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New sequencing technologies promise a new era in the use of DNA sequence. However, some of these technologies
produce very short reads, typically of a few tens of base pairs, and to use these reads effectively requires new
algorithms and software. In particular, there is a major issue in efficiently aligning short reads to a reference genome
and handling ambiguity or lack of accuracy in this alignment. Here we introduce the concept of mapping quality, a
measure of the confidence that a read actually comes from the position it is aligned to by the mapping algorithm.
We describe the software MAQ that can build assemblies by mapping shotgun short reads to a reference genome,
using quality scores to derive genotype calls of the consensus sequence of a diploid genome, e.g., from a human
sample. MAQ makes full use of mate-pair information and estimates the error probability of each read alignment.
Error probabilities are also derived for the final genotype calls, using a Bayesian statistical model that incorporates
the mapping qualities, error probabilities from the raw sequence quality scores, sampling of the two haplotypes, and
an empirical model for correlated errors at a site. Both read mapping and genotype calling are evaluated on
simulated data and real data. MAQ is accurate, efficient, versatile, and user-friendly. It is freely available at
http://maq.sourceforge.net.

[Supplemental material is available online at www.genome.org. Short-read sequences have been deposited in the
European Read Archive (ERA) under accession no. ERA000012 (ftp://ftp.era.ebi.ac.uk/ERA000012/).]

The advent of novel sequencing technologies such as 454 Life
Sciences (Roche) (Margulies et al. 2005), Illumina (formerly
known as Solexa sequencing), and Applied Biosystems SOLiD
opens opportunities to a variety of biological applications, in-
cluding resequencing (Bentley, 2006; Hillier et al. 2008), ChIP-
seq (Barski et al. 2007; Johnson et al. 2007; Robertson et al. 2007),
gene expression, miRNA discovery, DNA methylation study, can-
cer genome research, and whole-transcriptome sequencing. Most
of these applications rely on fast and accurate read mapping, and
some of them, in particular resequencing, require reliable SNP
calling. Meeting these requirements is essential to realize the
strength of the new sequencing technologies.

Several of these technologies produce tens of millions of
short reads of currently typically 30–40 bp in a single run. Map-
ping the enormous numbers of short reads to the reference ge-
nome poses serious challenges to alignment programs. These
challenges come not only from the requirement of highly effi-
cient algorithms but also from the need of accuracy. Whereas
existing alignment algorithms (Altschul et al. 1997; Buhler 2001;
Ning et al. 2001; Kent 2002; Schwartz et al. 2003; Wu and Wa-
tanabe 2005) can be effectively adapted to achieve efficiency, the
requirement of accuracy is subtle. Most genomes contain at least
some sequence that is repetitive or close to repetitive on the
length scale of the reads. As a consequence, some reads will map
equally well to multiple positions. Furthermore, one or two mu-
tations or sequencing errors in a short read may lead to its map-
ping to the wrong location. It is possible to act conservatively by
discarding reads that map ambiguously at some level, but this

leaves no information in the repetitive regions and it also dis-
cards data, reducing coverage in an uneven fashion, which may
complicate the calculation of coverage.

An alternative solution to handling these ambiguities is to
keep all the reads that can be mapped and to evaluate for each
read the likelihood it has been wrongly positioned. Poor align-
ments can still be discarded later. This strategy essentially re-
sembles phred’s (Ewing et al. 1998; Ewing and Green 1998) strat-
egy for base-calling from capillary reads. In a capillary read, there
are frequently low-quality regions. Phred does not discard these
regions in the first instance. Instead, it calls each base as best as
it can, and assigns a quality score that encodes the probability
that the base is wrongly called. This per-base quality score is more
informative and helpful than simply discarding poor data
(Durbin and Dear 1998). Similarly, if the posterior error probabil-
ity of each read alignment can be calculated, more information
will be retained than if all poor data are discarded. Here, we show
how to calculate the error probability of a read mapping.

We also introduce a new statistical model for consensus ge-
notype calling and subsequent SNP calling. For capillary reads,
two different approaches have previously been taken to calling
SNPs. The first type of approach works on PCR resequencing data
from diploid samples. These algorithms directly examine chro-
matogram trace files and detect variants by extracting or com-
paring signals in the peaks of traces. The most widely used soft-
ware includes PolyPhred (Stephens et al. 2006), SNPdetector
(Zhang et al. 2005), and novoSNP (Weckx et al. 2005), each of
which can call the genotype of the sample as well as detect vari-
ants. The second type of approach works for clone-based data.
They are usually built upon phred base calls and detect variants by
detecting base-pair differences between a read from a single hap-
lotype and the reference sequence. Two representative software
of this type are ssahaSNP (Ning et al. 2001) and PolyBayes (Marth
et al. 1999). While ssahaSNP uses a heuristic rule known as the
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neighborhood quality standard (NQS) (Altshuler et al. 2000),
PolyBayes develops an explicit statistical framework to model
variants.

All new sequencing technologies are shotgun methods that
give sequences derived from a single molecule sampled from a
larger population. (Current methods amplify the starting tem-
plate by some form of PCR, but true single molecule methods are
expected in the future.) This means the methods for calling vari-
ants from new technology data are most closely related to the
second group described above, including ssahaSNP and Poly-
Bayes. However, because of sampling and error rate, we need to
combine data from multiple reads. In practice, errors at a par-
ticular site are correlated, and we must take this correlation into
account. This is analogous to calling a consensus from a sequence
assembly, and we propose a Bayesian approach to this issue that
is related to that used in assembly software CAP3 (Huang and
Madan 1999).

In summary, this article presents methods and software for
mapping short sequence reads to a reference genome, calculating
the probability of a read alignment being correct, and consensus
genotype calling with a model that incorporates correlated errors
and diploid sampling. The applicability and accuracy of the
methods are evaluated based on both real data from the bacte-
rium Salmonella paratyphi and simulated data from the diploid
human X chromosome.

Results

Overview of MAQ algorithms

MAQ is a program that rapidly aligns short reads to the reference
genome and accurately infers variants, including SNPs and short
indels, from the alignment.

At the alignment stage, MAQ first searches for the ungapped
match with lowest mismatch score, defined as the sum of quali-
ties at mismatching bases. To speed up the alignment, MAQ only
considers positions that have two or fewer mismatches in the
first 28 bp (default parameters). Sequences that fail to reach a
mismatch score threshold but whose mate pair is mapped are
searched with a gapped alignment algorithm in the regions de-
fined by the mate pair. To evaluate the reliability of alignments,
MAQ assigns each individual alignment a phred-scaled quality
score (capped at 99), which measures the probability that the true
alignment is not the one found by MAQ. MAQ always reports a
single alignment, and if a read can be aligned equally well to
multiple positions, MAQ will randomly pick one position and
give it a mapping quality zero. Because their mapping score is set
to zero, reads that are mapped equally well to multiple positions
will not contribute to variant calling. However, they do give in-
formation on copy number of repetitive sequences and on the
fraction of reads that can be aligned to the genome, and can
easily be filtered out for downstream analysis if desired. Mapping
quality scores and mapping all reads that match the genome
even if repetitive are where MAQ differs from most other align-
ment programs.

MAQ fully utilizes the mate-pair information of paired
reads. It is able to use this information to correct wrong align-
ments, to add confidence to correct alignments, and to accurate-
ly map a read to repetitive sequences if its mate is confidently
aligned. With paired-end reads, MAQ also finds short insertions/
deletions (indels) from the gapped alignment described above.

At the SNP calling stage, MAQ produces a consensus geno-

type sequence from the alignment. The consensus sequence is
inferred from a Bayesian statistical model, and each consensus
genotype is associated with a phred quality that measures the
probability that the consensus genotype is incorrect. Potential
SNPs are detected by comparing the consensus sequence to the
reference and can be further filtered by a set of predefined rules.
These rules are designed to achieve the best performance on deep
human resequencing data and aim to compensate for simplifica-
tions and assumptions used in the statistical model (e.g., treating
neighbor positions independently).

Implementation

We implemented the software MAQ to align short reads and call
genotypes based on the algorithm described in the Methods sec-
tion. MAQ consists of a set of related programs that are compiled
into a single binary executable. It is able to map reads, call con-
sensus sequences including SNP and indel variants, simulate dip-
loid genomes and read sequences, and post-process the results in
various ways. MAQ also has an option to process Applied Biosys-
tems SOLiD data that uses two base “color-space” encoding. Fur-
ther details are available from the documentation at the MAQ
website.

MAQ is easy to use. For bacterial genomes, alignments and
variant calling can be done with a single command line, taking a
few minutes on a laptop. In addition, MAQ comes with a com-
pact and fast OpenGL-based read alignment viewer, MAQview,
which shows the read alignments, base qualities, and mapping
qualities in a graphical interface.

Both MAQ and MAQview are designed with genome-wide
human resequencing in mind. First, the read alignment, which is
the slowest step in the whole pipeline, can be divided into small
tasks and parallelized on a modern computer cluster using less
than 1 GB of memory for each processor core. The separate sub-
parts of the alignment can then be merged together to give the
final alignment. Second, the read alignments are stored in a bi-
nary compressed file. Text-based information is only extracted
when necessary. This strategy saves disk space by a factor of three
to five. Third, a novel technique is implemented to index the
compressed alignment file, which enables swift retrieval of reads
in any region of the reference sequence. Viewing the alignments
of a human-sized genome is as fast as viewing those of a single
BAC sequence. As a whole, MAQ and MAQview provide an effi-
cient suite for managing data from Illumina sequencing.

MAQ and MAQview are implemented in C/C++ with auxil-
iary tools in Perl. They have been extensively evaluated on large-
scale simulated data and real data and have been tested by users
from various research groups. MAQ software is freely distributed
under the GNU General Public License (GPL). The project home
page is at http://maq.sourceforge.net.

SNP calling for large-scale simulated data

Although it is always good to look at real data, it is impossible to
assess read alignment accuracy on real data, because in a shotgun
sample we cannot know where the reads come from.

We simulated a diploid sequence (two haploid sequences)
from the human reference chromosome X, as described in the
Methods: 136,012 substitutions, 7377 1-bp insertions, and 7589
1-bp deletions were added to the diploid genome, giving an over-
all polymorphism rate of 0.001. From this mutated diploid ge-
nome, we simulated 100 million pairs of 35-bp mate-pair reads
with errors (∼45.2-fold coverage on chromosome X). The average
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insert size is 170 bp with a standard deviation of 20 bp. Statistics
on base qualities were estimated from real data where base quali-
ties have been calibrated.

With the default MAQ options, we aligned the simulated
reads against the whole human reference genome excluding Y
and unassembled contigs. It took 1100 CPU hours to do this
alignment, and 97.44% of reads get mapped. Figure 1B shows the
distribution of mapping qualities (red curve) and the mapping
error rate (blue curve) in each 10-based quality interval. If the
mapping quality were estimated precisely, we would expect to
see a straight blue line between (“0–9,” 100) and (“�90,” 10�9).
MAQ qualities appear to be overestimated; in other words, the
true alignment error rate is higher than what mapping quality
predicts to be. To investigate whether the overestimation is due
to the fact that we did not consider mutations and indels in the
model, we also simulated reads without introducing any muta-
tions. For these data, the mapping quality could be estimated
more accurately (data not shown), which confirms that muta-
tions and indels may interfere with the calculation of mapping
qualities. We see in Figure 1 that this effect is greatest for map-
ping quality ∼70–80. However, even these reads have accuracy
better than 10�4, which is sufficient for most mapping based
applications, including structural variant calling and SNP calling.

We called the consensus sequence from the MAQ align-
ment. The pink curve in Figure 1B shows that most of the con-
sensus bases have a quality over 60. About 5% of the consensus
bases have a quality smaller than 10. They are in repetitive re-
gions where read alignment is not reliable. We then compared
the consensus to the diploid sequence from which reads were
generated, and calculated the error rate of the consensus. The
green curve indicates that the consensus quality also roughly
agrees with the true error rate. We called indels using paired-end
indel detection methods described in the Methods section, and
required at least two reads to support the indel.

After MAQ’s substitution calling, we further filtered the sub-
stitutions based on five rules: (1) discard SNPs within the 3-bp
flanking region around a potential indel; (2) discard SNPs cov-
ered by three or fewer reads; (3) discard SNPs covered by no read
with a mapping quality higher than 60; (4) in any 10-bp window,
if there are three or more SNPs, discard them all; and (5) discard
SNPs with consensus quality smaller than 10. MAQ provides a
Perl script maq.pl to achieve all these filters.

To see how well MAQ calls SNPs and indels at different cov-

erage, we chose several subsets of reads and called variants from
those subsets. We compared the indels and filtered substitution
calls to the true variants we added to the diploid genome in the
simulation and measured the accuracy by false-positive rate (FP)
and false-negative rate (FN) (Fig. 2B). MAQ consistently generates
very few false positives but does miss true substitutions. Most of
these missing substitutions fall in “filtered regions,” which tend
to consist of repetitive sequences. In the human genome as rep-
resented by the X chromosome, we can call variants on ∼85% of
the sequence using single end reads and 93% using paired-end
reads.

The difference between the blue and the red curves indicates
the fraction of missing substitutions in the regions trusted by
MAQ. This difference decreases from ∼15% at 8� down to 1% at
30�. Note that we apply more filters on SNPs than on filtered
regions, which leads to the 1% difference between the two curves
at high depth. Most of difference at low depth is accounted for by
sampling variation. At, say, 10� coverage there is 5� coverage
on average of each haplotype. However, the actual number of
reads at a site will be distributed around the average at best ac-
cording to a Poisson distribution. Given that we may need to see
a variant several times to be confident enough to call it, there is
a significant probability that not enough reads will be aligned
and the variant will be missed.

A simple model to this issue is to assume we require k reads
to call an allele. We call this strategy the k-allele method. If we
assume all read bases have an error rate 0.003, or phred quality 25,
the theoretical FN and FP are shown in Figure 2C. If we require
low FP rate, the FN rate of MAQ’s model largely agrees with that
of the k-allele methods, allowing for the fact that some of the
data have Q value lower than 25 or low mapping quality.

A uniquely aligned read tends to be wrongly mapped if it
has many good alternative hits. Mapping quality helps to down-
weight such a read in SNP calling and to reduce the false SNPs
caused by wrong alignments. To see the effect of mapping qual-
ity, we altered our method to ignore the mapping quality and to
use only uniquely mapped reads in calling SNPs. We filtered the
resulting SNPs using the same five rules as previously, except the
third one, as we assumed no mapping quality is available in this
case. In comparison, without mapping quality, MAQ discovered
217 false SNPs out of 127,910 predictions, and with mapping
quality, MAQ gave 186 out of 126,228, yielding a 14% reduction
in FP. This reduction amounts to 31 false SNPs, which is small in

Figure 1. Distribution of mapping qualities, consensus qualities, true alignment error rate, and true consensus error rate. The red line shows the
fraction of reads whose mapping qualities fall in each interval. (Pink line) The fraction of consensus genotypes whose consensus qualities fall in each
interval; (blue line) the true alignment error rate of reads in each interval; (green line) the true consensus error rate of reads in each interval. (A) Reads
are aligned without using mate-pair information. Single-end alignments do not contain enough information for MAQ to assign mapping quality larger
than 90; therefore, the data in the top bin are missing. (B) Reads are aligned using mate-pair information.
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comparison to the 136,012 true substitutions in the simulation.
However, in real data the FP is higher and in some applications,
such as in the study of somatic mutations in cancer, the number
of true SNPs will be much lower and the rate of false SNPs more
critical.

This simulation only gives a rough evaluation of MAQ’s per-
formance. On one hand, in the simulation process, reads are
evenly distributed along the genome, no contamination exists,
base qualities are accurate and sequencing errors are entirely in-
dependent. All these factors make SNP calling simpler. The true
accuracy on real data will almost always be lower than the simu-
lation. On the other hand, although errors are independent, we
use a dependent model to infer the consensus. Using an inde-
pendent model would achieve higher accuracy for simulated
data. Moreover, we were using the same set of filters across all
depths. Adjusting the threshold in filters might help to reach a
better balance point between FN and FP at different depths.

SNP calling for bacterial genomes

To evaluate MAQ on real data, we obtained one lane of 2.9 mil-
lion 36-bp Illumina read sequences of S. paratyphi A AKU12601
strain collected by the pathogen group at the Sanger Institute.
The short reads are purity filtered. To calibrate the quality values,
we put PhiX sample on the fifth lane of the same run, calculate
a quality calibration table from the alignment against the known
PhiX genome, and then apply the table on reads from other lanes
to infer base qualities. S. paratyphi is a 4.8-Mbp bacterium, in-
cluding plasmid (Holt et al. 2007), and so we had ∼20� coverage.
An initial reference genome sequence of the same strain (AC:
FM200053) was also produced by the pathogen group with cap-
illary sequencing. Read sequences have been submitted to Euro-
pean Read Archive (AC: ERA000012).

After mapping and consensus base calling, we filtered the
SNPs based on the same five rules as for the human X simulation,
but in comparison to SNP calling on simulated human X chro-
mosome, we did not filter SNPs around indels as we only had
single-end reads; we decreased the threshold on mapping quality
(rule 3) to 40 because single end reads usually have lower map-
ping quality than using mate-pair reads; and we increased the
threshold on consensus quality (rule 5) to 40 because for haploid
genome where there are no true heterozygotes, it is easier to get
higher consensus quality.

After these filters, MAQ predicted two homozygous differ-
ences. Checking the capillary reads used in reference assembly
confirms that the current reference is wrong at one of the homo-
zygous sites. The other homozygous site is covered by 19 reads,
with all of them identical to each other but different from the
reference. This site is possibly a true mutation between the ref-
erence sequence and the Illumina-sequenced sample.

As well as these two homozygous differences, MAQ also pre-
dicted four heterozygotes. All four cases look confident from read
alignment and show excessively high read depth in comparison
to the average depth. Three are clustered together, and it appears
likely that there is an additional copy of this region that was not
identified in the reference. The fourth position may also be in a
duplicated region (see below).

Alignment against the same reference strain only evaluates
the FP of MAQ SNP calling. To assess the FN, we aligned the reads
to a previously published sequence from another reference
strain ATCC9150 (McClelland et al. 2004).

We downloaded the sequence of strain ATCC9150 (AC:
NC_006511) from NCBI and aligned it, using cross_match
(P. Green, unpubl.; http://www.phrap.org/phredphrapconsed.
html), against the AKU12601 stain with the two homozygous
SNPs discovered previously masked as N. Cross_match gave
seven alignments, spanning the complete ATCC9150 and
99.97% of AKU12601 genome. 211 substitutions and 39 indels
(five of them longer than 20 bp) are contained in the alignment.
MAQ did not give any false positives and predicted 173 true
substitutions. Of the missing 38 substitutions, 35 were covered
by no uniquely aligned reads, and one site was covered by only
one uniquely aligned read. Discovering SNPs at these 36 sites is
almost impossible with single end short reads. Of the remaining
two (38 � 36) sites, one site was called as a SNP initially but was
filtered out due to low read coverage (two reads), and the other
was dropped because it was covered by no read with mapping
quality higher than 24 and so did not pass the filter, either. In
regions passing the SNP calling filters (96.9% of ATCC9150 ge-
nome), no SNPs were missed. Interestingly, the four heterozy-
gotes in the AKU12601 read mapping were not called as SNPs any
more. One site became a repeat in ATCC9150, and the other
three were called confident monomorphic sites with about the
average read depth. This observation possibly revealed that
around these three sites, there are no copy number changes be-

Figure 2. Accuracy of variant calling. In the figure, “filtered regions” are regions covered by three or fewer reads or by no reads with mapping quality
higher than 60. For substitutions, FP equals the number of positions called as different from homozygous reference that in fact should be identical to
the reference according to the simulation, divided by the total number of MAQ substitution calls; FN equals the number of positions that are different
from the reference according to the simulation but are missed by MAQ, divided by the total number of mutations added in the simulation. For indels,
FP equals the number of indel calls within 5-bp flanking regions of a true indel, divided by the total number of MAQ indel calls; FN equals the number
of true indel calls missed by MAQ, divided by the total number of indels in simulation. (A) Variants are called based on single-end alignment. (B) Variants
are called based on paired-end alignment. (C) Theoretical accuracy of k-allele method, where we call an allele as long as at least k reads are supporting
the allele, assuming all reads are correctly aligned (see also Supplemental material).
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tween ATCC9150 strain and the sample resequenced by Illu-
mina.

It is worth noting that AKU12601 and ATCC9150 are highly
similar strains. Aligning short reads against a reference genome
that is more distant to the sample being resequenced would be
harder, especially when there are highly variable regions. In these
regions, doing de novo assembly (Zerbino and Birney 2008) first
and then aligning the contigs may greatly help.

Discussion

MAQ is capable of human whole-genome alignments and sup-
ports SNP calling on a diploid sample. It has been used to map
short sequencing reads for structural variant calling in cancer
samples (Campbell et al. 2008) and for whole-genome methyla-
tion analyses (Down et al. 2008). It is able to accurately estimate
the error probability of each alignment and of each consensus
genotype as well. MAQ can also simulate reads from a diploid
genome based on a haploid reference. Simulation suggests that
20- to 30-fold coverage is needed for achieving FNs below 1% in
the nonrepeat regions of a diploid sample.

The reliability of short read alignments

The reliability of read alignments can substantially affect the ac-
curacy of the detection of variations. Knowing which alignment
is reliable is key to the subsequent analyses. The most convenient
way to measure the reliability is to define uniqueness: A read is
said to be uniquely mapped if its second best hit contains
more mismatches than its best hit. Generally this simple crite-
rion works well, but potential difficulties are illustrated by the
following scenarios: (1) a read has two one-mismatch hits, one
with a Q30 mismatch and the other with a Q3 mismatch; (2) a
read has one perfect hit and 100 one-mismatch hits; and (3) a
read has a perfect hit and a Q3-mismatch hit. In the first case,
although the read is not unique, the hit with a Q30 mismatch may
still be reliable. In the remaining two cases, although the read can
be uniquely aligned, the alignments are not reliable. For the hu-
man genome, these types of scenarios may happen at times due
to the large fraction of repetitive sequences.

In our view, it is better to regard the position a read is
mapped to as a random variable, and the reliability of an align-
ment can be naturally interpreted as the likelihood of the read
being mapped to the correct position. At this point, mapping
quality directly measures the reliability. It considers the repeat
structure of the reference and the base quality of read sequences,
which is implied in Equation 1 (see Methods), and can easily
handle the three cases shown above.

Time complexity

If we map N reads to an L long reference and use k bits in index-
ing, the time complexity of MAQ alignment algorithm is
O(c1NlogN + c2L + c32�kNL). The first term NlogN corresponds to
the time spent on sorting the indexes; the second, on scanning
the whole reference sequence; and the third term, on processing
the alignment when there is a seed hit. In MAQ alignment, k is 24
and N is typically 2 million and therefore 2�kN ≈ 0.1, but as
constant c3 is usually much larger than c2 and the human ge-
nome has many repeats, the time spent on the last two terms is
approximately equal.

By default, MAQ scans the reference three times against six
hash tables. It would be possible to save time by stopping the

scan for a read once a perfect or one-mismatch hit was found.
The perfect and one-mismatch hits, which exist for the majority
of reads, are found in the first scan. However, stopping after the
first scan for these reads would greatly reduce the resolution of
mapping qualities. Reads that can be mapped confidently may
not be effectively distinguished from those poorly aligned when
the suboptimal hits were not available.

Evaluating the accuracy

Short reads tend to be wrongly aligned because one or two mu-
tations or sequencing errors may make the best position wrong.
When evaluating the accuracy of alignments, we have to look at
the fraction of discarded reads (FD) and the fraction of wrongly
aligned reads (FW) at the same time. Only counting one type of
the errors might be misleading.

While on simulated data it is possible to estimate both FD
and FW of alignments, on real data we cannot calculate FW as we
do not know what the correct alignment is. As a consequence, we
cannot directly measure the accuracy of the alignment using real
data. To see what alignment strategy works best, we must evalu-
ate a measurable outcome from the alignment, such as the accu-
racy of SNP calls, structural variations, or the agreement between
expression profiling and microarray results. The criteria may vary
with different applications.

In resequencing, accuracy can be measured by the SNP ac-
curacy, which, again, should be measured by the fraction of miss-
ing polymorphic sites (FN) and the fraction of wrong calls (FP) at
the same time. We can always trade one type of error for the
other and therefore once again counting one type of error is
misleading.

Unlike in an alignment, both FP and FN of SNPs on real data
can be estimated from other sources of data. FP can be evaluated
by capillary resequencing or genotyping a small subset of SNP
calls. FN can be estimated by comparing SNP calls to the whole-
genome chip-genotyping results. The fraction of chip-
genotyping polymorphic sites that are not found is the FN. It
should be noted that such a fraction is only the FN on the sites
where probes can be designed for the genotyping microarray.
These sites tend to be unique in the reference genome and are
usually easier to find by short-read resequencing. The overall FN
across the whole genome is higher.

In resequencing, it is also a good idea to explicitly define the
resequenceable regions (or the regions where SNPs can be confi-
dently called). We want to distinguish low SNP-density regions
from hard-to-resequence regions. Using MAQ, the fraction of the
human genome that is resequenceable with 35-bp reads is ∼85%,
and with read pairs separated by 170 bp it is ∼93%. Achieving
higher coverage would require a mixture of varying insert sizes
and longer reads.

Methods

Single end read mapping
To map reads efficiently, MAQ first indexes read sequences and
scans the reference genome sequence to identify hits that are
extended and scored. With the Eland-like (A.J. Cox, unpubl.)
hashing technique, MAQ, by default, guarantees to find align-
ments with up to two mismatches in the first 28 bp of the reads.
MAQ maps a read to a position that minimizes the sum of quality
values of mismatched bases. If there are multiple equally best
positions, then one of them is chosen at random.

Mapping and assembly with qualities
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In this article, we will call a potential read alignment posi-
tion a hit. The algorithm MAQ uses to find the best hit is quite
similar to the one used in Eland. It builds multiple hash tables to
index the reads and scans the reference sequence against the
hash tables to find the hits. By default, six hash tables are used,
ensuring that a sequence with two mismatches or fewer will be
hit. The six hash tables correspond to six noncontiguous seed
templates (Buhler 2001; Ma et al. 2002). Given 8-bp reads, for
example, the six templates are 11110000, 00001111, 11000011,
00111100, 11001100, and 00110011, where nucleotides at 1 will
be indexed while those at 0 are not. By default, MAQ indexes the
first 28 bp of the reads, which are typically the most accurate part
of the read.

In alignment, MAQ loads all reads into memory and then
applies the first template as follows. For each read, MAQ takes the
nucleotides at the 1 positions of the template, hashes them into
a 24-bit integer, and puts the integer together with the read iden-
tifier into a list. When all the reads are processed, MAQ orders the
list based on the 24-bit integers, such that reads with the same
hashing integer are grouped together in memory. Each integer
and its corresponding region are then recorded in a hash table
with the integer as the key. We call this process indexing.

At the same time that MAQ indexes the reads with the first
template, it also indexes the reads with the second template that
is complementary to the first one. Taking two templates at a time
helps the mate-pair mapping, which will be explained in the
section below.

After the read indexing with the two templates, the refer-
ence will be scanned base by base on both forward and reverse
strands. Each 28-bp subsequence of the reference will be hashed
through the two templates used in indexing and will be looked
up in the two hash tables, respectively. If a hit is found to a read,
MAQ will calculate the sum of qualities of mismatched bases q
over the whole length of the read, extending out from the 28-bp
seed without gaps (the current implementation has a read length
limit of 63 bp). MAQ then hashes the coordinate of the hit and
the read identifier into another 24-bit integer h and scores the hit
as q�224 + h. In this score, h can be considered as a pseudorandom
number, which differentiates hits with identical q: If there are
multiple hits with the same q, the hit with the smallest h will be
identified as the best, effectively selecting randomly from the
candidates. For each read, MAQ only holds in memory the posi-
tion and score of its two best scored hits and the number of 0-, 1-,
and 2-mismatch hits in the seed region.

When the scan of the reference is complete, the next two
templates are applied and the reference will be scanned once
again until no more templates are left.

Using six templates guarantees to find seed hits with no
more than two mismatches, and it also finds 57% of hits with
three mismatches. In addition, MAQ can use 20 templates to
guarantee finding all seed hits with three mismatches at the cost
of speed. In this configuration, 64% of seed hits with four mis-
matches are also found, though our experience is that these hits
are not useful in practice.

Single end mapping qualities
MAQ assigns each individual alignment a mapping quality. The
mapping quality Qs is the phred-scaled probability (Ewing and
Green 1998) that a read alignment may be wrong:

Qs = −10log10 Pr{read is wrongly mapped}.

For example, Qs = 30 implies there is a 1 in 1000 probability that
the read is incorrectly mapped. In this section, we only consider
a simplistic case where all reads are known to come from the

reference and an ungapped exhaustive alignment is performed. A
practical model for alignment with heuristic algorithms will be
presented in the Supplemental material.

Suppose we have a reference sequence x and a read sequence
z. On the assumption that sequencing errors are independent at
different sites of the read, the probability p(z|x,u) of z coming
from the position u equals the product of the error probabilities
of the mismatched bases at the aligned position. For example,
if read z mapped to position u has two mismatches: one with
phred base quality 20 and the other with 10, then p(z|x,u) =
10�(20 + 10)/10 = 0.001.

To calculate the posterior probability ps(u|x,z), we assume a
uniform prior distribution p(u|x), and applying the Bayesian for-
mula gives

ps�u|x,z� =
p�z|x,u�

�
v=1

L−l+1

p�z|x,v�

, (1)

where L = |x| is the length of x and l = |z|. Scaling ps in the phred
way, we get the mapping quality of the alignment:

Qs�u|x,z� = −10 log10�1 − ps�u|x,z��.

The calculation of Equation 1 requires summing over all
positions on the reference. It is impractical to calculate the sum
given a human-sized genome. In practice, we approximate Qs as:

Qs = min{q2 − q1 − 4.343 logn2,4 + �3 − k’��q − 14�
− 4.343 logp1�3 − k’,28�}.

Where q1 is the sum of quality values of mismatches of the best
hit, q2 is the corresponding sum for the second best hit, n2 is the
number of hits having the same number of mismatches as the
second best hit, k� is the minimum number of mismatches in the
28-bp seed, q is the average base quality in the 28-bp seed, 4.343
is 10/log10, and p1(k,28) is the probability that a perfect hit and
a k-mismatch hit coexists given a 28-bp sequence that can be
estimated during alignment. Detailed deduction of this equation
is given in the Supplemental material.

It is also worth noting that in minimizing the sum of quality
values of mismatched bases, MAQ is effectively maximizing the
posterior probability ps(u|x,z). This is the statistical interpretation
of MAQ alignments.

On sequencing real samples, reads may also be different
from the reference sequence due to the existence of sequence
variants in different samples or strains. These variants behave in
a similar manner to sequencing errors for mapping purposes, and
therefore at the alignment stage, we should set the minimum
base error probability as the rate of differences between the ref-
erence and the reads. However, this strategy is an approximation.
When there are differences between the reference and reads, the
best position might consistently give wrong alignments even if
there are no sequencing errors, which can invalidate the calcu-
lation of mapping qualities. It would be possible in an iterative
scheme to update the reference with an estimate of the new
sample sequence from the first mapping and then remap to the
updated reference.

Paired-end read alignment
MAQ jointly aligns the two reads in a read pair and fully utilizes
the mate-pair information in the alignment.

In the paired-end alignment mode, MAQ will by default
build six hash tables for each end (12 tables in total). In one
round of indexing, MAQ indexes the first end with two templates
and the second end also with two templates. Four hash tables,
two for each end, will be put in memory at a time. In the scan of
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the reference, when a hit of a read is found on the forward strand
of the reference sequence, MAQ appends its position to a queue
that always keeps the last two hits of this read on the forward
strand. When a hit of a read is found on the reverse strand, MAQ
checks the queue of its mate and tests whether its mate has a hit
on the forward strand within a maximum allowed distance ahead
of the current read. If there is one, MAQ will mark the two ends
as a pair. In this way, MAQ jointly maps the reads without inde-
pendently storing all the potential hits of each end.

For each end, MAQ will only hold in memory two hash
tables corresponding to two complementary templates (e.g.,
11110000 and 00001111 for 8-bp reads). This strategy guarantees
that any hit with no more than one mismatch can be always
found in each round of the scan. Holding more hash tables in
memory would help to find pairs containing more mismatches,
but doing this would also increase memory footprint.

Paired-end mapping qualities are derived from single end
mapping qualities. There are two different cases when a pair can
be wrongly mapped. In the first case, one of the two ends is
wrongly aligned and the other is correct. This scenario may hap-
pen if a repetitive sequence appear twice or more in a short re-
gion. In the second instance, a pair is wrong because both ends
are wrong at the same time.

In MAQ, if there is a unique pair mapping in which both
ends hit consistently (i.e., in the right orientation within the
proper distance), we give the mapping quality Qp = Qs1

+Qs2
to

both reads, assuming independent errors. If there are multiple
consistent hit pairs, we take their single end mapping qualities as
the final mapping qualities.

Detecting short indels
MAQ first aligns reads with the ungapped alignment algorithm
described above and then finds short indels by utilizing mate-
pair information. Given a pair of reads, if one end can be mapped
with confidence but the other end is unmapped, a possible sce-
nario is that a potential indel interrupts the alignment of the
unmapped read. For this unmapped read, we can apply a stan-
dard Smith-Waterman gapped alignment (Smith and Waterman
1981) in a region determined by the aligned read. The coordinate
and the size of the region is estimated from the distribution of all
the aligned reads by taking the mean separation of read pairs plus
or minus twice the standard deviation. As Smith-Waterman will
only be applied to a small fraction of reads in short regions,
efficiency is not a serious issue.

Consensus genotype calling
By default, MAQ assumes the sample is diploid. It calculates the
posterior distribution of genotypes and calls the genotype that
maximizes the posterior probability.

Before consensus calling, MAQ first combines mapping
quality and base quality. If a read is incorrectly mapped, any
sequence differences inferred from the read cannot be reliable.
Therefore, the base quality used in SNP calling cannot exceed the
mapping quality of the read. MAQ reassigns the quality of each
base as the smaller value between the read mapping quality and
the raw sequencing base quality.

We first calculate the probability of data given each possible
genotype. In consensus calling, if there are no sequencing errors,
at most two different nucleotides can be legitimately seen. There-
fore, we can consider only the two most frequent nucleotides at
any position and ignore others as errors. Assume we are observ-
ing data D which consist of k nucleotides b and n�k nucleotides
b� with b,b�∈{A,C,G,T} and b � b�. Then the three possible geno-
types are 〈b,b〉, 〈b,b�〉, and 〈b�,b�〉. If the true genotype is 〈b,b〉, we
have n�k errors from n bases. Let the probability of observing

these errors be �n,n-k, and therefore P(D|〈b,b〉) = �n,n-k. Similarly we
have P(D|〈b�,b�〉) = �nk. If the true genotype is 〈b,b�〉, the prob-
ability can be approximated with a binomial distribution:
P(D|〈b,b�〉) = (nk )/2n.

I f we further assume the prior of genotypes is
P(〈b,b〉) = P(〈b�,b�〉) = (1 � r)/2 and P(〈b,b�〉) = r, we can calculate
the posterior probability P(g|D) of genotype g given the observa-
tion D. Then the estimated genotype is ĝ = argmaxgP(g|D) with a
quality Qg = �10log10[1 � P(ĝ|D)]. Here r is the probability of
observing a heterozygote. We usually use r = 0.001 for the dis-
covery of new SNPs and r = 0.2 for inferring genotypes at known
SNP sites. In principle, a site-specific r can be used given known
allele frequencies.

The real difficulty is to calculate �nk, the probability of k
errors observed from n nucleotides. If errors arise independently
and error rates are identical for all bases, �nk can be calculated
with a binomial distribution. When errors are correlated and not
identical, MAQ approximates �nk by

ank ≈ c’nk�
i=0

k−1

�i+1
�i

. (2)

Where �i is the ith smallest base error probability and c�nk is a
function of �i but varies little with �i. The only unknown param-
eter is � , which controls the dependency of errors. The deduction
of this equation and the calculation of c�nk will be presented in
the Supplemental material.

Taking a form like Equation 2 is inspired by CAP3 (Huang
and Madan, 1999), where � is arbitrarily set to 0.5. In principle, �

can be estimated from real data. In practice, however, the esti-
mate is complicated by the requirement of large data set where
SNPs are known, by the inaccuracy of sequencing qualities, by
the dependencies of mapping qualities, and also by the approxi-
mation made to derive the equation. To estimate �, we just tried
different values and selected the one that was giving the best
final genotype calls. We found � = 0.85 is a reasonable value for
Illumina Genetic Analyzer data.

Simulating diploid genomes and short reads
MAQ also generates in silico mutated diploid sequences by add-
ing random mutations to the known reference sequence. The
human reference genome does not contain heterozygotes, but
when we resequence a human sample and map reads to the ref-
erence genome, we will see both homozygous and heterozygous
variants in comparison to the reference. If the sample and the
reference come from the same population and at a potential
polymorphic site the allele frequency is f, the probability of ob-
serving a heterozygote is 2f(1 � f ) and of observing a homozy-
gous variant is f (1 � f ) (= f 2(1 � f ) + f (1 � f )2). Consequently,
on the condition that a site is different from the reference, the
probability of a heterozygote is always 2/3, regardless of the allele
frequency f, assuming the sample comes from the same popula-
tion as the reference. Based on this observation, we can simulate
a diploid genome as follows. We first used the reference genome
as the two preprocessed haplotypes. We then generated a set of
polymorphic sites, randomly selected two thirds of them as het-
erozygotes, and took the rest as homozygotes. At a heterozygous
site, we randomly selected one haplotype and mutated the base
into another one; on a homozygous site, we mutated both hap-
lotypes. Both substitutions and indels can be simulated in this
way. This simulation ignores linkage disequilibrium between
variants. Although coalescent-based simulation (Hudson 2002)
gives a more accurate long-range picture, the procedure described
here is sufficient for the evaluation of the variant calling method
for a single individual.

Mapping and assembly with qualities
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From a known sequence, paired-end reads can be simulated
with insert sizes drawn from a normal distribution and with base
qualities drawn from the empirical distribution estimated from
real sequence data. Sequencing errors are introduced based on
the base quality. With sufficiently large data, we are able to esti-
mate the position-specific distributions of base qualities and the
correlation between adjacent qualities as well. An order-one
Markov chain is constructed, based on these statistics, to capture
the fact that low-quality bases tend to appear at the 3�-end of a
read and to appear successively along a read.

Alignment for Applied Biosystems SOLiD reads
SOLiD reads are presented in the color space, which comprises
four colors with each color representing four types of combina-
tions of two adjacent nucleotides. The SOLiD sequencing ma-
chine gives the last primer nucleotide base and the color read
sequence. This information makes it possible to write down the
nucleotide read sequence based on the meaning of colors. How-
ever, a single color error will completely change the nucleotide
sequencing following that error. Mapping reads in the color
space is preferable to mapping in the nucleotide space.

To map reads in the color space, we need to convert the
reference sequences into color sequences and to perform the
alignment in the color space. Between the color alignment and
nucleotide alignment, the main difference is that the comple-
ment of a color is identical to itself, and therefore in the color
space, reads coming from the reverse strand of the reference only
need to be reversed without complementation. Most alignment
programs can be adapted to perform such an alignment with little
effort. Another difference is for paired-end reads. In SOLiD sequenc-
ing, the two ends of a read pair should always come from the same
strand, instead from two different strands like Illumina sequencing.

MAQ is able to map SOLiD mate-pair reads to the reference,
but it has to trim off the primer nucleotide base and the follow-
ing color because currently MAQ cannot work with color se-
quences and nucleotide sequences at the same time. Trimming
the first color is equivalent to using reads 1 bp shorter, which
should not greatly affect the alignment results.
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