic stimulation alters network function. Future experiments will incorporate closed-
loop sensory-motor feedback and optical imaging to investigate the network mechanisms of
our cultures to functionally and structurally adapt to environmental interaction (Potter et al
2006).

CAT versus population coding
It is important to note that CAT is distinct from the population vector description of neural
activity (Georgopoulos et al 1986, Caminiti et al 1990). Population coding, which is
widespread in the brain and in invertebrate nervous systems, has been found in the motor cortex
(Georgopoulos 1994), premotor cortex (Caminiti et al 1990), hippocampus (Wilson and
McNaughton 1993) and other cortical areas. It demonstrates how the firing rates of a group of
broadly tuned (e.g., to a direction of arm movement) neurons, taken together, provide an
accurately tuned representation. With population codes, a fixed-weight linear combination of
neuronal activity is projected in a sensory input space or a motor output space (Carmena et
al 2003). In contrast, CAT incorporates information about the physical recording locations into
its linear combination calculation, and projects neuronal activities recorded at different sites
into the actual neuronal location space in order to depict the dynamics of the population activity.
Furthermore, the linear combination of activities in CAT is normalized by the total firing rate
across all electrodes (see equation (1)).

CA is a measure of the asymmetry of the spatial activity distribution, and CAT is a measure
of its dynamics. A similar measure of population activity flow was applied in human study to
quantify the trajectory patterns of the traveling electroencephalographic alpha waves across
the scalp (Manjarrez et al 2007).

Plasticity versus spontaneous bursting
Without external stimulation, the most prominent feature of spontaneous activity found in
MEA cultures and in simulated networks is synchronous bursting (Wong et al 1993, Kamioka
et al 1996, Gross and Kowalski 1999, Van Pelt et al 2004, Wagenaar et al 2005), and bursts
were found to have effects on tetanus-induced synaptic plasticity in cortical neurons (Maeda
et al 1998). In simulation, the network synaptic state after tetanization was found to change
gradually due to the presence of spontaneous bursts, which makes quantifying tetanus-induced
plasticity difficult (Chao et al 2005). In the six experiments we performed on living MEA
cultures, 8.57 ± 3.33 spontaneous bursts per minute and 16.06 ± 4.55 stimulus-evoked bursts
per minute were observed. Even with the presence of the spontaneous bursts, the tetanus-
induced plasticity was still detected by using CAT. Since the level of bursting can be finely
controlled in MEA cultures with multi-site stimulation (Wagenaar et al 2005), we plan to use
CAT to investigate how the degree of bursting affects a network’s ability to produce and/or
maintain plasticity.

CAT’s superior performance, sensitivity and low computational load make it an attractive
method for real-time applications. CAT can also be applied to in vivo multi-electrode or optical
recording studies for neural activity aligned to behavioral or sensory cues. As techniques for
observing distributed activity become faster and more fine-grained, studying the details of the
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spatial flow of activity through neuronal networks will reveal more and more about processes
of learning and memory.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Living MEA culture versus simulated network. The simulated neural network and stimulation
electrodes were constructed to mimic the dissociated cultured network and MEA setup. (a) A
view of a living MEA culture with 60 electrodes. (b) Neurons, tagged with yellow fluorescent
protein, in the highlighted area shown in (a). (c) The structure of a simulated network with
1000 LIF neurons located in a 3 mm by 3 mm region. The circles indicate the neurons, the
light-gray lines represent the excitatory synapses and the dark-gray lines represent the
inhibitory synapses. All neurons are shown but only 15% of the synaptic connections are shown
for clarity. The thick black lines emphasize the connections from a particular randomly selected
neuron. (d) The locations of 64 electrodes are shown in circles, and marked with column–row
numbers. The connections of the same neuron highlighted in (c) are depicted in light gray.
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Figure 2.
Whole-input–output (WIO) vectors for analyzing performances of different statistics. WIO
vectors calculated from each statistic were used to represent the network input–output function.
As an example, the WIO vector of CAT calculated from probe responses to one RPS at one
network state is demonstrated. (a) An RPS, RPSk, was delivered into a network with the
synaptic state Si. (b) CA was calculated for evoked responses to the stimulation electrode Pj
(j = 1 to 60). Each frame indicates the firing rate over a 5 ms moving time window (with a 500
μs time step) on an 8 by 8 grid of electrodes averaged over multiple stimuli at Pj (RPSk might
have multiple stimuli delivered at Pj , see (a)). The 2D trajectory of CAs from frame 1 to frame
N (from 0 to 100 ms after the stimuli), CAT, can be represented by a 1D vector by joining
CATX and CATY. This vector represents CAT of responses to stimuli Pj at the network state
Si. (c) CATs for responses to 60 different stimulation electrodes (P1 to P60) were joined together
to form the WIO vector. This WIO vector represents the input–output function, in terms of
CAT, of the network state Si. For each statistic, each synaptic state has one corresponding WIO
vector to describe its input–output function. The statistic that is sensitive to changes in network
synaptic states should be able to show significantly different WIO vectors from different
synaptic states. One WIO vector was constructed for each RPS (RPSk, k = 1 to10) in each
network state (Si, i = 0 to10). Therefore, for each statistic, 5050 WIO vectors were obtained

Chao et al. Page 16

J Neural Eng. Author manuscript; available in PMC 2008 November 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(=(500 + 5) × 10. 505: 500 new networks + 5 reference networks, 10: number of RPSs delivered
to each network).
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Figure 3.
Multi-dimensional whole-input–output (WIO) vectors measured in different synaptic states in
simulated networks. The WIO vectors measured from different synaptic states were different.
This is a cross-viewing 3D stereogram of an example of the WIO vectors for CATs from the
simulations at S0 to S10 (generated by the same tetanization electrodes). Principal components
analysis (PCA) was applied on the WIO vectors to visualize the data. Each symbol represents
the first three principal components (PC1–PC3) of the WIO vector of a CAT from one
simulation. Each synaptic state Si has ten corresponding symbols, which represent the results
from ten different simulations (with different RPSs). The distance of each symbol from the
centroid of S0 (shown as a cross) indicates the amount of change in CATs between the
corresponding synaptic state and the reference state. CATs obtained from the synaptic states
generated by longer tetanizations were further from CATs obtained from S0 than those from
shorter tetanizations, indicating that longer tetani cause greater plasticity.
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Figure 4.
Comparison of the network activities from a MEA culture and a simulated network. Simulated
spontaneous activity and evoked responses resemble the experimentally recorded data. First
row: 1 min of spontaneous activity was recorded from a living network by a 60 channel MEA
and in simulation for comparison. The upper panels are spike raster plots. The lower panels
are firing rate histograms, with bin sizes of 100 ms. Second row: 50 trials of evoked responses
recorded by one electrode in a living network and in simulation are shown for comparison. The
upper panels are spike raster plots. The lower panels are firing rate histograms with a bin size
of 0.1 ms. The timings of stimuli for each trial were aligned at time zero. In the simulation,
each electrode recorded the activities occurring within 100 μm.
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Figure 5.
Setup of different synaptic states in simulation. A series of networks with different synaptic
states were obtained by tetanization at different electrode pairs and with different durations
from the reference network. From each reference network S0, ten tetani at different electrode
pairs were delivered. For each tetanization electrode pair, ten synaptic states were obtained
after different durations. (a) Different tetanization electrode pairs caused different changes in
synaptic weight distribution. The center of weights (CW) (see supplemental materials 7
available at stacks.iop.org/JNE/4/294) was used to visualize how the symmetry of the network
synaptic weight distribution changed over time. Each curve represents CWs corresponding to
a tetanization electrode pair (the column–row numbers of the electrodes are shown at the end
of each curve). Synaptic states (S1 to S10) ‘collected’ at different tetanization durations and the
corresponding reference state S0 are shown as dots. (b) The relation between mean absolute
synaptic change (MASC) and the duration of tetanization (note log scale) from five reference
networks. The means and the standard deviations of MASCs are shown (n = 50 networks: from
five reference networks, each with ten different tetani).
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Figure 6.
Evaluating the performances of different statistics. CAT showed the highest performance to
detect changes in the synaptic state among six statistics. The performance of different statistics
to detect changes in the synaptic state was evaluated by finding the ‘detectable MASC’ at the
point the p-values reach a threshold of 0.05 (shown as arrows). For each state Si,50 p-values
and 50 MASCs were collected from 50 networks (five reference networks with ten different
tetanization electrode pairs per reference network, see results). The mean and standard
deviation of the p-values (n = 50 networks) were plotted versus the corresponding MASC
averaged across the networks (n 50 networks). The mean and standard deviation of MASCs
(n = 50 networks) are shown on the top of the figure (with vertical offsets for clarity). The
performance of the statistic to detect the difference in MASC shown in descending order is
CAT, JPSTH, SCCC, FRH, MI and FR.
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Figure 7.
Comparison of the six different statistics. CAT was the most sensitive activity statistic and was
highly efficient. Examples of six statistics calculated from the same RPS during three synaptic
states are shown: S0 (reference network), S7 (network with ∼50% of the maximal MASC, see
figure 5(b)) and S10 (network with the maximal MASC). All statistics were obtained from the
same randomly chosen stimulation electrode. CAT: CATs are plotted as CATX versus CATY
from blue to red. FR: number of spikes per ms at each recording electrode is displayed according
to the corresponding location in the 8 by 8 grids. FRH: FRHs, in the unit of number of spikes
per ms, from a randomly chosen recording electrode are plotted. MI: MIs above 0.75 bits are
plotted as colored lines between the corresponding electrode pairs. SCCC: SCCCs above zero
from a randomly chosen pair of recording electrodes are plotted. JPSTH: JPSTH from the same
randomly chosen pair of recording electrodes are shown. The performance (quantified by
detectable MASC), compute time and dimensionality, normalized by the values for CAT, are
shown on the right. The axes for detectable MASC, compute time and dimensionality are shown
on the bottom in red, green and blue respectively (the latter two are with logarithmic scales).
Among all six statistics, only FR and FRH had shorter compute time than CAT, and only FR
had smaller dimensionality than CAT. However, CAT had significantly smaller detectable
MASC than FR and FRH. CAT showed significantly higher performance to detect the
difference in the network synaptic state than other statistics.
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Figure 8.
Comparison of the changes in CAT, FR, FRH and SCCC across tetanization in living MEA
cultures. (a) An example of comparison of CAT, FR, FRH and SCCC (from evoked responses
to RPS in one experiment) before and after tetanization is shown. Principal components
analysis (PCA) was applied on multi-dimensional WIO vectors for visualization purposes. The
normalized principal component was obtained by removing its mean and then dividing through
by its standard deviation. The normalized first principal component (PC1) was plotted versus
the normalized second principal component (PC2). Each dot represents the statistic calculated
from every block (a 240 s window), and the color indicates the corresponding time (shown in
the colorbar). The black dashed line represents the tetanus. The separation between pre-
tetanization clusters (bluish dots) and post-tetanization clusters (reddish dots) indicates the
change of the statistic across the tetanus. (b) Different patterns of CATs were observed before
and after tetanization. CATs from an example experiment were overlaid (black trajectories),
and the average CATs were shown by series of circles (from blue to red across 100 ms probe
response). The trajectories for every experiment can be found in the supplemental materials 6
(available at stacks.iop.org/JNE/4/294). (c) The statistics of C/D from six experiments showed
that the change across the tetanus was significantly greater than the drift before the tetanus for
CAT (**, p < 1 × 10−4, Wilcoxon signed rank test), FRH (*, p < 0.01) and SCCC (*, p < 0.01),
but not for FR (p = 0.013). The p-values indicate that CAT was more capable of detecting the
change over the drift than FRH, SCCC and FR.
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Figure 9.
Comparison of CAT and CAT-ELS in simulated and living networks. (a) A comparison of the
performance of CAT and CAT-ELS in simulated networks (the representation is the same as
figure 6). Ten performance curves corresponding to different random shuffled electrode
locations (CAT-ELS) and the mean of the ten curves (Mean CAT-ELS) are shown. The
performance curve of FRH is also shown for comparison. The detectable MASC (threshold
p-value = 0.05) for mean CAT-ELS was 10.8%, which was greater than CAT (4.68%). The
decrease in performance (increase in detectable MASC) indicates the importance of physical
electrode locations in the performance of CAT in simulated networks. (b) An example
comparison of CAT and CAT-ELS in a living MEA culture before and after tetanization (the
data used and representation are the same as in figure 8(a)). The difference between pre-
tetanization clusters (bluish dots) and post-tetanization clusters (reddish dots) was reduced by
shuffling electrode locations in CAT-ELS. (c) The electrode locations shuffling ‘collapsed’
the patterns of CAT-ELSs before and after tetanization in a living MEA culture. The difference
between before and after tetanization trajectories (compared to figure 8(b)) was reduced in
CAT-ELS. (d) The statistics of C/D for CAT-ELS in living networks (n = 60, six experiments,
ten shuffles for each experiment). The change across the tetanus was not significantly different
than the drift before the tetanus (p = 0.19, Wilcoxon signed rank test), unlike CAT (**, p < 1
× 10−4). Thus, for both simulated and living networks, the shuffling of signals from different
electrodes greatly reduces the performance of CAT for detecting stimulus-induced synaptic
change over a background of continual synaptic drift.
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Table 1
Acronym list.

Abbreviation Full name

Activity statistics
 FR Firing rate
 FRH Firing rate histogram
 MI Mutual information
 SCCC Shift-predictor corrected

cross-correlogram
 CAT/CA Center of activity trajectory/

center of activity
 CAT-ELS Center of activity trajectory with

electrode locations shuffled
Analyses
 WIO vector Whole-input–output vector
 CW Center of weights
 MASC Mean absolute synaptic change
 C/D Change-to-drift ratio
Others
 RPS Random probing sequence
 MEA Multi-electrode array
 LIF Leaky-integrate-and-fire
 STDP Spike-timing-dependent

Plasticity
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