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Abstract
Protection afforded by HIV Tat-based vaccines has differed in Indian rhesus and Mauritian
cynomolgus macaques. We evaluated native Tat and Ad-HIVtat priming/Tat-boosting regimens in
both species. Both vaccines were immunogenic. Only the Ad-tat regimen modestly reduced acute
viremia in rhesus macaques after SHIV89.6P challenge. Confounding variables uncovered in
Mauritian macaques included significant associations of susceptibility to infection with MHC class
IB and class II H2 and H5 haplotypes, and resistance to infection with class IB haplotypes H3 and
H6. Although protection here was limited, Tat-based vaccines incorporating other HIV components
have shown greater efficacy. Combination strategies should be further explored.

1. Introduction
The HIV pandemic is a major and urgent public health concern. At least 40 million people
worldwide are infected with the virus. Thus, development of an effective vaccine continues to
be a critical need. Among target HIV antigens for vaccine development is Tat, the potent
transcriptional transactivator of HIV gene expression. Tat is produced early after infection
[1,2] and is indispensable for viral replication, transmission, and AIDS pathogenesis [3-6].
Release of Tat from infected cells and its uptake by infected and uninfected cells is critical to
the biology of the virus [5,7-10]. In infected cells, Tat promotes viral replication or
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transactivates the replication of tat-defective or latent proviruses [11]. In uninfected cells, Tat
can modulate cellular gene expression [3,12,13], up-regulate HIV co-receptors [14,15], and
induce or inhibit apoptosis [16,17]. Early inhibition of Tat function should contribute to control
of viral replication and slowing of AIDS progression. In fact, Tat-specific CTLs are associated
with control of virus replication early in infection [18] and both anti-Tat antibody and Tat-
specific CTLs have been correlated with reduced viremia and slow progression to AIDS
[19-21].

Conflicting results have been reported following vaccination with Tat-based vaccines.
Immunizations of rhesus macaques with Tat protein, vectored tat, Tat toxoid or Tat peptides
have elicited no protection [22,23] or partial protection [24,25] against SIVmac239, SHIV33, or
SHIV89.6P challenges, while immunizations of cynomolgus macaques with native Tat protein
or DNA encoding tat have shown strong, long-term protective efficacy against SHIV89.6P
[26-29].These contrasting results might reflect species differences with regard to
immunogenicity or host resistance factors, or differences in vaccine characteristics, vaccination
routes, delivery systems, timing of immunizations or challenge protocols. Here we addressed
these issues, eliminating the latter variables by conducting two identical immunization and
challenge protocols in Indian rhesus and Mauritian cynomolgus macaques. The first approach
replicated previous studies in cynomolgus macaques in which multiple immunizations with
native HIV Tat protein were shown to elicit long-term protection against SHIV89.6P in
Mauritian cynomolgus macaques [26,29]. The second approach was based on a replication-
competent Ad-recombinant vaccine strategy [30]. These replicating vaccines have been shown
to elicit better cellular immune responses and prime higher titered antibodies, including
functional antibodies, compared to replication-defective Ad-recombinants encoding the same
HIV genes [31,32]. When combined with envelope subunit boosting, the vaccine strategy has
shown potent protection against virulent SIVmac251 challenge [33] and durable protective
efficacy with no intervening boost [34].

Studies using both vaccine regimens were conducted in the two non-human primate models,
and immunogenicity and protective outcomes following challenge with SHIV89.6P were
compared. As the entire repertoire of MHC alleles can now be predicted for essentially all
Mauritian cynomolgus macaques [35-37], we also determined the MHC genotypes of the study
animals. These investigations revealed a new association of Mauritian MHC haplotype and
susceptibility/resistance to SHIV89.6P infection. The association of particular MHC alleles with
resistance of rhesus macaques to SIV and SHIV infection is well established [38-43]. Our
results here extend the phenomenon to cynomolgus macaques of Mauritian origin. The
significantly higher peak Tat-specific T cell proliferative responses seen in vaccinated
macaques with the resistant haplotypes prior to challenge suggest cellular immunity should be
further explored as a possible mechanism for the observed resistance. Results of the haplotype
analysis and vaccine evaluations, together with reports showing that vaccines targeting Tat in
combination with other viral proteins elicit good protective efficacy in non-human primates
[44-46], suggest that HIV Tat vaccines might be best exploited in combination with other viral
antigens.

2. Materials and methods
2.1. Vaccines

Escherichia coli- expressed HIVIIIB Tat protein (Advanced Bioscience Laboratories, Inc.,
(ABL) Kensington, MD), greater than 95% pure and retaining full biological activity [7], was
lyophilized and stored at -70°C prior to use. To retain activity, Tat for immunizations was
freshly reconstituted at 4 μg/μl in degassed phosphate buffered saline (PBS; Invitrogen)
containing 0.1% BSA (Sigma-Aldrich) and 0.1mM dithiothreitol (DTT), capped, covered with
foil, and kept on ice. All plasticware was pre-rinsed with PBS-BSA buffer. For subcutaneous
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administrations, Tat was diluted in cold PBS, mixed with an equal volume of alum and
inoculated (10 μg/500 μl final concentration). For intradermal administrations, Tat was diluted
in PBS to a concentration of 6 μg/250μl. Tat-immune stimulating complexes (ISCOMS) [47]
were prepared by adding 200 μl of the ISCOM matrix to 50 μg lyophilized Tat, mixing, and
incubating with slow stirring at room temperature for 30 minutes. The mixture was cooled on
ice, diluted with PBS to 600 μl and administered (200 μl/dose) intramuscularly as soon after
preparation as possible.

Replication-competent Ad5hr-HIVtat has been described [48]. Control immunogens included
an empty Ad5hr E3-deleted vector, alum, and ISCOM matrix.

2.2. Animals, immunization and sample collection
Indian rhesus (Macaca mulatta) and Mauritian cynomolgus (Macaca fascicularis) macaques
were maintained according to guidelines and protocols of the Animal Care and Use Committee,
Washington National Primate Research Center, University of Washington (Seattle, WA).
Identical immunization regimens were followed for both cynomolgus and rhesus macaques
(Table 1). The schedule of Tat protein immunizations was published previously [26]. The
experimental cynomolgus immunization groups contained 9 animals each, however, 2
macaques in the Ad5hr-HIVtat group died from anesthesia complications prior to challenge.
Pre-challenge data are reported for all nine macaques and post-challenge data for the remaining
seven. Control cynomolgus groups contained 3 macaques each. All cynomolgus macaques
were males. The rhesus experimental immunization groups contained 8 macaques each; 3
macaques were in each control group. Five of eight macaques in the Tat protein and four of
eight macaques in the Ad5hr-HIVtat groups were females. Control groups each contained two
females and one male. All rhesus macaques were negative for Mamu A*01, but two were
positive for Mamu B*17 (A02005 in the Ad5hr-HIVtat group and A02023 in the adjuvant
control group).

Peripheral blood mononuclear cells (PBMCs), collected before, during, and after
immunization, were purified using lymphocyte separation medium (ICN Pharmaceuticals,
Inc.) for rhesus and Ficoll-PaqueTM PLUS (Amersham Biosciences) for cynomolgus samples
and used fresh for immunological assays. Plasma and sera were aliquoted and stored at -70°C
until use.

2.3. Challenge virus
All macaques were challenged intravenously (IV) at week 50 with SHIV89.6P. Rhesus
macaques received 30 MID50 of a SHIV89.6P stock [49] kindly provided by Drs. Norman Letvin
and Keith Reimann, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston,
MA. Cynomolgus monkeys received 15 MID50 of a SHIV89.6P stock derived from a
cynomolgus macaque inoculated with the original SHIV89.6P rhesus stock and termed
SHIV89.6Pcy243 [26].

2.4. ELISPOT Assay
PBMCs secreting gamma interferon (IFN-γ) in response to overnight stimulation with a single
pool of Tat 15-mers (1 μg/ml each) were enumerated using ELISPOT kits (U-Cytech, Utrecht,
The Netherlands) as described [50]. Assays were performed in triplicate; background spots in
wells containing only medium (RPMI 1640 containing 5% fetal calf serum, 1 mM L-glutamine,
100 U/ml penicillin, and 100 μg/ml streptomycin) were subtracted. A positive response is
defined as at least 10 spot forming cells (SFC) per million PBMC after subtraction of the mean
SFC of control macaques plus two standard deviations at each time point evaluated.
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2.5. T-Cell Proliferation Assay
Oxidized Tat was used for proliferative assays. Lyophilized Tat was reconstituted with
degassed buffer as described above, exposed to light and air for 2 hours at room temperature,
capped and exposed to light overnight, then aliquoted and stored at -70°C until use. Freshly
isolated PBMC (105 cells/well) were cultured for five days in triplicate in 200 μl of RPMI 1640
medium containing 10% fetal calf serum (FCS), 1mM L-glutamine and 100 U/ml penicillin,
100μg/ml streptomycin (R-10) with 1μg of oxidized Tat /well at 37°C. On the fifth day, cells
were pulsed overnight with 3H-thymidine (1μCi/well), harvested and counted as described
[50]. Stimulation indices (SI) were calculated by dividing mean counts per minute (cpm) with
Tat by mean cpm with R-10 plus degassed buffer. A positive response is defined as an SI of 2
or more after subtracting the mean SI of control animals + 2 standard deviations at each time
point tested.

2.6. Antibody Assay
Serum binding antibodies to HIV Tat were determined by enzyme–linked immunosorbent
assay (ELISA) [51]. Antibody titer was defined as the reciprocal of the serum dilution at which
the absorbance of the test serum was twice that of a serum from a naïve macaque diluted 1:50.

2.7. Viral RNA and proviral DNA detection
Viral RNA in plasma was determined by nucleic acid sequence-based amplification (NASBA)
as described [52]. Sensitivity of the NASBA assay is less than 2000 viral copies/input volume.
A real time assay with a sensitivity of <50 copies/input volume [34] was used when plasma
samples exhibited viral loads below the NASBA sensitivity level. For proviral DNA analysis,
cellular DNA was purified using QIAamp DNA mini kits (QIAGEN Inc., Valencia, CA USA).
SIV gag DNA was detected by nested PCR and confirmed by Southern blotting and
hybridization to a 32P-labeled SIV gag probe as described [51]. The first PCR reaction consisted
of 500 ng of purified DNA, 25 μl of 2X ready mix Go TaqR Green Master Mix (Promega,
Madison, WI), 10 pmoles of each outer SIV gag primer, and distilled water to a final 50μl
reaction volume. The second PCR reaction used a 10 μl aliquot of the first PCR product as
DNA template and the inner primer pair. Thirty amplification cycles (1 minute denaturation
at 94°C, 1 minute of primer annealing at 58°C, and 1.25 minute of extension at 72°C) were
performed for each reaction followed by a final primer extension of 7 minutes. Positive controls
(plasmid pCMV SIV-gag DX and a proviral-positive DNA sample) and negative controls
(distilled water and DNA extracted from pre-challenge PBMC samples) were run concurrently
with test samples.

2.8. MHC Microsatellite Haplotype Analysis
Microsatellite PCR assays were performed with genomic DNAs and a panel of 16 markers
spanning the 5-Mb MHC region essentially as described previously [37,53]. MHC haplotype
predictions were generated based on the microsatellite profiles, inferring alleles for the class I
and class II regions based on previously established haplotype-allele associations [36,37].

2.9. Mafa-B*510101 sequence-specific PCR
PBMC RNA was isolated with a MagNA Pure LC RNA Isolation kit (Roche Applied Science,
Indianapolis, IN). Complementary DNA (cDNA) was synthesized using a Superscript™ III
First-Strand Synthesis System (Invitrogen, Carlsbad, CA). Real-time PCR was performed on
a LightCyler 480 (Roche Applied Science, Indianapolis, IN) with cDNA templates and SYBR
Green PCR Master Mix (Applied Biosytems, Foster City, CA) in a 10ul final volume.
Amplification of a 140 bp cDNA-PCR product from the Mafa-B*510101 allele was achieved
with the primer pair Mafa-B*510101-SPPF, 5’-CAAGGACGCCGCACAGT, and Mafa-
B*510101-SPPR, 5’- GATACCCGCGGAGGAGGT. The thermal cycling conditions used
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were: activation at 95°C for 10 min, amplification between 60°C for 30 sec and 95°C for 30
sec x 40 cycles, and a final denaturation between 60°C and 95°C (30 acquisitions/sec) to
generate melting profiles (PCR product Tm = 87.1 °C).

2.10. Statistical Analysis
Differences in peak and chronic phase viremia between immunization groups, species, and
CD4 counts among the macaques pre- and post-challenge, were evaluated using the exact two
tailed Wilcoxon rank sum test. CD4 decline between groups of cynomolgus macaques was
compared using the two tailed Student’s t test. The Cochran-Armitage trend test was used for
the comparisons of antibody titers and analysis of MHC haplotype distribution among
macaques grouped by chronic viremia outcomes. Analysis of peak viremia levels, MHC
haplotypes, and proliferative responses used the Kruskal-Wallis test and the Wilcoxon rank
sum test.

3. Results
3.1. Pre-challenge immune responses to Tat

Strong humoral immunity was elicited in both species by both vaccine regimens. In
cynomolgus monkeys (Fig. 1A), anti-Tat titers first appeared in the Tat protein group at week
4. By week 8, the titers were significantly higher than those in controls, and the difference
persisted until the time of challenge (p = 0.0045). In contrast, Tat–specific antibody in the
Ad5hr-HIVtat group first appeared after the second Ad5hr-HIVtat immunization and became
significantly increased above control levels after the second Tat protein boost at week 36 (p =
0.018). This difference was maintained until week 48. The Tat protein group had significantly
higher Tat-specific binding titers than the Ad5hr-HIVtat group from weeks 14 through 34
(p<0.0004). This higher titer was also observed at week 48, two weeks prior to challenge (p =
0.0056; Fig. 1A).

A similar pattern was observed in the rhesus macaques (Fig. 1B). The Tat protein group showed
significantly higher Tat antibody titers compared to the adjuvant controls beginning at week 4
until the time of challenge (weeks 4-38, p = 0.0061; week 48, p = 0.012) The Ad5hr-HIVtat
group first exhibited elevated titers compared to controls at week 34, and the difference was
maintained until week 48 (p = 0.024). Compared to the Ad5hr-HIVtat group, the Tat protein
group had consistently elevated anti-Tat titers (weeks 4 – 30, p<0.0015). The higher titers were
maintained, although the significant difference disappeared by week 48, p = 0.14; Fig. 1B).

Overall, the Tat protein vaccine elicited higher anti-Tat titers in cynomolgus compared to
rhesus macaques, beginning at week 14 and over the immunization course (p values from 0.039
to 0.0023). The difference at week 48 prior to challenge was significant at the p = 0.018 level.
The Ad5hr-HIVtat regimen also elicited slightly higher anti-Tat titers in cynomolgus compared
to rhesus macaques, reaching a significant difference at week 48 prior to challenge (p = 0.037).

Cellular immunity was elicited by both vaccine regimens in both animal models, although less
potent relative to the induced humoral immunity (Table 2). Numbers of Tat-specific IFN-γ
secreting cells induced were low in both species, as was the frequency of positive responses.
The Ad5hr-HIVtat regimen elicited two- to five-fold higher mean peak ELISPOT responses
than the Tat protein regimen in the cynomolgus and rhesus models respectively, but similar
percentages of responding macaques were seen in both species. Most macaques of both species
also exhibited T cell proliferative responses induced by both vaccine regimens, although with
a low frequency similar to the ELISPOT results (Table 2). Overall, neither non-human primate
model displayed a consistently better cellular immune response to the vaccines.
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3.2 Outcome of SHIV89.6P challenge
Following SHIV89.6Pcy243 challenge, all cynomolgus macaques became infected (Fig. 2A-D).
The majority of animals exhibited high peak viremia followed by a decline in the chronic phase
of infection. However, one adjuvant control (04020, Fig. 2B) and two macaques each in the
Tat protein (04016, 04017, Fig. 2A) and the Ad5hr-HIVtat groups (04022, 04023, Fig. 2C)
never exhibited detectable viremia, although PBMC from these five macaques were positive
for SIV gag proviral DNA at one or more time points (Fig. 2A-C). The aviremia in adjuvant
control 04020 and the rapid viremia control in Ad5hr control 04026 (Fig. 2D) made it
impossible to attribute aviremia in the immunized macaques to the vaccine or a host control
mechanism.

Following SHIV89.6P challenge, all rhesus macaques became productively infected (Fig. 3A-
D). In both the Tat protein group and adjuvant controls high peak viral burdens declined to
variable set points. Two controls and one immunized macaque rapidly controlled viremia to
undetectable levels (Fig. 3A, B), but overall no protection was observed. However, the Ad5hr-
HIVtat regimen resulted in significant reduction in geometric mean peak viremia compared to
controls (4 X 107 versus 3 X 108 SIV RNA copies/ml plasma; p = 0.024). This modest protective
effect was not maintained in the chronic phase (Fig. 3C, D).

The CD4+ T cell counts in the two species reflected the viral burdens (data not shown). No
differences were observed between the counts of immunized macaques of either species and
their respective control groups. Overall, the cynomolgus macaques maintained higher CD4
counts over weeks 3-18 post-challenge compared to the rhesus macaques, whether they were
immunized with Tat protein (p = 0.0025) or the Ad5hr-HIVtat regimen (p = 0.0037).

3.3 Analysis of MHC haplotypes
The characterization of six common MHC haplotypes in feral Mauritian cynomolgus macaques
[37] allowed determination of MHC genotypes for the cynomolgus macaques studied here.
Microsatellite allele profiles were used to infer haplotypes spanning the 5–Mb MHC region
and deduce complete genotypes for class I and class II alleles (Fig. 4). All MHC haplotypes
observed were consistent with those previously reported for feral Mauritian-origin
cynomolgous macaques except for two macaques (04022 and 04019) that shared a novel
microsatellite profile for the MHC class I region of one of the paired haplotypes. Additional
genotyping of several hundred feral Mauritian cynomolgus macaques has confirmed that this
rare MHC haplotype, designated H7, is present in approximately 1% of the feral Mauritian
population (RWW, JAK & DHO, unpublished results). In several cases, MHC alleles for two
alternative haplotypes could not be distinguished with current microsatellite markers for
ambiguous chromosomal regions flanking recombination breakpoints (hatched areas in Fig.
4). However, two of the four ambiguous class IB regions were tentatively resolved using a
sequence-specific cDNA/PCR assay for Mafa-B*510101, an allele encoded on the H3
haplotype. cDNA from animal 04020 contained the Mafa-B*510101 allele but this allele was
not detected in animal 04010, suggesting the presence and absence of the class IB H3 haplotype,
respectively (Fig. 4).

An intriguing MHC genotype/phenotype correlation emerged when the animals were grouped
according to virological outcome after SHIV89.6P challenge rather than their immunized or
control status. Three clear categories were observed: A) those that never exhibited detectable
viremia, B) those that exhibited acute viremic but controlled chronic viremia to below 50
SHIV89.6P RNA copies/ml, and C) those that maintained high chronic viremia. All seven
cynomolgus macaques possessing the H6 class 1B MHC haplotype remained aviremic or
controlled chronic viremia (Fig. 4). Likewise, six of seven animals that possessed the H3 1B
haplotype were aviremic or controlled viremia, while only 1 remained viremic. Thus, 100%
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of macaques that remained aviremic and 80% of those that controlled viremia possessed either
an H3 or H6 IB haplotype, while only 14 % of macaques that remained viremic had either of
these haplotypes (significant trend for resistance, p = 0.0014; Fig. 4). Conversely, macaques
that possessed either the H2 or H5 class IB haplotype appeared more susceptible to
SHIV89.6P infection: 0 of 5 were aviremic and 2 of 10 controlled viremia, while 6 of the 7
remaining viremic animals carried one of these two haplotypes (trend analysis: p = 0.0014;
Fig. 4).

These correlations of MHC haplotype with susceptibility/resistance to SHIV89.6P challenge
were supported by longitudinal analysis of viral loads (Fig. 5A). Macaques with the H2/H5
haplotype exhibited peak viral loads significantly elevated 2 to 3 logs compared to H1/H4 and
H3/H6 macaques respectively (peak acute viremia weeks 1-4 for H2/H5 macaques versus all
others: p = 0.0006). The peak acute viral load for H3/H6 macaques vs all others has a p value
of 0.015. These differences persisted during chronic infection (weeks 8 – 52) where H2/H5
macaques maintained higher viral loads than the others (p = 0.013) and H3/H6 macaques
exhibited lower viral loads than the others (p = 0.023).

An effect of the MHC class IB haplotypes on pathogenesis was seen by a greater CD4 decline
in animals that became productively infected after SHIV89.6P challenge. Cynomolgus
macaques with H3 and H6 haplotypes had a smaller drop in CD4 counts over weeks 0 and 28
(621 ± 93) compared to non-H3 and H6 macaques (911 ± 69; p = 0.027). The CD4 decline of
H2 and H5 macaques (904 ± 79) vs all others (655 ± 90) was not statistically significant (p =
0.067).

These correlations suggested that the H2/H5 and H3/H6 haplotypes had a strong effect on
susceptibility/resistance to SHIV89.6P infection and may have obscured a protective effect of
the vaccine regimens on challenge outcome. After challenge, 69% of the 16 immunized
cynomolgus monkeys were aviremic or controlled viremia. Similarly, 67% of the 6 controls
were aviremic or controlled viremia. A retrospective analysis of a larger cohort of vaccinated
and control Mauritius cynomolgus macaques is underway to further examine the role of MHC
class 1B haplotypes on SHIV89.6P infection and vaccine-induced protection (Ensoli et al, in
preparation).

3.4 Analysis of cellular immunity by haplotype
The correlation of viral burden with MHC haplotype implicates cellular immunity in chronic
viremia control. ELISPOT responses of macaques grouped by MHC haplotype revealed no
differences pre- or post-challenge in Tat-specific IFN-γ secretion with respect to MHC
haplotypes in the vaccinated macaques or post-challenge in the controls (data not shown).
However, peak Tat-specific T cell proliferative responses pre-challenge were higher in
vaccinated macaques with the H3 or H6 haplotype compared to all others (Table 3; p = 0.011).
Post-challenge the H3 and H6 macaques continued to display higher peak SI (Table 3) although
not significantly different from non-H3/H6 macaques, even when the aviremic macaques
which lacked continual stimulation in vivo were excluded. Further, post-challenge the control
macaques did not exhibit differences in SI with respect to MHC haplotype. These results
suggest that vaccination against Tat of H3/H6 macaques rather than non-H3/H6 macaques
might elicit Tat-specific T cell proliferative responses and better control of chronic viremia, a
hypothesis currently being explored in a larger cohort of animals (Ensoli et al, in preparation).

Viral loads by haplotype groupings were examined after omitting aviremic macaques to
eliminate reduced acute phase viral burdens mediated by unknown mechanisms. H2/H5
macaques continued to display elevated chronic viremia, 0.5 to 1.5 logs higher than H1/H4
and H3/H6 macaques respectively (Fig. 5B). During acute infection (weeks 1 – 4) the H2/H5
macaques still displayed higher peak viremia compared to all others (p = 0.0079). Viremia of
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H2/H5 macaques two-weeks post-challenge was higher than that of all others (p = 0.0010),
while that of H3/H6 macaques was lower (p = 0.036). Three of the six H3/H6 macaques
vaccinated with Tat exhibited delayed peak viremia, and two of these three exhibited an
anamnestic T cell proliferative response (data not shown) implying a vaccine effect.

T cell proliferation is a surrogate for MHC class II-restricted CD4 T helper cell responses
[54]. The majority of Mauritian macaques with H3 or H6 MHC class IB haplotypes also had
H3 and H6 class II haplotypes (5 of 7 for both), and all macaques with H2 or H5 class IB
haplotypes also had H2 and H5 class II haplotypes (Fig. 4). Ten of eleven macaques with H3
or H6 class II haplotypes were aviremic or controlled viremia, while 1 of 11 remained viremic,
a non-significant trend for resistance (p = 0.15). But macaques with H2 and H5 class II
haplotypes exhibited a significant trend for susceptibility (p = 0.0014): none were aviremic, 2
of 8 controlled viremia, and 6 of 8 remained viremic. Analysis of longitudinal viral loads by
MHC class II haplotypes showed that macaques with the H2 or H5 class II haplotype had higher
viremia levels (data not shown). Acute viremia in macaques with class II H2/H5 haplotypes
vs non-H2 and H5 macaques was higher when all macaques were included (p = 0.0006) and
when aviremic macaques were excluded (p = 0.0079), as was chronic viremia: (p = 0.025 with
all macaques included; p = 0.015 with aviremic macaques excluded).

4. Discussion
In this study identical vaccine protocols in Mauritian cynomolgus and Indian rhesus macaques
addressed previously reported disparate outcomes of Tat-based vaccine regimens in these
animal models. Strong anti-Tat antibodies were elicited in both species, with the highest titers
seen in the cynomolgus macaques immunized with Tat protein. In contrast, weak cellular
immunity was elicited in both species by both vaccine regimens. As strong induction of IFN-
γ secreting cells by the Ad5hr-HIVtat recombinant was previously seen in mice [48], fewer
Tat T cell epitopes may be recognized in non-human primates. Epitope mapping could resolve
this question. Tat-specific proliferation was also low compared to results of previous
cynomolgus monkey studies [26], but no basis for this difference could be discerned.

Following the SHIV89.6P challenges only rhesus macaques vaccinated with the Ad5hr-
HIVtat regimen showed a transient 1 log reduction in acute viremia. When corrected for
multiple comparisons in a multi-arm vaccine study, this protection was no longer statistically
significant [44]. In the cynomolgus model, however, MHC class IB haplotypes were seen to
influence the course of SHIV89.6P infection. Animals carrying the H6 or H3 class IB haplotypes
displayed chronic phase viral loads near the limit of detection after SHIV89.6P challenge, while
animals with H2 or H5 class IB haplotypes, maintained chronic viremia ~20-fold higher than
the cohort as a whole. Higher viremia was also seen in macaques with H2 and H5 class II
haplotypes. As most of the cynomolgus macaques in this study were concordant for class IB
and class II haplotypes (Fig. 4), it will be important to examine whether both contribute to
SHIV89.6P control and the immunologic mechanisms responsible. Recently, class II alleles
have been shown to influence SIV viremia levels in rhesus macaques [55]. Here, vaccinated
macaques with H3 or H6 haplotypes exhibited higher peak proliferative responses to Tat prior
to challenge, suggesting that cellular immunity may contribute to the resistant phenotype. The
remarkably simple MHC genetics of the geographically isolated Mauritian cynomolgus
population [37] can be exploited in prospective studies to further explore the relationship
between MHC haplotypes, immune response, and susceptibility to infection with SHIV89.6P
and other SHIV isolates or SIV strains.

The lack of protection in the cynomolgus macaques immunized with Tat protein contrasted
with earlier results in which the identical vaccine regimen protected against the same
SHIV89.6Pcy243 stock [26]. The reason for this difference is not known, but the 10 MID50
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challenge dose instead of the 15 MID50 used here might have played a role. Challenge dose
effects will be explored in depth in a large retrospective cohort study (Ensoli et al, in
preparation).

The association of MHC class IB haplotypes with viremia control in Mauritian cynomolgus
macaques is not surprising. In humans, HLA-B alleles exert a dominant influence on the
outcome of HIV infection, with particular HLA-B allele expression associated with control of
viremia, CD4 count, and rate of disease progression [56]. HLA-B*27 and B*57 are associated
with delayed AIDS progression, while HLA-B*35 is associated with accelerated AIDS onset
[57]. In rhesus macaques, Mamu-B*17 is associated with reduced plasma viremia and slowed
disease progression following infection with SIVmac239 [40,42], although by itself it does not
guarantee better disease outcome [58]. Mamu-B*08 positive rhesus macaques display reduced
chronic phase viremia following SIVmac239 infection, and the allele is overrepresented in elite
controllers [38]. The particular Mafa-B sequences within the Mauritian H3 and H6 class IB
haplotypes associated with resistance to SHIV infection and the identity of epitopes recognized
remain to be identified. The basis for the association of the H2 and H5 class IB haplotypes with
greater susceptibility to SHIV infection also needs elucidation. The HLA-B*35 allele has been
reported to actively exert a negative effect [57]. Mafa-B sequences of the H2 and H5 class IB
haplotype may behave similarly.

Susceptibility/resistance phenotypes of the Mauritian cynomolgus macaques may also be
influenced by interactions of the highly polymorphic killer immunoglobulin-like receptors
(KIR) present on natural killer (NK) cells and their equally polymorphic ligands, MHC class
I molecules. NK cells provide a rapid initial defense against invading pathogens, and KIR by
recognizing specific MHC class I molecules on target cells regulate their inhibition or
activation. Specific interactions between distinct KIR3DL1 alleles and HLA-B loci have been
shown to delay AIDS progression, contain HIV replication, and protect against opportunistic
infections [59-62]. An absence of specific HLA ligands for inhibitory KIR has also been
associated with the resistance of highly-exposed persistently seronegative individuals to HIV
infection [63]. Similar interactions may be uncovered in the Mauritian cynomolgus macaques,
a task that should be facilitated by the simple genetics of this population.

Our findings suggest an explanation for results reported earlier in which a majority of naïve
Mauritian cynomolgus macaques naturally controlled SIV or SHIV replication [64]. The
control was associated with early IFN-γ responses to Gag and Env peptides post-challenge.
Here, only Tat responses were evaluated, so further studies are needed to examine other cellular
responses by haplotype in depth. Confirmation of our findings will be important for future
vaccine trials to allow selection of macaques that will exhibit susceptibility to SHIV infection,
thus providing the sensitivity needed for low-dose challenge studies, while avoiding resistant
animals that naturally control viral infection and confound vaccine experiments.

While little protection was elicited here by the Ad5hr-HIVtat or Tat protein regimens,
protection was observed in previous Tat vaccine studies [26,28] in which a lower challenge
dose (10 MID50) was used. Tat combined with other HIV antigens might better confer
protection at higher challenge doses. Immunizations with Tat plus Rev and Tat plus other non-
structural HIV gene products have shown protection against SIV [45,46]. A potential synergy
between Tat and Env leading to enhanced protective efficacy in rhesus macaques against
SHIV89.6P was recently reported [44]. Prospective studies using Tat-based vaccine strategies
are being conducted in non-human primates typed to control for host susceptibility/resistance
factors. Further, human phase II trials of the HIV Tat vaccine and a phase I trial combining
HIV Tat and HIV Env are about to begin. The outcome of these studies will determine the
value of Tat as an HIV vaccine candidate.
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Figure 1. Tat-specific binding antibody induced in cynomolgus and rhesus macaques by vaccination
prior to challenge
Geometric mean titers for each immunization group are shown for Mauritian cynomolgus
(Panel A) and Indian rhesus (Panel B) macaques. P values shown in panels A and B represent
the significant difference in antibody titer between Tat protein and Ad5hr-HIVtat groups for
weeks 14-34 (panel A) and for weeks 4-30 (panel B). P values at week 48 represent differences
prior to challenge at week 50.
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Figure 2. Level of plasma viremia following intravenous challenge of Mauritian cynomolgus
macaques with SHIV89.6P
Panels A-D show viral loads for individual macaques in each immunization group. Proviral
DNA (results shown in panels A,B,C) was evaluated on available PBMC samples collected
post-challenge at weeks.1, 2, 3, 4, 6, 8, and monthly thereafter. PBMC obtained at 6 time points
were assayed for each macaque where weeks tested are listed as 1-12. PBMC at 7 and 9 time
points were assayed for each macaque where weeks tested are listed as 3-24 and 1-24,
respectively.
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Figure 3. Level of plasma viremia following intravenous challenge of Indian rhesus macaques with
SHIV89.6P
Panels A-D show viral loads for individual macaques in each immunization group.
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Figure 4. Susceptibility and resistance to SHIV89.6P infection correlates with MHC class IB
haplotypes of Mauritian cynomolgus macaques
Viral outcomes were defined as aviremic: never exhibiting a plasma viral load greater than 50
SHIV89.6P RNA copies per ml over the entire 52 week observation period; control viremia:
viremia level during the chronic phase of infection dropped to an undetectable level (<50
copies/ml) on two or more occasions; remain viremic: plasma viremia persisted above
detectable levels over the entire observation period.
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Figure 5. Viral loads of Mauritian cynomolgus macaques with H2/H5 and H3/H6 MHC class IB
haplotypes are significantly correlated with susceptibility and resistance to SHIV89.6P infection
respectively
Geometric mean viral loads are plotted for macaques grouped according to the indicated
haplotypes.
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Table 1
Immunization and challenge protocol in cynomolgus and rhesus macaquesa.

Week Tat proteinb Ad-Tatc Ad vector control Adjuvant control

0 Tat protein (SC/ID) Ad-Tat (IN) AdΔE3 (IN) Alum (SC)
2 Tat protein (SC/ID) Alum (SC)
6 Tat protein (SC/ID) Alum (SC)
11 Tat protein (SC/ID) Alum (SC)
12 Ad-Tat (IT) AdΔE3 (IT)
15 Tat protein (SC/ID) Alum (SC)
21 Tat protein (SC/ID) Alum (SC)
24 Tat protein (SC) Alum (SC)
28 Tat protein (SC/ID) Alum (SC)
32 Tat protein (SC/ID) Alum (SC)
36 Tat +ISCOM (IM) Tat protein (SC) Alum (SC) ISCOM (IM)
50 SHIV89.6P (IV)d SHIV89.6P (IV) SHIV89.6P (IV) SHIV89.6P (IV)

a
Cynomolgus and rhesus macaques in each immunization group are listed in Fig. 2 and 3, respectively.

b
HIVIIIB Tat protein: 10 μg given subcutaneously (SC) in alum + 6 μg given intradermally (ID) without adjuvant. Last immunization was 16 μg given

with ISCOM intramuscularly (IM).

c
Ad-recombinant dose: 5X108 pfu each in PBS administered IN: intranasally; IT: intratracheally.

d
Intravenous (IV) challenge with SHIV89.6Pcyn243,15 MID50, for cynomolgus; SHIV89.6P, 30 MID50, for rhesus.
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