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Abstract

Background: In neuroimaging, connectivity refers to the correlations between signals in different brain regions. Although
fMRI measures of connectivity have been widely explored, the methods used have varied. This complicates the
interpretation of existing literature in cases when different techniques have been used with fMRI data to measure the single
concept of ‘‘connectivity.’’ Additionally the optimum choice of method for future analyses is often unclear.

Methodology/Principal Findings: In this study, measures of functional and effective connectivity in the motor system were
calculated based on three sources of variation: inter-subject variation in task activation level; within-subject variation in task-
related responses; and within-subject residual variation after removal of task effects. Two task conditions were compared.
The methods yielded different inter-regional correlation coefficients. However, all three approaches produced similar results,
qualitatively and sometimes quantitatively, for condition differences in connectivity.

Conclusions/Significance: While these results are specific to the motor regions studied, they do suggest that within-subject
and across-subject results may be usefully compared. Also, the presence of task-specific correlations in residual time series
supports arguments that residuals may not substitute for resting-state data, but rather may reflect the same underlying
variations present during steady-state performance.
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Introduction

Measuring connectivity from functional MRI data holds

promise as a non-invasive approach to understanding the function

and architecture of the brain and how neural circuits change in

psychiatric disorders. Studies of connectivity to date have

implicated connectivity changes in such conditions as schizophre-

nia [1], depression [2], autism [3], and reading disorders [4,5]. In

neuroimaging, functional connectivity is generally defined in terms

of the correlations between signals from different anatomical

regions; effective connectivity studies attempt to make inferences

about influences of brain regions on each other [6]. However,

there are a wide diversity of measures that have been labeled as

‘‘connectivity;’’ this makes interpretation of the existing literature

problematic, and leads to the question of which techniques might

be best for future work.

Several different techniques for measuring connectivity have

been reported in the neuroimaging literature: principal compo-

nents analysis, seed-voxel correlation maps, and structural

equation modeling, for instance. The majority of these techniques

are based on correlations or covariances calculated between

measured signals in different voxels or regions of interest; see [7]

for a review. However, the precise source of signal variation that is

used can vary widely and results of any study will depend on the

specific choices made [8]. For fMRI data, the variation that drives

inter-regional connectivity measures can be inter-subject or within

subject; within-subject variation can be across time, experimental

condition, block, or trial [9]. In practice, multiple sources of

variation are often present in a data set. There is no certainty that

different choices in this regard will yield similar results, so

connectivity measures in general must be interpreted in light of the

specific methods used to produce them. Even considering only

time series data within subject, inter-regional correlations depend

on which components of variation are retained. For instance, it has

been demonstrated in simulated data and in a visual fMRI

experiment that correlations varied depending on whether task-

related variance, block-to-block variance, and residual variance

were removed from the time series [10]. Differences between

resting-state data and the residuals from block and event-related

stimulation experiments in terms of inter-regional correlations

have been found as well [11]. A specific example of the difficulty

that arises in interpreting the existing literature is shown in Table 1;

two studies of schizophrenic patients [12,13] reported apparently

conflicting results but there is no way to determine whether the

conflict is intrinsic to the data or is produced by the difference in

methodology.
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In this study, we calculated three different measures of

connectivity from the same block-design fMRI data set to see

whether they gave similar conclusions. Two within-subject

methods were used, one considering task-related variance and

the other considering residual variance after the removal of task

effects. The third method considered inter-subject variance in

activation measures. For each method we calculated functional

connectivity in each of two experimental conditions (raw

correlation scores); the condition differences in functional

connectivity; and the condition differences in effective connectivity

using a regression model.

Methods

Functional MRI data from a finger-tapping study [14] were

used. Written informed consent was obtained from all subjects,

under a protocol approved by the University of Wisconsin-

Madison institutional review board. Ten subjects performed right

hand movement and left hand movement in separate sessions, with

7 14-second blocks of movement paced by auditory tones

interspersed with 14-second blocks of no motion. Scan repetition

time was 1.75 seconds. Regions of interest in right and left

supplementary motor area (SMA) and right and left sensorimotor

cortex (SMC) were defined based on the anatomical criteria

described in the original work.

Region of interest data
Data analysis was performed using the AFNI software [15,16]

and Matlab (The MathWorks, Inc., Natick MA). Values at each

voxel were shifted in time to account for differences in slice

acquisition time, then the functional volumes for each subject were

coregistered to correct for head motion. These data were spatially

smoothed with a Gaussian filter of 5 mm FWHM. Voxel time

series for each session were then pre-processed to remove

movement-related variations of no interest and very low-frequency

drifts by regressing on the previously estimated motion parameters

and 0th–4th order Legendre polynomials as predictors. The

residual from this regression was used for further analysis after

scaling each voxel time series by its estimated mean to obtain

approximate percent change units. Stimulus-related effects were

identified by fitting a general linear model whose predictors

contained delta functions located at a constant offset from the task

block onsets; in other words, a standard linear deconvolution

approach to estimating the hemodynamic impulse response

function without assumptions on its shape (see [17] for a

description and evaluation of the method). The estimated impulse

response was a vector with 16 elements representing scans after

block onset. An activation measure was calculated from the

impulse response as the difference between the average value in

the movement block and the average value within the rest block,

after discarding the first three time points of each to allow for

transition effects. The activation measure was implemented as a

contrast in the voxel-wise linear model, permitting statistical

inference. To avoid including voxels with minimal task-related

signal that were nonetheless within the anatomically defined ROIs,

we reduced ROIs to include only the 15 voxels with the highest

significance of the activation measure across both sessions.

Region of interest data were averaged over the selected voxels.

The Task method used the estimated impulse response

functions, which contain variations in the hemodynamic signal

over time, as reproduced in all blocks. The Residual method
used the residuals from the second linear model, which had all

reproduced stimulus-related effects partialed out but may still have

contained block-to-block variations. The Subject method used

the single activation measure. Therefore for each ROI the Task

and Residual data varied over time within subject; the Subject

data varied across subjects only.

Functional connectivity
For each of the three sets of ROI data, the correlation

coefficient R between the signals from each pair of ROIs was

calculated. The correlations were converted to Z-scores using the

Fisher transformation Z~ tanh{1R
� � ffiffiffiffiffiffiffiffiffiffiffiffi

N{3
p

to produce approx-

imately normal random variables with variance 1 [18]. The

degrees of freedom N enter in this calculation; for the Subject data,

N = 10 subjects. For the Task data, N = 16, the number of

estimated points in the impulse response. For the Residual data, N

was the effective degrees of freedom accounting for the temporal

dependence in the data. Autocorrelation was present in the

residuals of one or more ROIs in 9 of 10 subjects (p,0.01,

Durbin-Watson test). Hence, for each ROI pair N was calculated

as the number of volumes (112) multiplied by the factor (12r2)/

(1+r2) where r was the estimated first order autocorrelation. This

correction procedure gives a reasonable approximation for the

effective degrees of freedom in fMRI time series [19]. For Task

and Residual methods, the correlation measures for each subject

were averaged to obtain a single measure for the group for

comparison with the Subject method. These calculations resulted

in a single measure per method, per subject of correlation during

right hand tapping (ZR) and during left hand tapping (ZL). To

compare connectivity during the two conditions, the value ZR2ZL

was used, itself an approximately normal variable representing the

difference of interest. To compare methods directly on this metric,

the measures (ZR2ZL)Residual2(ZR2ZL)Task and so on were used to

determine whether different methods produced significantly

different measurements of the condition difference ZR2ZL.

Effective connectivity
The 4-parameter regression model of Figure 1 was fit to the

ROI data for each method, using ordinary least squares. For the

Task and Residual methods, path coefficients were estimated

within each subject directly from the time series data, and the path

coefficient means over all subjects were calculated, similarly to the

method of the original study [14]. For the Subject method, the

Table 1. Conflicting Connectivity Results.

Study Underlying variance Connectivity model Left cer. to PFC Right cer. to PFC Left cer. to thal.

Stephan 2001 [12] Task, scan Functional (seed voxel maps) Higher in patients Lower in patients Lower in patients

Schlosser 2003 [13] Subject, task, scan Effective (structural equation model) Lower in patients Lower in patients No difference

These results from two studies of schizophrenic patients were chosen to exemplify two methodological approaches. The table reports connectivity between
cerebellum, prefrontal cortex, and thalamus in olanzapine-treated patients with respect to non-schizophrenic control subjects. Synthesis of the two results is
confounded by differences in methodology.
doi:10.1371/journal.pone.0003708.t001

Sources of Variation
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vectors of activation measures were scaled to mean 0, standard

deviation 1, and a single coefficient was estimated for each path,

similarly to a previous study of the angular gyrus in dyslexia [4].

Bootstrap confidence intervals
A bootstrap procedure was used to estimate confidence intervals

(CIs) for the normalized correlation values and path coefficients.

1000 bootstrap samples were created by drawing 10 subjects

randomly with replacement from the original sample. The

complete analysis above was repeated on each new sample, and

90% percentile confidence intervals were calculated for each

measure of interest. The confidence intervals allow a simple

statistical interpretation of the graphical results: if a confidence

interval does not include zero, the measure in question is non-zero

with a p-value of 0.1. The implications of using this lenient

threshold depend on what result is being considered and are

described in each case below. In particular, use of this threshold

actually strengthens the conclusions of the direct comparison

between methods, which is of most interest.

Results

Raw correlation values
Raw correlation values (ZR and ZL) were not very comparable

across methods (Figures 2 and 3). Raw correlations measured by

the different methods can be compared on two criteria: whether

they agree in sign (positive, zero, or negative); and whether they

agree in magnitude. All the raw correlation values were either

positive (90% CI did not include zero) or not distinguishable from

zero (90% CI included zero). However, in some cases, one method

found a positive correlation when another method did not; the

RSMA/RSMC correlation during right hand movement was an

example of this. Agreement in magnitude can be roughly judged

based on whether the 90% CIs for two methods overlap; if they do

not, the methods certainly do not agree in magnitude at an

alpha = 0.05 level. Even if the 90% CIs do overlap, the magnitudes

may still be different at alpha = 0.05 (e.g. Payton [20]). Several

cases were apparent where CIs of the raw correlation values did

not overlap. In summary, Figures 2 and 3 show only partial

agreement between methods at best in terms of sign and

magnitude of raw correlations.

This was expected regarding the Residual method in particular,

as the within-subject values are confounded by respiration, cardiac

pulsation, and other signals that manifest differently across

subjects. The differences between the Residual method and the

Task method add to the findings of [10] as evidence that different

time series processing can yield different correlation values within

subject.

Condition differences in correlations
The condition difference in the correlation value is the measure

of most interest, as it describes the effect of the experimental

manipulation on functional connectivity. This is shown for all

methods and all region pairs in Figure 4 as the difference between

the Z-normalized correlation scores for the right hand and left

hand sessions (ZR2ZL). All three methods indicate a stronger

LSMA/LSMC correlation during right hand movement, and a

stronger LSMA/RSMC correlation during left hand movement,

based on the 90% confidence intervals (though these comparisons

will show some false positives because of the lenient threshold and

number of tests). Task and Residual methods indicate a stronger

RSMA/RSMC correlation during left hand movement, which is

almost mirrored by the Subject method except that the 90% CI in

that case barely includes zero. No method indicates a difference in

LSMA/RSMA correlation. The Residual method suggests a

difference in LSMC/RSMA and LSMC/RSMC correlations that

is not reproduced by other methods. In general, there is substantial

qualitative agreement between methods. The variability of this

measure, however, is slightly higher for the Subject method than

for the other two.

Figure 5 shows a direct comparison of the methods. The

differences (ZR2ZL)Residual2(ZR2ZL)Task and so on are plotted

directly. There is a suggestion of a possible difference between

Task/Residual and Task/Subject for the RSMA/RSMC corre-

lation. However, all 90% confidence intervals include zero,

indicating no significant differences between methods for any of

the correlations. In this case, use of 90% confidence intervals

strengthens the conclusion of interest rather than weakening it,

because no differences between methods were detected even with

such lenient criteria (alpha = 0.1 and multiple comparisons made).

Condition differences in effective connectivity
Figure 6 shows the condition differences in estimated path

coefficients for each method (again, right minus left). All three

methods produced two key results: a greater coefficient during left

hand movement for the LSMA to RSMC path (p,0.1 for each

method; that is, 90% confidence interval does not include zero);

and no condition difference for the RSMA to LSMC path (p.0.1).

The Task and Residual methods additionally detected a greater

LSMA to LSMC coefficient during right hand movement, and the

Residual method detected a greater RSMA to RSMC coefficient

during left hand movement. In general the magnitudes of the

coefficient estimates were not the same for the different methods,

so it was only the general conclusions drawn from each regarding

effective connectivity that were similar. The variability was

substantially higher for the Subject method.

Discussion

We observed that raw correlation scores were not entirely

reproducible across methods. For the Task and Residual methods,

this is in accord with [10], who observed that correlation values

differed depending on the pre-processing of the data and what

components of task-related variability were included. The

differences we observed between the Subject method and others

broaden this conclusion to include an inter-subject method of

calculating correlations. Condition differences in correlation

values, however, were better reproduced between methods. Even

though the methods are quite different and the underlying

variations not the same – orthogonal by construction, in fact, for

Task and Residual methods – they all produced the same effect in

this data set. Either they all are tied in some way to the same

underlying phenomenon, or they are tied to different underlying

Figure 1. Effective Connectivity Regression Model. This model
was fit to the region-of-interest data for each of the three methods to
obtain estimates of effective connectivity. The model reflects the inter-
and intra-hemispheric influences of interest in the original experiment.
L = Left; R = Right; SMA = Supplementary Motor Area; SMC = primary
SensoriMotor Cortex.
doi:10.1371/journal.pone.0003708.g001

Sources of Variation
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Figure 2. Raw Correlation Values, Right Hand Task. Estimated Z-normalized correlations and 90% bootstrap confidence intervals are shown for
each region pair for the right hand movement condition. Each subplot shows results from the three different methods. L = Left; R = Right;
SMA = Supplementary Motor Area; SMC = primary SensoriMotor Cortex.
doi:10.1371/journal.pone.0003708.g002

Figure 3. Raw Correlation Values, Left Hand Task. Estimated Z-normalized correlations and 90% bootstrap confidence intervals are shown for
each region pair for the left hand movement condition. Each subplot shows results from the three different methods. L = Left; R = Right;
SMA = Supplementary Motor Area; SMC = primary SensoriMotor Cortex.
doi:10.1371/journal.pone.0003708.g003

Sources of Variation
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phenomena that manifest identically in these data. This is a

particularly relevant observation for studies that aim to distinguish

cognitive networks on the basis of their responses to different tasks

or stimuli, though of course it is important to note that these results

may be less applicable to other neural systems or cognitive tasks

not studied here.

Figure 4. Condition Differences in Correlation Values. Plots show the difference in correlations between the right hand condition and the left
hand condition, along with bootstrap 90% confidence intervals. L = Left; R = Right; SMA = Supplementary Motor Area; SMC = primary SensoriMotor
Cortex.
doi:10.1371/journal.pone.0003708.g004

Figure 5. Direct Comparison of Correlation Differences Between Methods. The values of (ZR2ZL) from Figure 3 were compared directly
between methods. There were no differences in this measure between methods based on the 90% confidence intervals shown. L = Left; R = Right;
SMA = Supplementary Motor Area; SMC = primary SensoriMotor Cortex.
doi:10.1371/journal.pone.0003708.g005

Sources of Variation
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The Residual method produced task-specific changes in

connectivity that mirrored the other methods, which suggests that

the time series residuals do contain some signals relating to the task

context. Therefore they may not make a good substitute for the

resting state data used to study characteristics of network

interactions that are not task-specific, e.g., [21,22,23], in spite of

early indications [24]. This has been explored at some length [11],

and our results support the observation that correlations in time

series residuals did not entirely match the correlations in resting-

state data; presumably if the residual correlations matched the

resting-state correlations, they would not be affected by the task

manipulation. For that reason, time series residuals in connectivity

measurement may more appropriately stand in for the steady-state

data which has been used to study the motor system [25] and the

visual system [26], though this has not been tested directly. However

it is worth mentioning in this context that we did not attempt to

remove block-to-block variability in the stimulus response, so any

that was present was contained in our residual data.

We expect that some of the differences we observed in raw

correlation values between the Residual method and the other

methods were due to physiological ‘‘noise,’’ generally consisting of

cardiac and respiratory signals and head motion artifact and

known to confound the measurement of connectivity from time

series data. This is of particular relevance to this study, as we did

not attempt to remove cardiac, respiratory, or global signals and

we used a long TR such that cardiac frequencies would have

aliased in an unknown way. Given how the different methods were

applied, these signals will have been present in the Residual data

but hardly at all in the Task and Subject data (except to the extent

they were task-correlated). They will have affected raw correlation

values but not condition differences, assuming that they manifested

similarly in both sessions for a given subject. Session order was

randomized in the original study for precisely this reason.

One difficulty in interpreting the existing functional connectivity

literature is the diversity of methodological approaches used [8].

The similarity of results from the three different methods, while

limited to the specific tasks studied, do suggest that comparing

results from multiple studies may be fruitful in spite of the use of

differing methodology.
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