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Abstract
Alcoholism is a common, heritable, chronic relapsing disorder. GABAA receptors undergo allosteric
modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in
the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal.
Medications targeting GABAA receptors ameliorate the symptoms of acute withdrawal. Ethanol
induces plasticity in GABAA receptors: tolerance is associated with generally decreased GABAA
receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic
reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play
an important role in the development of addiction. VTA GABAergic interneurons are the primary
inhibitory regulators of DA neurons and a subset of VTA GABAA receptors may be implicated in
the switch from heavy drinking to dependence. GABAA receptors modulate anxiety and response to
stress; important elements of sustained drinking and relapse. The GABAA receptor subunit genes
clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have
provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans.
The influence of the interaction between ethanol and GABAA receptors in the reward pathway on
the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored
in this review.
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Introduction
Although alcohol consumption is a social pleasure for many, a significant number of
individuals are unable to keep within safe limits and cross over the divide between social
drinking and addiction. Alcoholism is common; the 12 month prevalence for alcohol use
disorders (dependence plus abuse) is 8.5% (Grant et al., 2004). The essential features of
alcoholism are loss of control over consumption, obsessional thoughts about the next drink,
and continuation of use despite knowledge of negative health and social consequences
(American Psychiatric Association, 1994). A meta-analysis of twin studies has shown that the
heritability of all addictive substances ranges from 40 – 70 %; the heritability of alcoholism,
derived from nearly 10,000 twin pairs, is 50% (Goldman et al., 2005). Therefore genetic and
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environmental risk factors for alcoholism are almost equally important although they may
differ in different populations.

Unlike other addictive drugs that are more specific, alcohol has widespread effects throughout
the brain; it acts at a variety of targets within cell membranes and in intracellular signal
transduction, inducing effects on neurotransmitter and neurohormone membrane receptors and
receptor-gated and voltage-activated ion channels. Alcohol alters the balance between γ-
aminobutyric acid (GABA), the primary inhibitory neurotransmitter, and glutamate, the major
excitatory neurotransmitter. Genetic vulnerability to alcoholism is therefore likely to be due
to numerous genes of small to modest effects in many neurotransmitter systems and signal
transduction pathways.

GABAA receptors undergo allosteric modulation by several structurally unrelated drugs, most
with their own binding sites, including ethanol, benzodiazepines (BZs), barbiturates,
anesthetics and also endogenous neurosteroids. These drugs have similar anxiolytic, sedative-
hypnotic, anticonvulsant, motor-incoordinating, and cognitive impairing effects. GABAA
receptors are implicated in the acute and chronic effects of alcohol including tolerance,
dependence and withdrawal, as discussed below. Chronic ethanol consumption results in cross-
tolerance to BZs and barbiturates (Kumar et al., 2004). This cross-tolerance, together with the
effectiveness of BZs in treating both anxiety and alcohol withdrawal, suggests that GABAA
receptors may play an important role in vulnerability to alcoholism and anxiety, particularly
in the mesolimbic dopamine (DA) reward pathway and interacting stress circuitry (Enoch et
al., 2003; Enoch, 2007).

GABAA receptors: structure
GABAA receptors are composed of five subunits, each of which has several isoforms (α1–6,
β1–3, γ1–3, δ, ε, θ, π, ρ1–3) (Barnard et al., 1998). Most receptors consist of two α, two β and
one γ subunits (Sigel et al., 2006). There are three main subunit combinations: α1β2γ2 (60%),
α2β3γ2 (15%), and α3β3γ2 (10%) (Benke et al., 1994, Michels and Moss, 2007). Expression of
the various subunit isoforms varies across brain locations and during development. The
receptor subunit composition determines distinct pharmacological and electrophysiological
properties (Minier and Sigel, 2004).

GABAA receptors are ligand-gated, chloride ion channels that confer fast synaptic inhibition.
Channel opening is initiated by the extracellular association of agonists with discrete binding
pockets leading to conformational changes that result in the opening of a central ion pore
(Barnard et al., 1998; Connolly and Wafford, 2004; Wisden and Seeburg, 1992). GABAA
receptors have structural and functional homology with a class of cys-loop ligand-gated ion
channel receptors including glycine, 5-HT3 and nicotinic acetylcholine. The topology of this
class of receptors consists of a large N-terminus, ligand binding, extracellular domain with a
cysteine loop, four transmembrane (TM) domains forming a chloride-ion channel with a large
intracellular loop between TM3 and TM4 and a short-extracellular C-terminus (Brejc et al.,
2001; Michels and Moss, 2007). The GABAA receptor ion channel is lined by the TM2
segments from each of the five subunits that form the receptor. There appears be a pocket
located between TM2 and TM3 of the GABAA α subunit that binds both alcohols and
anesthetics. It has been shown that within this pocket of the α1 subunit, serine-270 and
alanine-291 are essential not only for the binding of alcohols but also for alcohol-induced
conformational changes within the GABAA receptor (Jung et al., 2005; Jung and Harris,
2006; Mascia et al., 2000; Mihic et al., 1997). However, these studies used very high
concentrations of ethanol (200mM) that correspond to anesthetic concentration in vivo, and
there is so far no evidence that ethanol binds to GABAA receptors at physiological doses. The
exact mechanism by which ethanol enhances GABA responses remains unclear. The BZ
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binding site is at the interface of the γ2 subunit with α subunits excepting α4 and α6 (Wafford,
2005; Barnard et al., 1998). Binding sites for GABA (two copies) lies at the interface between
α and β (Olsen et al., 2004). Ethanol- and stress-induced neurosteroids potentiate GABA at a
binding site located in a cavity formed by α subunit TM domains (Hosie et al., 2006).

Presynaptic, postsynaptic and extrasynaptic receptors: phasic and tonic
inhibition

GABAA receptors are ubiquitously distributed at synapses on dendrites, neuronal cell bodies
and axons and are also found in extrasynaptic membranes. Most studies of GABA’s effects
have focused on phasic inhibition; i.e. postsynaptic GABAA receptors are activated following
brief exposure to a high concentration of GABA released from presynaptic vesicles. However
GABA that escapes from the synaptic cleft can also activate receptors on pre-synaptic
terminals. Accumulating evidence from recent studies has shown that in several brain regions
including the cerebellum and the mesolimbic reward pathway, ethanol can enhance
GABAergic transmission through effects at both pre- and postsynaptic GABAA receptors
through complex mechanisms (Ming et al., 2006; Roberto et al., 2006; Siggins et al., 2005).

GABAA receptors can exist as either synaptic or extrasynaptic receptors and this is a dynamic
state that may facilitate rapid changes in synaptic inhibition (Thomas et al., 2005). It has
recently been shown that low concentrations of extracellular GABA may result in persistent
or ‘tonic’ activation of extrasynaptic GABAA receptors in hippocampal interneurons, the
cerebellum, and the dentate gyrus (Farrant and Nusser, 2005; Kullmann et al., 2005; Semyanov
et al., 2003). Other than δ, no GABAA receptor subunits have so far been found to be exclusively
extrasynaptic (Farrant and Nusser, 2005). Neurosteroids potentiate extrasynaptic GABAA
receptors in nanomolar concentrations and decrease neuronal excitability by enhancing tonic
conductance mediated by the δ subunit (Fodor et al., 2005; Stell et al., 2003). Some studies
have shown that low concentrations of ethanol (1–30mM) potentiate extrasynaptic receptors
(≤ 5% of all receptors), predominantly composed of the non-BZ sensitive α4, α6 and δ subunits,
but have no effect on receptors with γ2 subunits, i.e. the vast majority of synaptic GABAA
receptors (Hanchar et al., 2006; Krystal et al., 2006; Olsen et al., 2007; Sundstrom-Poromaa
et al., 2002). This is relevant because these relatively low concentrations of ethanol are
experienced in social drinking; for example, 17mM is the legal upper limit of intoxication in
most US States (Lovinger and Homanics, 2007). These findings have not, however, been
replicated in other labs (Borghese and Harris, 2007; Korpi et al., 2007). In addition, it is
currently a subject of debate as to whether low concentrations of alcohol affect only α4, α6 and
δ subunits (Lovinger and Homanics, 2007), For example, it has been shown that co-application
of low concentrations of ethanol (17mM) influences channel potentiation of at least the
α1β2γ2 receptor by neurosteroids (Akk et al., 2007). Moreover, α1δ subunit assemblies that are
highly sensitive to low concentrations of ethanol and mediate tonic inhibitory currents have
recently been detected in hippocampal interneurons (Glykys et al., 2007). Taken together, the
importance of tonic inhibition for vulnerability to alcoholism has yet to be clearly elucidated.
Moreover, the balance between tonic and phasic inhibition may shift towards the direction of
phasic inhibition during chronic ethanol consumption. Rats exposed to the CIE model of binge
drinking (described later) showed a net loss of extrasynaptic, and a gain of synaptic,
hippocampal GABAA receptor responsiveness to ethanol concomitant with an increase in
central synaptic localization of α4, but not δ subunits (Liang et al., 2006). The fact that this
switch corresponds with the development of tolerance to the sedating / hypnotic effects of
alcohol suggests that it may be important in the pathway to addiction (Liang et al., 2006).
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GABAA receptors and the dopamine reward pathway
The mesolimbic dopamine (DA) system is implicated in the development of all addictions and
is also stimulated by stress. This “reward” pathway originates in the ventral tegmental area
(VTA) of the midbrain and projects to the nucleus accumbens (NAC), the limbic system and
the orbitofrontal cortex. The amygdala, hippocampus and medial prefrontal cortex send
excitatory projections to the NAC. The feeling of euphoria experienced by humans subsequent
to drug ingestion is associated with increased synaptic DA in the reward pathway that is
entwined with complex changes in numerous neurotransmitters including GABA, glutamate,
serotonin (5-HT), opioid peptides and cannabinoids. GABAA receptors in the central nucleus
of the amygdala appear to be important for oral ethanol self-administration in rodents
(McBride, 2002).

GABAergic projections to the VTA come from several regions including the NAC and the
ventral pallidum, however the primary inhibitory regulation of DA neurons is by GABAergic
interneurons within the VTA (Johnson and North, 1992; Steffensen et al., 1998). It has been
shown that VTA GABA neurons are coupled electrically via gap junctions (Stobbs et al.,
2004). The predominant GABAA receptors expressed in the VTA are α2, α3, α4, β1, β3, and
γ2 (Okada et al., 2004). In rats, acute ethanol exposure (20–80mM) excites DA neurons directly
but also indirectly by reducing the firing rate of VTA GABAergic neurons (Gallegos et al.,
1999; Xiao et al., 2007) and by influencing NMDA receptor-mediated excitation (Stobbs et
al., 2004). Chronic exposure to ethanol enhances baseline activity of GABA neurons and
induces tolerance to ethanol inhibition of the firing rate (Gallegos et al., 1999).

Human and animal studies implicate the opioid system, particularly β-endorphin and its
receptor, µ opioid, in sensitivity to the rewarding or reinforcing effects of ethanol. The β-
endorphin released by acute ethanol consumption is suppressed in chronic consumption and
may be a factor in craving or negative reinforcement (Oswald and Wand, 2004). In the VTA,
µ opioid receptors are expressed not on DA neurons but on GABA interneurons.
Hyperpolarization of these GABAergic neurons by opiates results in increased firing of DA
neurons (Johnson and North, 1992).

In non-drug dependent rodents, opiates can produce their acute rewarding effects through a
DA-independent system mediated through brainstem reward circuits (Laviolette et al., 2004)
however, in addicted animals the motivational effects of opiates derive from the mesolimbic
DA system (Laviolette et al., 2002; Nader et al., 1997). GABAA receptors in the VTA control
this bi-directional reward signaling; chronic opiate exposure and withdrawal induces CREB
phosphorylation in a subset of GABAA receptors that switches their functional conductance
properties from an inhibitory to an excitatory signaling mode (Laviolette et al., 2004). This
intriguing switching system has been shown to have considerable plasticity in rats and it may
have implications for the switch from controllable heavy drug use to addiction in humans.

Plasticity of GABAA receptor subunits in chronic ethanol consumption and
withdrawal

Studies using animal models of addiction or human postmortem brain samples have shown
that long-term ethanol use results in differential alteration in GABAA receptor subunit
expression in different brain regions.

The human superior frontal cortex is selectively damaged in chronic alcohol abuse with
neuronal loss. Two RT/PCR studies that were controlled for age and post-mortem delay found
elevated or trend α1 mRNA expression in the superior frontal cortex of alcoholics compared
with controls but no difference for α2, α3 or α4 expression (Lewohl et al., 1997; Mitsuyama et

Enoch Page 4

Pharmacol Biochem Behav. Author manuscript; available in PMC 2009 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



al., 1998). Moreover, the total concentration of α subunits was greater in alcoholics compared
with controls, in line with findings of increased GABAA (but not NMDA) binding in alcoholic
frontal cortex reported in an earlier study (Dodd et al., 1992). There was one positive study for
increased β3 mRNA expression in alcoholics in frontal cortex (Mitsuyama et al., 1998) but
another similar study was negative for both β2 and β3 (Buckley and Dodd, 2004).

In contrast, a consistent finding in rodents is that chronic ethanol consumption decreases
cortical mRNA and peptide levels of α1 subunits but increases α4 levels (Devaud et al., 1996,
1997; Grobin et al., 1998; Matthews et al., 1998). Cortical peptide levels for β2/3 and γ1 and
mRNA for γ2S increase in ethanol-dependent rats (Devaud et al., 1997).

Cynomolgus macaques who self-administered freely available alcohol at 2g/kg/day on average
for 18 months showed significant alterations in current desensitization in the basolateral
amygdala that were accompanied by significantly decreased mRNA levels of α2 and α3
subunits, a trend decrease of α1 but no impact on α4 (Floyd et al., 2004). Moreover mRNA
expression of β1 and γ2 was reduced in total amygdala samples (Anderson et al., 2007). It has
been shown that after 14 days of chronic alcohol consumption there was a decrease of α1 and
α4 subunit peptide expression in the amygdala, a decrease of α4 in the NAC but no change in
subunit expression in the VTA (Papadeas et al., 2001).

In rats, the chronic intermittent ethanol (CIE) model (≥ 60 doses), with persistent cycles of
self-administration and withdrawal, mimics ‘binge’ drinking in humans (Olsen et al., 2005).
CIE rats show GABAA receptor changes specifically in the hippocampus, including decreased
α1 and δ subunit peptide expression (Cagetti et al., 2003) and elevated mRNA levels of α4,
γ1 and the short splice variant (γ2S) of γ2 (Cagetti et al., 2003; Mahmoudi et al., 1997; Petrie
et al., 2001). A model of chronic ethanol consumption (40 days) has also been shown to increase
α4 subunit (but no other subunit) peptide expression in the hippocampus (Matthews et al.,
1998).

A single-photon emission computed tomographic scan (SPECT) imaging study showed that
at one week of abstinence from alcohol, binding of 123I-iomazenil to GABAA BZ receptors
was higher throughout the brain, including the hippocampus and amygdala, but particularly in
the frontal cortex, in alcoholic non-smokers compared with controls (Staley et al., 2005). This
difference normalized after one month of abstinence. Frontal isotope uptake corresponded with
severity of alcohol withdrawal and the number of days since the last drink (Staley et al.,
2005). Therefore either the expression of GABAA receptors increased with chronic drinking
in line with the findings in postmortem brain samples (Lewohl et al., 1997) and subsequently
declined with abstinence, or GABAA receptors increased in acute withdrawal before gradually
declining. In line with these results, a proton magnetic resonance spectroscopy (1H-MRS) study
has shown that non-smoking alcoholics had higher GABA levels at one week of abstinence
than controls but after one month, GABA levels were the same (Mason et al, 2006).

Studies have shown that the clinical course of alcoholism differs in smokers and non-smokers.
Amongst current alcoholics, 35% are also nicotine dependent (Grant et al., 2004). Either drug
may increase the rewarding effects and/or reduce the aversive effects (such as withdrawal) of
the other. In contrast to the non-smoking alcoholics described above, GABAA receptor binding
and GABA levels in alcoholic smokers did not differ from controls at one week of abstinence
(Mason et al., 2006; Staley et al., 2005). Moreover, a 1H-MRS study in non-alcoholics showed
no difference in cortical GABA levels between smokers and non-smokers (Epperson et al.,
2005). These results suggest that smoking may ameliorate some of the effects of chronic alcohol
consumption, perhaps in part by influencing GABA synthesis and the density of GABAA
receptors that share structural and functional homology with nicotinic acetylcholine receptors.
Nicotine is known to stimulate GABA neuronal activity, at least in the hippocampus (Barik
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and Wonnacott, 2006). One mechanism for this may be that α7 nicotinic receptors frequently
occur close to synaptic GABAA receptors and α7 nicotinic agonists are implicated in the
postsynaptic modulation of GABAA receptors in the hippocampus (Wanaverbecq et al.,
2007; Zhang and Berg, 2007). However, other studies have shown that neurobiological
recovery in alcoholics (gauged by common brain metabolite concentrations) in the first few
weeks of abstinence is adversely affected by chronic smoking (Durazzo et al., 2006). Taken
together, these studies suggest that GABAA receptor subunit plasticity may not underlie the
damage observed in the frontal lobes of severe alcoholics. Further studies are needed in this
area.

During the peak of behavioral withdrawal (1 day) after chronic ethanol treatment in rats, mRNA
expression for β2, β3 and γ1 significantly increase whereas α1, α4 and γ2S expression rebounds
back to control levels (Devaud et al., 1996). However, in the CIE model with numerous cycles
of drinking and withdrawal that more closely mimic binge drinking in humans, subunit changes
(decreased α1, δ, elevated α4, γ1 and γ2S) persist beyond acute withdrawal (2 days) (Cagetti et
al., 2003). GABRG2 has also been associated with alcohol withdrawal severity in mice (Buck
and Finn, 2001; Hood et al., 2006).

Taken together, the studies in rodents indicate that chronic ethanol consumption decreases
cortical and hippocampal α1 subunit levels but increases α4 , γ1 and γ2S levels however there
are regional differences in receptor adaptations, such as in the amygdala and the NAC. There
are conflicting results between studies in rodents and human postmortem brain: the latter show
increased α1 mRNA expression in the cerebral cortex. However these postmortem results were
from severe alcoholics with considerable phenotypic and comorbidity variability and are not
likely to be comparable to controlled animal models.

Mechanisms for the effects of chronic ethanol on GABAA subunits include modification of
gene transcription or post-translation modification, synaptic or extracellular localization, and
ethanol induced neurosteroid changes (Kumar et al., 2004). For example, the ethanol-induced
internalization or endocytosis of cortical α1 leads to decreased cell surface and increased
intracellur receptors (Kumar et al., 2003). Also, within rat hippocampus chronic ethanol
consumption induces down-regulation of tyrosine kinase phosphorylation of α1 subunits, up-
regulation of β2 subunits and no change in γ2 subunits (Marutha Ravindran et al., 2007).

At the moment, there is little evidence from animal models to determine whether receptor
plasticity induced by chronic alcohol consumption reverts to pre-drinking levels after
protracted withdrawal. On the other hand, the spectroscopy study in humans described above
(Mason et al, 2006) showed that after one month of abstinence GABA levels in recovering
alcoholics reverted to the same levels as in controls. This would suggest that GABAA receptor
changes induced by chronic ethanol consumption may not be markers of addiction. Further
animal and human studies of long-term withdrawal are required before this issue can be
addressed.

GABAA receptors, stress and ethanol
Alcohol may be consumed in excess as a coping mechanism for stress and the altered
homeostasis subsequent to addiction can result in stress upon withdrawal (Thomas et al.,
2003; Wand, 2005). GABAergic neurotransmission is likely to be important in addiction-
associated stress because GABA modulates emotion and response to stress. GABA inhibits,
whereas glutamate activates, the hypothalamic-pituitary-adrenal axis (HPA) responses to stress
(Herman et al., 2004). Acute stress immediately reduces GABA-stimulated chloride influx in
the frontal cortex and amygdala (Martijena et al., 2002). Corticotropin releasing hormone
(CRH), the primary mediator of the mammalian neuroendocrine stress response, is localized
and co-synthesized within GABAergic neurons in the central amygdala, and in this location
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CRH1 receptors have been shown to mediate ethanol enhancement of GABAergic synaptic
transmission (Nie et al., 2004). GABAA receptors in this region play an important role in
ethanol self-administration in rodents (McBride, 2002).

Socially isolated rats exhibit anxious behavior accompanied by increased plasma
corticosterone together with diminished levels of neurosteroids and brain GABAA receptor
function (Serra et al., 2000). Adult rats that have been subjected to early life stress (maternal
separation / handling) have a more active stress response (Hsu et al., 2003). Epigenetic effects
on receptors implicated in stress, such as glucocorticoid and GABAA, have been demonstrated
in rodents. For example, BZ receptor levels in the adult rat central nucleus of the amygdala are
highly correlated with the frequency of maternal licking/grooming over the first week of life
(Caldji et al., 1998). Early life stress in rats permanently alters GABAA receptor subunit
expression in the hippocampus such that α2 subunits predominate in the stressed animals
whereas α1 predominates in emotionally healthy animals (Hsu et al., 2003). Early life maternal
neglect also results in increased levels of α3 and α4 in the adult rat amygdala whereas enriched
maternal care in the first week of life results in increased α1 and β3 mRNA levels almost
everywhere, including the hippocampus and amygdala, and increased β2 and γ2 in the
amygdala. These effects can be reversed by cross-fostering (Caldji et al., 2003).

Early life stress affects ethanol consumption and preference in adult male, but not female, rats
(Moffett et al., 2007). It is not known whether similar epigenetic effects exist in humans
however severe childhood stressors, especially emotional, physical and sexual abuse, have
been associated with increased vulnerability to adult psychopathology (Verona and Sachs-
Ericsson, 2005; Wilsnack et al., 1997).

Ethanol and neurosteroids
In vivo, GABAA receptors are exposed to endogenous neurosteroids that include progesterone
and its metabolites: 3α-5 α-THP (allopregnanolone or ALLO) and 3α-5 α-THDOC
(allotetrahydrodeoxycorticosterone) (Finn et al., 2004a). The effects of ALLO appear to be
primarily mediated via its interactions with GABAA receptors (Herd et al, 2007). Ethanol and
stress both stimulate neurosteroid synthesis from cholesterol in the brain. Neurosteroids bind
to GABAA receptors at low (nanomolar) concentrations and potentiate GABA currents (Biggio
et al., 2007). Consistent with this action, acute exposure to progesterone or ALLO is anxiolytic
(Gulinello and Smith, 2003). In healthy humans, ethanol induces changes in ALLO
concentration that correlates with alcohol liking and desire for more alcohol (Pierucci-Lagha
et al., 2006). Pre-treatment with finasteride (5α-reductase inhibitor) that reduces the synthesis
of ALLO and THDOC, diminishes the subjective response to a moderate dose of alcohol in
social drinkers (Pierucci-Lagha et al., 2005). Several studies in rodents have shown that
ethanol-induced neuroactive steroids contribute to the acute behavioral effects of ethanol such
as sedative-hypnotic (Van Doren et al., 2000; Khisti et al., 2003), anti-depressant (Hirani et
al., 2002) and anxiolytic (Hirani et al., 2005). Moreover a relationship exists between the time
course of ethanol-induced neurosteroids and specific behavioral and neural effects of ethanol
(Morrow et al., 2001). Thus neuroactive steroids contribute to ethanol sensitivity and may
influence the risk for addiction (Morrow et al., 2006).

Basal brain and plasma ALLO levels are higher in females than males and are influenced by
hormonal fluctuations however stress can elevate male ALLO levels to female levels
(Barbaccia et al., 2001). It is therefore not surprising that sexually dimorphic effects have been
noted in the interaction of ethanol and neurosteroids. ALLO pretreatment significantly
increases voluntary ethanol consumption in male but not female mice (Sinnott et al., 2002) and
intra-cranial injection of ALLO modulates the onset and maintenance of ethanol self-
administration but does not affect appetitive (ethanol seeking behaviors) (Ford et al., 2007).
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In contrast, very high pre-treatment doses of ALLO suppresses ethanol intake (Ford et al.,
2005a). Chronic (17 days) self administration of limited access ethanol has been shown to
elevate endogenous brain ALLO levels in male but not female mice (Finn et al., 2004b).

Rats withdrawing from ethanol are sensitized to the anticonvulsant effects of neurosteroids.
Potentiation of GABA currents is enhanced up to 50% in withdrawal by ALLO and THDOC
(Devaud et al., 1996). THDOC decreases neuronal excitability by enhancing tonic extracellular
inhibitory conductance mediated by the δ subunit (Stell et al., 2003). Ethanol withdrawal-prone
mice exhibit decreased ALLO levels during withdrawal plus tolerance to ALLO’s
anticonvulsant effect (Finn et al., 2004a). Pretreatment with finasteride increases acute
withdrawal seizures in female mice but decreases withdrawal severity in male mice (Gorin-
Mayer et al., 2007). Finasteride initially diminished ethanol consumption in male mice that
were established drinkers but heavy drinking eventually re-established indicating
compensatory changes in neurosteroid modulation of GABAergic tone (Ford et al., 2005b).
Ethanol-induction of neurosteroids is diminished in tolerant and dependent rodents (Morrow
et al, 2001). These studies indicate that neurosteroids, synthesized in response to ethanol
consumption with effects primarily mediated through GABAA receptors, appear to ameliorate
some of the negative aspects of ethanol, particularly during withdrawal. However, the effects
on neurosteroids may be more pronounced in males.

Protein regulation of GABAA receptors
GABAA receptors are regulated by several signaling proteins including protein kinase C and
A (PKC and PKA) (Chen and Olsen, 2007; Kumar et al., 2004). GABAA receptor function can
be modulated by protein phosphorylation at sites thought to be located in the intracellular
domain between TM3 and TM4. The PKC family of serine-threonine kinases influences
receptor sensitivity to positive allosteric modulators such as ethanol, neurosteroids and BZs
(Hodge et al., 1999; Kumar et al., 2004; Song and Messing, 2005) and has been implicated in
animal models of alcohol addiction (Newton and Ron, 2007). PKA regulation of GABA-
activated currents occurs through phosphorylation at highly conserved sites in the intracellular
domain of β subunits, the effect depending on the particular β subunit isoform (McDonald et
al., 1998). PKA has been implicated in anxiety and drinking behavior (Wand, 2005). A range
of proteins that associate with individual GABAA subunits and play important roles in
regulation have recently been found and are described elsewhere (reviewed in Chen and Olsen,
2007).

Association between GABAA receptor genes and alcoholism in humans
Genes for the GABAA receptor subunit isoforms are clustered in several chromosomal regions,
including 4p13-q11 (α2, α4, β1, γ1), 5q34–q35 (α1, α6, β2, γ2) and 15q11–q13 (α5, β3, γ3) as
well as Xq28 (α3, β4, ε1) (Barnard et al., 1998). Alternative splicing has been demonstrated for
most of the GABAA receptor subunit isoforms indicating complexity in gene expression (Jin
et al., 2004; Tian et al., 2005). From Figure 1 it can be seen that there is considerable
conservation and linkage disequilibrium extending across long stretches of sequence in the
chromosome 4 and 5 clusters but less so in the chromosome 15 cluster. Do these gene clusters
have significance? The most abundant GABAA receptor subunit complex (α1, β2, γ2 (60%))
that has widespread distribution in adult brain originates from the chromosome 5 gene complex.
The mRNAs from the chromosome 4 cluster genes predominate in rat embryo but these genes
are generally down regulated in the adult rat except in the hippocampus, the majority of DA
neurons in the substantia nigra and the VTA where they are highly expressed (Okada et al.,
2004; Steiger and Russek, 2004; Wisden et al., 1992). Thus the chromosome 4 cluster of genes
are likely to be important in addiction and anxiety and may be vulnerable to epigenetic effects
in early development, as indicated above for GABRA2 (Hsu et al., 2003). Moreover, the
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anxiolytic effects of BZs appear to be mediated in part by GABRA2; mice with a GABRA2
knock-in point mutation are insensitive to BZs’ anxiolytic effects (Dias et al., 2005; Low et
al., 2000).

GABAA receptor chromosome 4 gene cluster
Earlier genomewide scans in American Indians and Caucasians have provided evidence for
linkage of alcohol dependence and relapse-associated β EEG to chromosome 4p at the location
of the GABAA gene cluster (Ghosh et al., 2003; Long et al., 1998; Porjesz et al., 2002; Reich
et al., 1998; Zinn-Justin and Abel, 1999). Subsequently, several studies, nearly all in
Caucasians, have found haplotype and SNP associations between GABRA2 and alcoholism.
All these studies, together with HapMap (Figure 2), have identified the same two GABRA2
haplotype blocks, at least within Caucasians, American Indians and Asians. The significant
association signals have been within the haplotype block that extends downstream from intron
3. Within this block numerous SNPs are in allelic identity resulting in two major yin-yang
haplotypes of similar frequency that account for nearly all of the haplotype diversity in
Caucasians and Asians (Figure 3).

The first GABRA2 association study came from the Collaborative Study on the Genetics of
Alcoholism (COGA) that has a dataset compiled from six centers across the USA. COGA
performed a family-based association study on 2282 individuals, 41% with lifetime alcoholism
and 29% with lifetime illicit drug dependence, from 262 multiplex families with a high density
of alcoholism, genotyped across the whole chromosome 4 gene cluster. Probands were
treatment-seeking alcoholics. Using the pedigree disequilibrium test, Edenberg et al. (2004)
found that the more abundant of the two common haplotypes was a significant risk factor for
alcohol dependence and was also associated with β EEG power, an intermediate phenotype for
alcoholism. Two subsequent studies using the same COGA dataset showed that the signal for
the earlier reported association came only from the alcoholics with comorbid illicit drug
dependence (Agrawal et al., 2006) and that GABRA2 was significantly associated with
childhood conduct disorder symptoms, but not alcohol dependence symptoms, in children
(Dick et al., 2006a). A recent case-control study in German treatment-seeking alcoholics
supports the COGA finding of an association between the more abundant haplotype and
alcoholism (Soyka et al., 2008).

In contrast to the above studies, the less frequent of the two yin-yang haplotypes was found to
be significantly more abundant in treatment-seeking alcoholics than controls in several case-
control studies: U.S. Caucasians (Covault et al., 2004), Russians (Lappalainen et al., 2005),
and Germans (Fehr et al., 2006). Covault et al. (2004) found that the association was strongest
in the alcoholics who did not have drug dependence or major depressive episode; this was
opposite to the COGA finding (Agrawal et al., 2006). Fehr et al. (2006) showed that the
frequency of the risk haplotype was positively correlated with alcoholism severity, gauged by
withdrawal seizures and early onset of dependence. The G allele of a synonymous exonic
GABRA2 SNP rs279858, a tag allele for this same less frequent alcoholism risk haplotype, was
associated with a higher daily probability of drinking and heavy drinking during the 12-week
treatment and 12-month post-treatment period in alcoholics from the Project MATCH study
(Bauer et al., 2007). This GABRA2 rs279858 G allele was also associated with decreased
pleasurable effects for alcohol in social drinkers (Pierucci-Lagha et al., 2005). Furthermore,
the subjective experiences of the social drinkers who had the rs279858 protective AA genotype
could be manipulated by pre-treatment with finasteride, a metabolism blocker of the
endogenous neurosteroids ALLO and THDOC,that diminished their subjective experiences of
alcohol (Pierucci-Lagha et al., 2005). There was no effect of neurosteroid blockade on
individuals with the rs279858 G risk allele, possibly because of a floor effect.
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The results from the studies described above appear to indicate that both of the two abundant,
yin yang haplotypes can be risk factors for alcoholism, at least in Caucasians. Supportive
evidence for this apparent paradox comes from a study in non-treatment seeking alcoholics in
two population isolates, Finnish Caucasians and Plains American Indians (Enoch et al.,
2006). This study showed that although there was no haplotype association with alcoholism
per se, alcoholics with high trait anxiety (TPQ harm avoidance) had the highest frequency of
the more abundant haplotype, alcoholics with low anxiety had the highest frequency of the less
abundant haplotype and non-alcoholics had intermediate frequencies (Enoch et al., 2006).
Alcoholics, including those with antisocial personality disorder, have been shown to have
higher trait anxiety than non-alcoholics (Ducci et al., 2007; Goodwin and Hamilton, 2003). If
trait anxiety does indeed play a role in mediating linkage of GABRA2 haplotypes with
alcoholism then the Enoch et al. (2006) study would predict that COGA alcoholics have higher
trait anxiety than the treatment seeking alcoholics of other studies (Covault et al., 2004; Fehr
et al., 2006; Lappalainen et al., 2005). Indeed, it has been demonstrated that COGA alcoholics
have higher trait anxiety than non-alcoholics (Ducci et al., 2007). Moreover, supportive
evidence comes from the fact that in the Covault et al. (2004) study the effect got stronger
when alcoholics with major depression (who are likely to have high trait anxiety) were
removed. It is noteworthy that the linkage of a disorder with both alleles has been found
previously, for example alcoholism has been associated with both the L and S alleles of the
serotonin transporter promoter polymorphism HTTLPR (Feinn et al., 2005; Hu et al., 2005).

A few studies have found no GABRA2 association with alcoholism, either in U.S. Caucasians
(Covault et al., 2008 (Project MATCH dataset); Drgon et al., 2006; Matthews et al., 2007) or
African Americans (Covault et al., 2008). Some of these negative findings may be due to
sample selection or lack of power (Drgon et al., 2006; Matthews et al., 2007) although the
Project MATCH study included over 700 alcoholics. Another issue may be sexual dimorphism.
As described above, Enoch et al. (2006) found significant anxiety-mediated GABRA2
haplotype associations with alcoholism in Finnish Caucasian and American Indian men but
found no association in American Indian women. The negative study in African Americans
(Covault et al., 2008) may be attributable to the fact that in this group the two yin yang risk
haplotypes are present at much lower frequencies (29% and 27%) compared with other
populations (Enoch, unpublished data; Figure 3). Finally, population stratification may be an
issue.

Although further studies that include alcoholism subtypes, different ethnic groups and also
women are clearly needed, there appears to be good evidence for a fundamental association
between GABRA2 and alcoholism. Many of the SNPs in allelic identity, such as rs279858
(discussed above) and rs279863 (Figure 2), are conserved across species indicating the
likelihood of selective pressure for the GABRA2 region distal to intron 3. One recent study has
shown that GABRA2 mRNA levels in post-mortem prefrontal cortical tissue differed
significantly according to genotype (Haughey et al., 2007). However, no functional
polymorphism has as yet been found There are numerous alternative splicing isoforms, most
of which differ in their 3’ end after exon 3 (Figure 2) and these may be implicated in function.
Within the brain there are four major isoforms with alternative 5’ (exon 1A or IB) and 3’ exons
(exon 9A or 10) as well as minor isoforms lacking exon 4 or exon 8 (Tian et al, 2005;Jin et al,
2004). The functional significance of these isoforms is at present unknown. SNP rs279827
(Figure 2) is near the acceptor site of intron 4 and thus might affect splicing efficiency.

Studies in the COGA dataset have found no association between alcohol or illicit drug
dependence and GABRA4 (5 SNPs), GABRB1(6 SNPs) or GABRG1(6 SNPs) (Edenberg et al.,
2004; Agrawal et al., 2006). However two GABRG1 SNPs in one COGA study showed trend
level association with alcoholism (Edenberg et al., 2004). A recent study has shown significant
haplotype and SNP association with alcoholism in a haplotype block that extends from the
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intergenic region between GABRA2 and GABRG1 (Figure 1) up to GABRG1 intron 3 in two
large groups of U.S. Caucasians but not in African Americans (Covault et al., 2008). As the
HapMap block structure indicates, there is extended LD between GABRA2 and GABRG1
(Figure 1). Covault et al. (2008) concluded that their earlier GABRA2 association (Covault et
al., 2004) may in part be secondary to LD with risk-related variants in GABRG1 although there
may be separate contributions to alcoholism risk from the two genes. One study found an
association between a GABRB1 intron 8 tetranucleotide repeat and alcoholism (Parsian and
Zhang, 1999). A COGA study found consistent, albeit weak, LD between GABRB1 and
alcoholism (Song et al., 2003). A recent study found GABRB1 haplotype linkage to alcoholism
in both Caucasians and American Indians in both proximal and distal haplotype blocks of this
large gene (Enoch et al., 2005).

GABAA receptor chromosome 5 and chromosome 15 gene clusters
The cluster 5 and cluster 15 genes (Figure 1) are not as strong candidates for alcoholism as are
the cluster 4 genes for reasons discussed above. Indeed, the results of association studies have
been mixed. Although COGA initially found no linkage between chromosome 5 genes and
alcoholism (Dick et al., 2005;Song et al., 2003) a secondary analysis showed association of
GABRA1 with measures of drinking severity: history of blackouts, age at first drunkenness,
level of response to alcohol (Dick et al., 2006b). A study in two population isolates: Finnish
Caucasians and Southwestern American Indians, found sibpair linkage of alcohol dependence
to GABRG2 in the Finns and associations in both populations with GABRB2 and GABRA6
SNPs (Radel et al., 2005). Markers in GABRA6 and GABRB2 have been associated with alcohol
dependence as well as Korsakoff’s psychosis in a Scottish study (Loh et al., 1999). The
Pro385Ser substitution in GABRA6 has been associated with a lower level of response to the
sedating effects of alcohol (Hu et al., 2005), and to reduced sensitivity to the effects of diazepam
in children of alcoholics (Iwata et al., 1999) and a SNP in the 3’ UTR (T1521C) has been
associated with variation in physiological response to psychological stress (Uhart et al.,
2004). There has been a positive association with GABRG2 and antisocial alcoholism in
Japanese (Loh et al., 2000) but negative studies for GABRB2 and GABRG2 in Germans (Sander
et al., 1999)

Studies using the COGA dataset found evidence of haplotype and SNP association between
alcohol dependence and GABRG3 (Dick et al., 2004) and evidence for imprinting in that
paternal, but not maternal, transmission of GABRA5 and GABRB3 alleles showed association
with alcoholism (Song et al., 2003).

GABAA receptors as therapeutic targets for alcoholism
Benzodiazepines are commonly used to ameliorate the symptoms of acute withdrawal from
alcohol, however there is an increasing trend to instead use anti-convulsants such as
carbamezepine that are more effective in preventing rebound withdrawal symptoms and
reducing post-treatment drinking than BZs (Malcolm et al., 2002; Mueller et al., 1997). The
sedative-anticonvulsant chlomethiazole that may act at the anesthetic binding site on
GABAA receptors (Usala et al., 2003) is widely used in Europe in acute withdrawal. Other,
newer anti-convulsants that are considered to act primarily via an effect on GABA may prove
useful in the treatment of alcoholism (Czuczwar and Patsalos, 2001). For example, topiramate,
which has a complex effect on GABAA receptors (Gordey et al., 2000) has been shown to
reduce the percentage of heavy drinking days and other drinking outcomes in recovering
alcoholics (Johnson et al., 2007). Finally, as this review has indicated, neuroactive steroids are
likely to be promising new drug targets for the treatment of alcoholism.
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Conclusion
The modulation of GABAA receptors by ethanol is complex and involves numerous
interactions including with neurosteroids, protein regulators, stress hormones and
neurotransmitters such as opioids. Although substantial progress has been made in recent years
we are still far from understanding the GABAA receptor changes associated with the switch
from heavy drinking to alcohol addiction. Recent studies are beginning to shed light on
associations between GABAA receptor genes and alcoholism although functional
polymorphisms have yet to be determined. The relatively new field of epigenetics is emerging
and studies of gene × environment interactions are likely to yield further insights into the role
that GABAA receptors play in the development of alcoholism.
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FIGURE 1. Chromosomal clusters for GABAA receptor genes in the HapMap Caucasian
population
Arrows indicate gene position, size and direction of transcription. Red triangles show areas of
linkage disequilibrium with D’ ≥ 0.8. Conservation (vertical lines) across 17 vertebrate species,
from zebrafish to humans is show across the chromosomal regions.
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FIGURE 2. GABRA2 gene structure
The large arrow indicates the direction of transcription. CDS = coding sequence are shown,
linked by dotted lines to the relevant exons. TM domains = transmembrane domains,
numbering 1 through 4 from left to right. The locations of the TM domains within the coding
sequences are shown. HapMap population blocks are indicated: CEU = Caucasian; ANS =
Asian; YRI = African. The structure of 12 isoforms is shown. Conservation across 17 vertebrate
species, from zebrafish to humans is indicated. Information derived from HapMap and the
UCSC genome browser: www.genome.ucsc.edu
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FIGURE 3. GABRA2 common haplotypes for HapMap Asian, African and Caucasian samples
Black lines indicate the genotyped SNPs; the two colors indicate the two alleles for each SNP.
All 3 populations show 2 haplotype blocks with the block boundary in intron 3. The Asian and
Caucasian populations both have 2 common haplotypes in the distal haplotype block. The
Africans show more haplotype diversity.
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