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Pairwise whole-genome alignment involves the creation of a homology map, capable of performing a near complete
transformation of one genome into another. For multiple genomes this problem is generalized to finding a set of
consistent homology maps for converting each genome in the set of aligned genomes into any of the others. The
problem can be divided into two principal stages. First, the partitioning of the input genomes into a set of colinear
segments, a process which essentially deals with the complex processes of rearrangement. Second, the generation of a
base pair level alignment map for each colinear segment. We have developed a new genome-wide segmentation
program, Enredo, which produces colinear segments from extant genomes handling rearrangements, including
duplications. We have then applied the new alignment program Pecan, which makes the consistency alignment
methodology practical at a large scale, to create a new set of genome-wide mammalian alignments. We test both Enredo
and Pecan using novel and existing assessment analyses that incorporate both real biological data and simulations, and
show that both independently and in combination they outperform existing programs. Alignments from our pipeline
are publicly available within the Ensembl genome browser.

[Supplemental material is available online at www.genome.org. Enredo and Pecan are freely available at
http://www.ebi.ac.uk/~jherrero/downloads/enredo/ and http://www.ebi.ac.uk/~bjp/pecan/, respectively.]

The changes affecting genomes, commonly called mutations, as
they undergo evolution are complex and varied. Although it is
not possible to observe these past changes, for reasonably close
genomes, it is possible to search for relatively unambiguous map-
pings of the results of this process. This problem, of producing a
base-level homology map between a set of input genomes, is the
subject of this paper.

For computational convenience it is possible to classify the
mutations operating upon genomes into two types: those which
maintain colinearity of the DNA sequence in the genomes, and
those which do not. In the latter, nonlinear case we also include
duplication events that result in copies of parts of the genome.
An important distinction within the class of duplication events
is the relatively common and small scale processes of transposi-
tion (giving rise to the majority of dispersed repeats in a genome)
and the larger, less frequent process of segmental duplication.
As transposition events involve relatively small and often repeti-
tive subsequences, mapping the results of the transposition pro-
cess is perceived to be harder and, for many analyses, less inter-
esting than unraveling the results of the segmental duplication
process. We have therefore attempted to provide a homology map
that excludes the transposition events, in line with the common
practice of masking out these elements in a single genome’s se-
quence.

When genome sequences are only affected by linear muta-
tions their homology can be represented in a colinear alignment,
where the sequences and their alignment are arranged linearly.
While in the general case of multiple sequences the problem of
finding an optimal alignment under common objective func-
tions is NP-hard (Elias 2006), efficient and principled heuristic
methods are available and discussed below. In this paper we in-
troduce a new method, Pecan, which we will show outperforms
available previous methods for colinear alignment. When ge-
nomes are additionally affected by the nonlinear categories of
mutations then more complex data structures (Kent et al. 2003;
Blanchette et al. 2004; Raphael et al. 2004) are needed to repre-
sent the evolutionary relationships between the genomes. This
more general alignment problem presents many challenges.
When the homology map is known, for pairs of sequences the
minimum number of inversions (Hannenhalli et al. 1995), or
general two breakpoint operations (an operation that cuts the
genome at two places and then sticks the resulting free ends back
together in any order; Yancopoulos et al. 2005), necessary to
transform one genome into the other can be efficiently com-
puted. However, the same problems involving three or more se-
quences, or using models incorporating duplications, are intrac-
table (Caprara 1999). Perhaps as a result of this knowledge, very
little work has been done on optimization algorithms that at-
tempt the inference of the homology map while explicitly ac-
counting for the costs related to the number of rearrangement
operations, with a few innovative exceptions (Brudno et al.
2003b; Pevzner et al. 2004).

In this paper we make the simplifying assumption that
we can broadly separate large-scale evolutionary events, which
involve both rearrangements and duplications, from small-scale
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evolution, which is assumed to involve only linear mutations.
The problem can therefore be broken down into two principle
parts. First, the creation of a large-scale homology map, for which
we utilize our new tool Enredo. Secondly, the generation of
detailed base-pair alignments, for which we use our new colinear
alignment tool Pecan. The resulting data structure therefore con-
tains a series of “segment-groups,” each of which contains a set of
sequences (which we will often refer to as segments) whose ho-
mology is colinear over their entire length, and whose evolution-
ary intrarelationships can be modeled with a linear alignment.
Between segment-groups are so called breakpoints, representing
places in an ancestral genome where larger evolutionary opera-
tions have occurred, potentially breaking synteny, adding dupli-
cated sequences or reorganizing the ordering of segments within
chromosomes.

The Enredo method naturally uses data structures with simi-
larities to graphs used in related biological problems. The Enredo
graph somewhat resembles a breakpoint graph (Bafna and
Pevzner 1993), used for computing rearrangement distances be-
tween pairs of sequences, except that here the graph involves
multiple genomes and represents duplication. It also has analo-
gies with a de Bruijn graph (Pevzner et al. 2001), a graph used
most frequently for sequence assembly tasks (Medvedev et al.
2007; Zerbino and Birney 2008). In terms of related methods,
Enredo has similarities with the orthology map constructor Mer-
cator (Dewey 2007). Mercator builds a graph in which the edges
represent homology relationships between orthologous exons.
Cliques of exons containing a sequence from every species are
found and neighboring cliques are joined together to form runs.
The central practical difference between Mercator and Enredo is
that Mercator does not consider duplications, but instead at-
tempts to group sequences into species compatible orthology
groups. Additionally, while Mercator uses exons as vertices,
Enredo considers all genomic regions.

Having computed an initial segmentation, the challenge is
to align the colinear set of sequences in each segment-group.
Generating colinear multiple alignments is a long standing prob-
lem in bioinformatics (Sankoff and Cedergren 1983; Carrillo and
Lipman 1988; Lipman et al. 1989; Thompson et al. 1994; for
reviews, see Gusfield 1997; Durbin et al. 1998). The computa-
tional challenges present in this problem can generally be related
to the number and length of the sequences being compared. The
former increases the dimensionality of the problem, the latter
increases the basic search space needed to be considered. The
combination of both means that naive implementations of many
common objective functions (such as sum-of-pairs scoring) are
simply unfeasible. Traditionally, the problem of multiple se-
quences has been solved by progressive methods, based on the
original work of Feng and Doolittle (1987) and others (Hogeweg
and Hesper 1984; Waterman and Perlwitz 1984), where the align-
ment is broken down into a series of generally pairwise stages
that are recursively combined, guided, typically, by a phyloge-
netic tree. The second problem has been handled by different
types of constraint heuristics, mostly relying on finding confi-
dent regions of high similarity that can be detected using more
aggressive methods (Bray et al. 2003; Kurtz et al. 2004).

All the available programs capable of very large-scale mul-
tisequence alignment use a progressive method based upon a
guide tree and varying types of constraint heuristics. Surveying
the constraint strategies used by these methods, MLAGAN
(Brudno et al. 2003a) uses a k-mer (each k-mer is an ungapped
local alignment of length k) chaining procedure to find initial

local alignments around which a global alignment is con-
structed. Mavid (Bray and Pachter 2004) recursively defines a
global alignment using maximally nonrepetitive ungapped sub-
sequences before applying standard pairwise alignment methods
to join these segments. Finally TBA/MULTIZ (Blanchette et al.
2004) uses a BLAST (Altschul et al. 1990) like algorithm (Schwartz
et al. 2003) to find gapped local alignments, which it arranges
together in a partially ordered block-set representing a “global”
set of local alignments. For our new program, Pecan, we use the
framework of constrained multiple sequence alignment, devel-
oped by Myers et al. (1996), to construct an initial set of con-
straints.

Because of the complexity of the heuristics involved with
large-scale colinear alignment, many of the previously developed
methods have focused on improving technical aspects of the
computation rather than introducing particularly novel objec-
tive functions. In developing Pecan we have chosen to use a
consistency-based objective function, not previously imple-
mented for large-scale alignment. Consistency-based methods in
multiple alignment were developed to mitigate a commonly ob-
served problem in progressive alignments. Progressive alignment
is inherently “greedy,” fixing on sub-solutions in sub-trees before
aligning to more distant sequences. However, quite frequently
clearly erroneous results in this process can be resolved with out-
group information. This often occurs when there are many near
equivalent possibilities for a particular gap placement, a phe-
nomenon described as edgewander (Holmes and Durbin 1998).
Consistency methods mitigate this problem by incorporating in-
formation from out-group sequences in the alignment of sub-
trees. Consistency methods therefore have a flavor of global op-
timization while still inherently working in a pairwise fashion.

The first widely used consistency algorithm, T-Coffee
(Notredame et al. 2000), computes a collection of global and
local pairwise alignments for every pair of sequences being
aligned. A “consistency transform” is then applied that incorpo-
rates scores created transitively by triangular projection of scores
between the different constituent pairwise alignments. Later
Probcons (Do et al. 2005) introduced a probabilistic consistency
transform, based upon posterior match probabilities computed
using the Forward and Backward algorithms. The objective func-
tion used by Pecan is the same basic objective function used by
Probcons, and it is reviewed below. Lunter et al. (2008) recently
introduced a pairwise genome alignment method based upon
posterior decoding. However, Pecan is the first program to make
posterior decoding and the consistency methodology practical
for very large multiple alignments, both by accelerating the
alignment process with principled constraint heuristics and lim-
iting the memory consumption to a practical amount.

Results and Discussion

First, we describe the Enredo program and detail assessments of
its performance, before giving an overview of the Pecan program
and assessments of it, and, finally, we describe combined assess-
ments of the entire pipeline.

The Enredo graph for segment homology assignment

Enredo takes two inputs. The first input to Enredo is a set of com-
plete (or near complete) genomes. Each input genome is comprised
of a set of chromosomes. Each chromosome is a non-zero length
linear or circular string of double-stranded DNA. If data are miss-
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ing the chromosomes may be more fragmented than in biologi-
cal reality.

A segment defines a single contiguous, unoriented range of
positions in an input genome, each position representing a single
pair of complementary nucleotides (i.e., A�T, T�A, C�G, G�C).
There are two technical details of our definition of a segment
worth expanding upon. First, we allow zero length segments,
which define a range lying between two genomic positions. Sec-
ond, because segments are not oriented, we do not distinguish
between forward- and reverse-complement segments represent-
ing the same range. However, segments can be oriented with
respect to one another; we call such a segment set “directed.”

Let a segment-group be defined as a set of directed segments.
A segment-group is globally homologous if the global (end-to-
end) alignment of the set of directed segments (oriented with
respect to one another) is significant. Segment-groups overlap
if their segments share any common positions. The aim of the
Enredo method is to partition the input genomes into a set of
nonoverlapping globally homologous segment-groups, which we
call a “segmentation.”

Let the term genome point anchor (GPA) be synonymous
for a short segment-group containing two or more homologous
segments, each of which is between 50 and a few hundred posi-
tions in length. The second input to Enredo is a set of nonover-
lapping GPAs. We generally prefer GPAs to be short because this
makes it easier to avoid overlap between the ends of GPAs, though
GPAs must necessarily be long enough for us to be confident of
the homology relationships they contain. Such a set can be com-
puted using a local-alignment program; in the supplement we
describe the current methodology for building this set. Impor-
tantly, our methods do not constrain GPAs to contain only a
single segment from each input genome, rather we allow the
processes of insertion, deletion, and duplication to create GPAs
whose genome copy number composition is variable.

Given a nonoverlapping GPA set we construct the initial
Enredo graph. Each GPA has two ends, comprising the two ends
of the set of directed segments. The vertices of the graph repre-
sent the GPA ends for the set of nonoverlapping GPAs. The graph
has two sets of edges: link-edges (inside the GPA) and adjacency-
edges (between the GPAs). Let ∗A and A∗ represent the two ends
of a GPA A. For each A in the set of nonoverlapping GPAs a link-
edge connects the vertices representing ∗A and A∗. For each seg-
ment x in a GPA A, let e(x,∗A) denote the position in x closest in
the order of the segment to the GPA end ∗A. Let e�(∗A) =
∪xe(x,∗A). We define the criteria to create an adjacency-edge as
follows: An adjacency-edge exists between the vertices represent-
ing two GPA ends a and b if and only if there exists a segment
that (1) defines a contiguous, maximal range between a member
of e�(a) and e�(b); (2) does not contain any position that is a
member of a GPA in the nonoverlapping GPA set; (3) is <200 kb
in length (it is unlikely that segments will be globally homolo-
gous if there is no intervening GPA within this range). We allow
only a single adjacency-edge between the vertices representing
two GPA ends. We label each adjacency-edge with a segment-
group containing the set of segments that meet the criteria to
define the adjacency-edge and call this the adjacency-edge seg-
ment-group (AESG). Each adjacency-edge therefore has one or
more segments, each of which is bounded by two GPAs, one on
each side.

We use this basic graph, and modifications to it, to derive a
segmentation more complete than the initial set of nonoverlap-
ping GPAs and adjacency-edges. This derivation is nontrivial. To

get traction on the problem we make the simplifying assumption
that segments in an AESG are globally homologous. This assump-
tion will be valid providing the density of GPAs is sufficient that
no rearrangements have occurred between segments in an AESG.
Prior to generating the final segmentation we apply a series of
modifications to the Enredo graph. These modifications have
two key stages. The modifications in the first stage (termed join-
ing and annealing) are primarily designed to increase the sensi-
tivity of the segmentation, by further pushing together homolo-
gous segments and joining contiguous edges. In the second stage
of graph modifications we attempt to remove remnant, aberrant
homologies between segments within segment-groups, which
can be recognized in the context of the graph.

Joining and annealing adjacency-edges

We first describe the conditions under which edges can be
joined, we then describe a strategy to anneal (merge) adjacency-
edges, whose AESGs we deem likely to be globally homologous.
This two-step process is shown visually in Figure 1, starting with
the initial graph in Figure 1A. We use the notation a�b to denote
an adjacency-edge between two vertices representing two GPA
ends a and b. Let A∗�∗X and X∗�∗B be two edges connecting
four distinct vertices, including the two vertices representing
GPA X. For a segment p in the AESG of A∗�∗X, we say X∗�∗B
is continuous with respect to p if there is a segment q in X and
segment r in the AESG of X∗�∗B such that the concatenation of
pqr defines a single contiguous segment in an input genome. We
say X is redundant with respect to A∗�∗X and X∗�∗B if and
only if X∗�∗B is continuous with respect to all the segments in

Figure 1. Schematic diagrams showing the joining and annealing
modifications within the Enredo graph. (A) The initial graph. The GPAs
are shown as numbers, with pluses and minuses denoting their end ver-
tices. In this schematic construction we do not show the link edges. The
adjacency-edges are represented by a series of different color lines be-
tween the GPAs, representing the multiple species within their AESGs. (B,
black circle) The GPAs which are trivially redundant in the graph, being
connected to only two other GPAs; these can be removed without effect.
GPA I (orange circle) is not redundant because H∗–∗I is not contiguous
with respect to all the segments in the AESG of I∗–∗J. (C) The result of
such removal. The black arrows show subgraph edges that are redundant
at an edit distance of 1; these edges are then merged leaving the graph
shown in D.
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the AESG of A∗�∗X, and vice versa for A∗�∗X and the seg-
ments in the AESG of X∗�∗B. Joining proceeds as follows. For
each pair of adjacency-edges of the form A∗�∗X, X∗�∗B in
which X is redundant, we remove A∗�∗X and X∗�∗B from
the graph and replace them with a single joined adjacency-edge.
We denote the replaced edge A∗�(X)�∗B, to keep track of
the GPA(s) from which it was split. This process results in the
removal of the segments in X that overlap those in the adjacency
segment-group of A∗�(X)�∗B; we call this the splitting of
X. This joining and splitting process is shown in Figure 1B.
Computing the closure of this process results in merged adja-
cency-edges split from multiple redundant GPAs, for example,
a chain of edges A∗�∗X, X∗�∗Y, Y∗�∗Z, Z∗�∗B in which X,
Y, and Z are redundant results in a merged adjacency-edge
A∗�(X,Y,Z)�∗B.

After joining adjacency-edges, multiple adjacency-edges
may link the same pair of GPA-end vertices, i.e., the graph has
become a multigraph (Fig. 1C). It is natural therefore to employ
a second process, which we term annealing, that merges adja-
cency-edges. The assumption is that a small number of GPAs will
be missing segments present in some extant genomes due to
sequencing coverage, and/or some segments may appear in GPAs
due to spurious segment homology. Our process of adjacency-
edge annealing attempts to account for these issues, while not
merging edges are unlikely to be globally homologous. For the
edge A∗�(X,Y,Z)�∗B let us call X, Y, Z the redundant-GPA
string. An adjacency-edge C∗�∗D that has not been joined can
be denoted C∗�()�∗D, and thus has a zero length redundant-
GPA string. We define the edit distance between two possible
adjacency-edges as the number of changes needed to transform
the redundant-GPA string of the first edge into the redundant-
GPA string of the second, or vice versa, this function being sym-
metric. For instance, the edit distance between the redundant-
GPA strings X, Y, Z and X, Z is 1. Annealing two adjacency-edges
results in their removal from the graph and replacement with a
single adjacency-edge that contains the union of their AESGs. In
the second stage of modification all adjacency-edges linking two
vertices are annealed if the edit distance between them is �4 (this
number being a parameter of the method, derived after some
experimentation). After joining and annealing adjacency-edges,
the resulting graph may contain new adjacency-edges that are
candidates for joining. We compute the partial closure of both
these modifications by iterating the processes a set number of
times (Fig. 1D).

Removing aberrant homologies from the graph

Each graph modification in this second stage recognizes a differ-
ent type of characteristic aberrant graph structure, generally
caused by distinct underlying biological phenomena. Each dis-
tinct modification is illustrated in Figure 2.

The first modification (Fig. 2, part 1) of the second stage
attempts to split out segments from AESGs that then allow us to
join triplets of neighboring adjacency-edges. For example, for the
chain of adjacency-edges A∗�∗B, B∗�∗C, C∗�∗D, we test if the
removal of one or a few segments from B∗�∗C will allow us to
join the chain into one edge A∗�(B,C)�∗D, using the adja-
cency-edge joining rules previously outlined. The intuition be-
hind this modification being that one or a few small “visiting”
extant segments, created most often by small transposition
events and assembly errors, may disrupt the joining of much
longer edges.

The second modification (Fig. 2, part 2) of this stage at-
tempts to alleviate the effect retrotransposed pseudogenes have
on the graph. Given our stated aim of not aligning homologies
created by transposition and our desire to create longer segment-
groups, we attempt to recognize and remove these homologies
from the graph. We give an example to outline this process. Let
E1, I1, E2, I2, E3, I3, E4 denote a chain of exons and intron se-
quences that form an ancestral gene structure, where Ei and Ij
denote the ith exon and jth intron respectively. Assume that this
complete gene structure is present in multiple homologous cop-
ies in the input genomes, and call each of these copies a gene
segment. Secondly, assuming that the gene’s exons have also
been retrotransposed and perhaps subsequently copied once or a
few times, let us call these instances retrotransposed pseudogene
segments. Due to the higher relative conservation of exons vs.
introns, each copy of each exon sequence will be contained
within a corresponding GPA, in order: A, B, C, D for exons E1. . .
E4. In the graph, vertices representing the ends of these GPAs will
be linked by the adjacency-edges A∗�∗B, B∗�∗C, C∗�∗D, the
segments in the segment-groups of these adjacency-edges can be
partitioned into two length classes. Those segments contained
within gene segments will have a length approximately propor-
tional to the length of the common ancestral intron, for ex-

Figure 2. Schematic diagrams representing the three secondary modi-
fications within the Enredo graph. The graph representation mirrors that
in Figure 1. (1) Splitting small edges. (1.A) An initial set of GPAs on three
genomes in which the green sequence contains a small region apparently
homologous to the others. (1.B) The graph after removing redundant
GPAs. GPAs C and D represent breakpoints in the graph only because of
the green sequence. (1.C) The effect of splitting the green sequence from
the others and removing new redundant edges. (2) The removal of ret-
rotransposed pseudogenes paired with a homologous gene. (2.A) Typi-
cally GPAs match exons rather than introns, therefore a retrotransposed
pseudogene can show a high similarity at the level of GPAs with the
homologous gene, although adjacent-edges will be much smaller (green
sequence). (2.B) The graph after removing redundant GPAs. The AESG of
B∗�(C,D)�∗E contains two segments much longer than the third one.
(2.C) The effect of separating the putative retrotransposed pseudogene
from the other segments. Usually this results in the creation of a longer
AESG after removing new redundant edges. (3) The removal of small
circular paths. Here a palindromic circle, typically caused by short tandem
repeats or transposition, is broken by the creation of the joined adja-
cency-edge A∗�(B,C)�∗D.
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ample, in A∗�∗B they will have a length proportional to I1.
However, those segments derived from retrotransposed pseudo-
gene segments will be dramatically compressed, the introns hav-
ing been excised during copying. For many different gene struc-
tures this pattern is prevalent and repeated within the Enredo
graph. We recognize adjacency-edge chains of length 3 or greater
in which we can partition the set of segments running through
the chain into putative gene segments and putative retrotrans-
posed pseudogene segments. The criterion for the partitioning is
that the average length of the segments in the AESGs of the gene
segments be three times the length of their retrotransposed pseu-
dogene segment counterparts. To complete the modification, we
remove from the graph the putative retrotransposed pseudogene
segments of adjacency-edge chains fitting the pattern, if their
removal allows the joining (using the modification described in
the previous section) of the remaining adjacency-edges in the
chain. Clearly this modification will not only split out pseudo-
genes, but in some cases will also result in the breaking of other
homologies. However, manual investigation of many of these
cases leads us to believe this is a useful heuristic.

The third and final modification (Fig. 2, part 3) of the sec-
ond stage aims to recognize small-scale assembly errors and
duplications that result in circular chains of edges. A chain of
adjacency-edges is circular if it can be
made to start and end at the same ver-
tex, e.g., the chain of adjacency-edges
A∗�∗B, ∗B�∗A is circular. Such a defi-
nition allows single adjacency-edges to
be circular, for example H∗�∗I and
A∗�A∗ are both circular. Similar to the
whirl removal step outlined in Pevzner
et al. (2004), we search the graph ex-
haustively for small circular (and often
palindromic) chains of adjacency-edges
and test by brute-force search the effects
of removing adjacency-edges to break
these cycles. We then remove from the
graph those adjacency-edges whose
AESGs contain segments of length <10
kb and which allow us to join a chain of
remaining adjacency-edges into a single
larger adjacency-edge.

Deriving the final segmentation from
the Enredo graph

At the end of these modifications the
Enredo graph is far more compact, with
fewer but longer adjacency-edges. In this
initial version of the program, for recov-
ering segment-groups from the human,
mouse, rat, dog, and cow genomes, we
have by choice not attempted to recover
segment-groups <10 kb. This is primarily
because we have found segment-groups
derived from the Enredo graph below
this length are much more likely to con-
tain aberrant homology relationships,
caused mostly by the activity of trans-
posons or short tandem duplications
that are very hard to reliably align. To
derive the final segmentation we first

partition all the adjacency-edges into two classes: primary and
secondary. Primary adjacency-edges are those whose AESGs con-
tain segments >10 kb and are supported by at least three GPAs
(i.e., they have a nonempty redundant-GPA string). The final
segmentation consists of the set of primary AESGs (and their
flanking GPAs), and a set of “bridge” adjacency-edges. In a triplet
chain of adjacency-edges A∗�∗B, B∗�∗C and C∗�∗D, B∗�∗C
are a bridge adjacency-edge if the chain could be joined, using
the previously defined rules, to form A∗�(B,C)�∗C, except for
the fact that the AESGs of A∗�∗B and C∗�∗D have one or
more additional segments. This typically happens when these
additional segments represent the two parts of a breakpoint in
one of the genomes. We include bridge adjacency-edges in the
final segmentation, because the homology relationships they
represent are supported at both ends by other flanking, often
much larger, primary adjacency-edges.

Assessment of the stages of Enredo graph manipulation

Figure 3 shows the distribution of lengths of human segments
from the segmentation at different stages of the Enredo process.
It shows that Enredo successfully joins previously separate
segments at each stage to create longer ones. In the initial graph,

Figure 3. Density plots of the length of segments in the Enredo graph. (A) Red line, the distribution
of segment lengths in the original graph; green line, the graph after applying joining and annealing up
to edit distances of 4; blue line, the graph after removing splitting small edges; magenta line, the final
graph, after resolving circular segment paths, removing the retrotransposed pseudogenes and vali-
dating the bridging edges. The peak of ∼10 kb interanchor distance is rapidly converted to a broader
distribution of segment lengths, with the mode slightly longer (∼20 kb). The weighted median (N50)
is considerably longer (∼230 kb). (B) The distribution of human segment lengths in the final Enredo
graph where the segment has one, two, three, or four or more copies in human. The plot, therefore,
contrasts human single-copy regions vs. regions possessing duplications of different degree.
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the weighted median length (N50) is 31,515 bases. This number
more than doubles after four iterations of adjacency-edge joining
and annealing (N50 = 73,301). The largest increase happens in
the last step, when dealing with retrotransposed pseudogenes
and small circles, where the N50 rises from 98,558 to 237,998
bases.

As well as assessing the changes in coverage and N50 length
of our segments after the multiple stages of graph manipulation,
we sought evidence that we were not introducing significant er-
ror into the segmentation by these processes. To do so we devised
an exon-based segmentation metric independent of either base-
level alignment or tree inference. The exons of a multi-exon gene
are generally under strong negative selection to stay in linear
ordering. Although over the evolutionary distances studied we
expect a very few genuine cases where this constraint has been
overcome (most probably by gene death), a segmentation that
mainly maintains these constraints between species is likely to be
more correct than one that significantly does not. Importantly
the Enredo segmentation was not built with explicit knowledge
of gene structures; this test is therefore a relatively independent
check of its abilities.

Taking the chains of exons implied by the single longest
transcript of a protein-coding gene in a source species, we project

through the segmentation to find the corresponding chain of
homologous segments in a target species. We then ask if this
chain of segments is complete (i.e., for every exon there is a
covering target segment), maintains synteny, the same strand
orientation, and the same linear order in the target species. These
checks are independent of the base-level alignments, and are
performed only at the resolution of the segmentation. We also
avoid the problem of tree inference at this stage; thus, to deal
with paralogs we require that only one chain of segments (out of
potentially several in some cases) in the target genome pass the
above checks.

Using human as the source species and the other genomes
in the input set as the targets (mouse, rat, dog, cow), Table 1
shows the results of this assessment for each stage of the Enredo
graph manipulation. Taking the human–mouse comparison as
an example, and complementing our assessment of coverage, we
find a large increase (19.2%) in the number of fully mapped
genes between the original (30%) and fully manipulated graph
(69.3%). Importantly, we find very few cases (again using the
human–mouse example) where synteny (three cases), strand (21
cases), or order (18 cases) assumptions (total 0.189% of genes) are
violated by the projection through the segmentation. Some of
these errors may in fact be related to misassemblies in the aligned

Table 1. Data showing an assessment of a set of projected exon chains

Target
speciesa Segmentationb

Percent
missing

from sourcec

Percent
missing

from targetd
Percent
okaye

Loss of
syntenyf

Change of
strandg

Loss of
orderh

Percent
rearrangement

errori

Mouse Joined 68 1.9 30 0 2 0 0.009
Dog Joined 67.4 3.7 28.8 0 2 0 0.009
Cow Joined 65.9 7.1 26.7 0 32 16 0.216
Rat Joined 66.3 6.3 27.3 0 14 3 0.076
Mouse Joined + annealed 46.4 1.8 51.6 1 11 5 0.076
Dog Joined + annealed 46.3 2.6 50.9 0 11 5 0.072
Cow Joined + annealed 44.7 9 45.5 1 106 41 0.665
Rat Joined + annealed 45.4 6.4 47.9 0 38 7 0.202
Mouse Triplet joining 27.3 4.2 68.2 3 22 12 0.166
Dog Triplet joining 27.3 5.1 67.3 3 17 11 0.139
Cow Triplet joining 26.2 13.3 59.5 2 137 59 0.89
Rat Triplet joining 26.6 10.3 62.7 1 50 18 0.31
Mouse Rt-pgene + circle removal 13.2 17.2 69.3 3 21 18 0.189
Dog Rt-pgene + circle removal 13.6 13.4 72.7 2 22 20 0.198
Cow Rt-pgene + circle removal 13 26 60.1 25 76 59 0.719
Rat Rt-pgene + circle removal 12.8 24.5 62.4 1 28 15 0.198
Mouse Mercator 28.8 0.3 70.7 8 5 3 0.072
Dog Mercator 28.8 0.4 70.7 13 4 2 0.085
Cow Mercator 28.8 0.4 69.4 113 136 58 1.38
Rat Mercator 28.6 1 70.2 9 26 7 0.189
Mouse MULTIZ 4.1 18.9 72.1 652 197 211 4.763
Dog MULTIZ 4.1 19.3 68 1320 265 300 8.47
Cow MULTIZ 4.1 17.4 53.7 4682 445 398 24.827
Rat MULTIZ 3.8 24.6 64.5 989 271 303 7.023

The source species was human. The total number of protein coding transcripts taken from Ensembl was 22,254.
aThe species to which the projection was made.
bThe Enredo segmentation used. Joined: the segmentation derived after applying only the joining modification. Joined + annealed: the segmentation
derived after applying four iterations of the joining and annealing modification. Triplet-joining: The segmentation derived after applying the first-stage
modifications and the first-second stage modification (triplet joining). Rt-gene + circle removal: the Enredo segmentation derived after applying all the
modifications.
cThe percentage of transcripts in which one or more exons did not have covering human sequence inside of the segmentation.
dThe percentage of transcripts in which one or more exons did not have a covering sequence within the target species (i.e., the target species sequence
was missing from a segment containing the human exon).
eThe percentage of exon chains projected without loss of data and in the original order and strand orientation.
fThe number of exon chains projected to be split across two or more chromosomes.
gThe number of exon chains which, though maintaining synteny, were projected to contain an inversion.
hThe number of exon chains which, though maintaining both synteny and strand orientation, were projected to have been reordered within the target
chromosome.
iThe sum of the preceding three columns divided by the total number of transcripts.
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genomes, for example, through the creation of phantom inver-
sions. For instance, we find a much higher rate of inversion in the
cow genome (76 cases), relative to the dog (22 cases) and mouse
(21 cases) when projecting from human (this result is also ob-
served in the other segmentations assessed; see final rows of
Table 1). This might be a biological phenomenon but is more
likely a result of a less refined assembly.

Comparison of the final Enredo segmentation to existing
methods

To assess the Enredo segmentation we compare it with two com-
monly used alternative segmentations: those generated by Mer-
cator (Dewey 2007) and those implied by the UCSC MULTIZ
alignments (Blanchette et al. 2004). We looked at three metrics
designed to assess coverage and accuracy within and outside of
coding regions.

Firstly, we simply assessed the coverage of the human ge-
nome by each segmentation program (Table 2). We looked at
overall coverage, and the coverage of genes (including introns).
These results show that Enredo covers the highest proportion of
the human genome with alignment (84.47%), vs. MULTIZ
(75.70%) and Mercator (44.46%). Enredo also covers higher pro-
portions of genes fully (all bases mapped, including introns) than
the other programs. However, MULTIZ, which contains many
small segments, matches partially or fully the highest proportion
of human genes overall.

Secondly, we applied the previously introduced exon chain
metrics to the MULTIZ and Mercator programs. These results are
shown in the final rows of Table 1. We would expect Mercator to
perform well in these metrics as its segmentation is generated
using cliques of orthologous exons (analogous to our GPAs) only,
and cannot therefore be influenced by in-
tergenic homology relationships. Indeed
Mercator consistently maps fully ∼70% of
all human exon chains to the other species
in the set. Enredo and MULTIZ map be-
tween 60% and 70% of exon chains to each
of the other species, except in the case of
cow, where MULTIZ maps substantially
fewer chains without probable error
(54.7%). Mercator and Enredo contain very
few cases where a projected exon chain is
disrupted by loss of synteny, inversion, or
loss of exon ordering. Contrasting this,
MULTIZ, which maps the overall highest
proportion of exon chains to all species,
contains a much higher level of putative re-

arrangement error (see final column of
Table 1).

As a final comparison of the different
methods we used the behavior of the mam-
malian X chromosome segmentation. As all
male eutherian mammals are hemizygous
for the majority of X, we expect deletions or
translocations of portions of X to be ex-
tremely rare in mammalian evolution.
However, none of the programs are param-
eterized to consider the X chromosome dif-
ferently from autosomes. Table 3 lists the
frequencies of Enredo, Mercator, and
MULTIZ blocks that show an incompatible
synteny relationship between a human

chromosome X region and an autosomal segment in another
species. As expected, the Enredo segmentation contains a very
low percentage of blocks (1.3%) with an inconsistent relation-
ship. Some of these inconsistencies are probably related to ge-
nome assembly issues. In particular, they may be related to the
issue of placing large contigs onto chromosomal scaffolds in the
draft genome sequences. Using this same metric for the autoso-
mal chromosomes shows them to be almost entirely scrambled
with regard to one another. For the sake of comparison we also
show in Table 3 the most common five-way other chromosomal
pairing (being 17 human, 11 mouse, 10 rat, 9 dog, and 19 cow),
as if this was analogous to the X chromosome case. This shows a
dramatically higher (15%) rate of mispaired blocks in autosomes.
When comparing Enredo’s human X mispairing (1.3%) with the
other segmentation programs, we observe that Mercator has a
higher rate (6%) and MULTIZ an even higher rate (24%). Manual
inspection of a random subset of these MULTIZ blocks shows
that many of these are short matches. We did not observe any
particular evidence that these were due to retrotransposons,
which was one plausible explanation. Rather, they looked like
spurious matches, perhaps from very divergent dispersed repeats.
We believe that the tuning of MULTIZ to allow short genic
matches also allows the placement of these spurious matches.

The conclusions of this assessment are that Enredo provides
higher coverage and a better segmentation than Mercator within
intergenic regions, as judged by the X chromosome assessment.
MULTIZ has a higher coverage, as judged by the partial overlap
on coding sequences, but this comes at a considerable expense in
specificity, as judged by the number of rearranged exon chains
and the number of non-X species blocks matched to the human
X chromosome.

Table 2. Broad coverage statistics of the three segmentation methods

Method
No. of
blocksa

N50 on
humanb

Percent of
human
basesc

Percent of
full human

genesd

Percent of
partial
genese

Percent of
genes

coveredf

Mercator 4436 832,834 44.46 59.0 25.9 85
MULTIZ 16,74,1834 35,679 75.70 37.4 60.1 97.5
Enredo 29,323 237,998 84.47 80.6 9.4 90

aThe total number of blocks in the segmentation.
bThe weighted median (N50) of segment lengths, using the human as the reference.
cThe percentage of bases in the human genome covered by the segmentation.
dThe percentage of human genes fully contained within the segmentation.
eThe percentage of genes partially contained within the segmentation.
fThe rounded sum of the previous two columns.

Table 3. Data showing for each segmentation method the regions of human
chromosome X which are paired in some species with an autosomal region

Method

No. of
blocks with
one non-X

speciesa

No. of blocks
with one non-X

species as a
percent of the

total blocks on X

Base pairs
involved in
erroneous

blocksb

Percent of
base pairs
involved in
erroneous

blocks

Mercator 15 6.7% 2,750,241 4%
MULTIZ 211,117 28% 25,785,059 19%
Enredo 19 1.3% 1,168,017 1%
Autosomal X analog, Enredo 105 15% 13,405,431 19%

aThe number of human X chromosome segments that match only to autosomal regions in another
species.
bBase pairs involved in erroneous blocks: total number of human bases in chromosome X segments
matching autosomal regions.
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Pecan: Large-scale probabilistic consistency alignment

Having described and analyzed the construction of the segmen-
tation we turn now to the problem of aligning the colinear seg-
ments derived from each segment-group using our new tool
Pecan. Up to now we have used the term segment to define a
specific range of positions in an input genome. Pecan disregards
this genomic location information and treats the segments sim-
ply as sequences. We will therefore use the term sequence (as
defined below), in addition to the term segment when describing
Pecan and the remainder of the methods.

Pecan implements the same basic objective function as the
amino acid aligner Probcons (Do et al. 2005) does. We briefly
review this function. Let � represent the basic symbol alphabet
(i.e. {A, C, T, G} for DNA). A sequence represents a member of
∪i=0

� �i, where �i represents the set of all strings of length i com-
prised of characters from �. Denote “–” as the gap symbol and
let�� = �∪{� }.We use the convention that xi denotes position i
in sequence x. Let xi◊yj denote that position xi and position yj are
aligned. Thus let P(xi◊yj|�) represent the posterior match prob-
ability that position xi and position yj are aligned given the pair-
wise alignment model �. For Pecan, � represents a pair-hidden
Markov model (pair-HMM) (Durbin et al. 1998). Let �1. . .n rep-
resent the list of sequences being aligned. Let P�(xi◊yj|�) define
the transformed probability that xi and yj are aligned given by the
following operation:

P��xi◊yj|�� =
1

n − 1
� �P�xi◊yj|�� + �

z∈�−�x,y�
�

k
P�xi◊zk|�� � P�yj◊zk|���

(1)

We define an alignment A as a two-dimensional matrix
whose cells all contain a symbol from ��. Each row represents the
symbols of a sequence interleaved with gaps. Each column rep-
resents an aligned group of ��, the gaps representing characters
missing due to insertion or deletion. Positions from two se-
quences are therefore aligned if they occur in the same alignment
column. The score of an alignment S(�|�) of a set of leaf se-
quences is therefore:

S��|�� =
1
2

� �
x∈�

�
y∈�−�x�

�
i

�
j

P��xi◊yi |�� � I� �xi◊yi� (2)

where I� is an indicator function such that

I��xi ◊ yi� = �1 if xi ◊ yi ∈ �

0 if xi ◊ yi ∉ �

For a set of leaf sequences the optimization challenge faced
by Pecan is to find an alignment whose score maximizes the
above. Any algorithm that addresses this problem therefore natu-
rally has three stages.

1. The computation of a set of posterior match probabilities for
every unordered pair of distinct leaf sequences.

2. The modification of the probabilities computed in the first
stage using the transform given in Equation 1.

3. The search for an alignment to maximize Equation 2 given the
modified probabilities produced in the second stage.

The first stage is computed using the Forward and Backward
algorithms for pair-HMMs, fully described in Durbin et al. (1998).
The second stage is straightforward, though it introduces a cubic
term into the scaling of the algorithm with the number of se-

quences (see the supplement for a runtime analysis). In theory
the third stage could be solved optimally by multidimensional
dynamic programming; however, such a method would then
scale exponentially in terms of the number of sequences. In prac-
tice, in common with Probcons, we use the same basic method of
progressive, sparse dynamic programming with a guide tree, to
compose the final alignment in n � 1 stages. Three major chal-
lenges exist in adapting this alignment methodology for large-
scale alignment on current computer hardware. We describe the
solutions to these challenges in overview, though more details
are given in Methods.

1. For each pair of sequences, using the Forward-Backward algo-
rithm for pair-HMMs, the computation of a set of posterior
match probabilities grows quadratically with their average se-
quence length. This is fine for small sequences but impractical
for sequences of more than a few hundred kilobases.

2. The number of unordered sequence pairs is (2
n), which, because

the cost of computing the Forward-Backward algorithms
dominates, makes it expensive to align even moderate num-
bers of sequences (>20).

3. The total number of posterior match probabilities grows lin-
early with the average length of the sequences involved and
quadratically with the number of sequences. In practice, this
can introduce a heavy memory burden if not dealt with.

To solve the first challenge we use a system of sequence
constraints, precomputed using the local alignment program Ex-
onerate (Slater and Birney 2005), to reduce the alignment search
space. To describe this we make particular use of the explicit
concept of constrained alignment. Briefly, pairwise constrained
alignment algorithms that allow the definition of constraints be-
tween sequence indices of the form xi � yj (i.e., that position xi

must precede or be aligned to position yj in the final alignment),
and similarly xi < yj (i.e., that position xi must precede position yj)
can be thought of as specialized types of banded alignment al-
gorithm (Chao et al. 1993; Delcher et al. 1999; Batzoglou et al.
2000). This is because they limit the possible paths of the align-
ment to a restricted region, henceforth called an alignment
“band” of the edit graph (Supplemental Fig. S1A gives an ex-
ample). Around a set of ungapped local alignments (which we
call “anchors”), an expanded band is constructed (shown as black
lines in Supplemental Fig. S1A). Expanding the band in this way
allows the incorporation of the probability of detour alignments
around the constraining set of local alignments. If the width of
this band along the diagonal axis of the edit graph never exceeds
a prespecified constant, then the area of computation is limited
to linear in the average lengths of the sequences.

To reduce the severity of the second problem we implement
a strategy we term “transitive anchoring,” which utilizes a trian-
gulation property between related alignments to further constrain,
and hence reduce the total area of pairwise dynamic programming
performed. As an example, consider the alignment of three se-
quences, e.g., human, chimp, and rhesus monkey. Once two
pairwise alignments have been generated (e.g., human to chimp
and human to rhesus monkey), an effective approximation to
the third alignment (in this case, chimp to rhesus monkey) can
be made. These “transitive anchors” are then used as additional
constraints in this third comparison, dramatically reducing the
costs of computation. Figure 4A,B shows the before and after
results of using transitive anchoring on a small region of align-
ment. In general, for every unique triangle of sequences in the
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input set of sequences we utilize this method to find highly prob-
able regions in unseen alignments. We assessed the effects tran-
sitive anchoring has on the runtime needed to reconstruct the
simulated alignments described below. For these alignments we
had the true simulated alignment with which to compare the
reconstructed alignment. We found that transitive anchoring
had negligible effects on the quality of the alignments (in terms
of the sensitivity and specificity of predicting aligned bases) and
allowed a significant reduction in runtime of between 12% and
43%, dependant on if the initial constraint map was allowed to
constrain the alignment of sequences labeled as repeats (Supple-
mental Table S1).

The third challenge, of efficiently storing the set of pair
probabilities, proved to be the most difficult. We solved the chal-
lenge by using a methodology that we call “Sequence Progressive
alignment,” In brief, this involves computing all three main
stages of the algorithm in near parallel by iterating in stages over
the alignment from left to right. Due to its complexity we will
describe this methodology in full separately (B. Paten, J. Herrero,
K. Beal, and E. Birney, in prep.).

In addition to making the consistency objective function

described above practical for very large colinear sequences, we
have trained the pair-HMM model used over very large pairwise
sequence alignments, and tested pair-HMMs with single and
mixtures of affine gap states (see Supplemental material).

Simulation comparison of Pecan to existing methods

Using a set of independently produced evolutionary simulations
(Blanchette et al. 2004), it is possible to compare the default
Pecan program with a previously published comparison of other
alignment programs. The simulations attempt to model the neu-
tral region evolution of nine extant mammalian species: human,
chimp, baboon, mouse, rat, dog, cat, cow, and pig. The simula-
tions comprise 50 50 k alignments. The mutational operators
considered included point substitutions, CpG effects, insertions,
including the action of repetitive elements, and, finally, dele-
tions. Parameters for the simulations were carefully chosen using
empirically estimated frequencies. Previously, the authors of the
simulation had shown their program (TBA) to function the best
in these metrics. We benchmarked Pecan on these simulations
without using any prior training to the data.

Table 4 shows how three different configuration choices af-
fect performance: first, the initial placement of constraints
within subsequences labeled as repeats; second, the use of the
consistency transformation outlined in Equation 1; third, the use
of a double affine gap model (a model with two sets of affine gap
states) instead of a single affine gap model. Short of reproducing
data for all the constituent pairwise comparisons (36 total), we
have reproduced data for the same subset of pairwise compari-
sons chosen by the original authors of the simulation, which is
reasonably representative.

The data indicate that the use of the double affine gap
model makes the biggest positive difference to performance in
these metrics (2.6%–4.1% sensitivity, 2.5%–3.0% specificity at
human–mouse distance). This is perhaps unsurprising given that
the authors used biologically derived estimates of indel lengths,
which are known to significantly diverge from a simple affine
model. The second most important factor was whether the pro-
gram constrained the alignment using repeats. When constraints
on repeats were allowed, performance generally declined, with
an average of 0.8%–2.2% in sensitivity and 0.9%–1.3% in speci-
ficity at the human–mouse distance. This indicates that allowing
less constrained posterior match probability calculation in areas
containing repeats improves performance. The difference caused
by the consistency transformation was smallest, but still positive
(0.1%–1.4% sensitivity, 0.0%–0.3% specificity). This contrasts
strongly with that observed for protein alignment benchmarks,
such as BAliBASE, where the Probcons and T-Coffee programs have
been able to show very much greater improvements for a variety of
mostly sensitivity-dependent metrics (Bahr et al. 2001). It is quite
possible that this observation is particular to the features of this
simulated benchmark and phylogeny of the sequences, and
hence we wish to avoid overgeneralizing; however, we leave as
further work a more detailed exploration of this issue and the
numerous possible modifications to the consistency procedure.

The runtime of Pecan is significantly affected by the differ-
ent configurations chosen (varying between 230 and 130 sec on
average for the alignment of a single group of sequences from the
simulation set on a Pentium 4 machine). Unsurprisingly, Pecan is
slower than Mlagan (66 sec average) in all settings, which given
the use of the double-pass Forward-Backward algorithms is not
surprising. However, Pecan is still fast enough to be used in place

Figure 4. (A) An edit-graph showing an alignment band generated
without transitive anchors. Alignment pairs whose posterior probability is
between 0.01 and 1.0 are plotted, colored according to their probability.
(B) An edit-graph showing the alignment band for the same region as in
A, but with transitive anchors. Certain edges are now excluded from the
alignment, but the majority of the probability is well enveloped.
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of programs like Mlagan in most circumstances. As defaults for
Pecan we have chosen to use the double-affine model, the con-
sistency transform, and to constrain upon repeats (average run-
time 160 sec). Placing constraints on repeat subsequences does
degrade performance somewhat, but makes the program faster
and computationally more robust to highly repetitive input se-
quences.

Figure 5 updates the alignment program comparison made
by the original authors. Where a substantially newer version of a
program is available we have produced updated statistics, choos-
ing the default parameters for each program (see legend for de-
tails). Pecan is significantly more sensitive than the other pro-
grams in all the pairwise comparisons. The absolute differences
are greatest for the most diverged sequence pairs, where compari-
sons of the default Pecan version to the next most sensitive pro-
gram show Pecan to be ∼12.2% higher for human–mouse and
8.6% higher for the human–dog comparison. Pecan also has
higher specificity for all the comparisons than any other pro-
gram, being ∼1.1% and 2.3% higher with respect to the next best
programs for the human–mouse and human–dog comparisons,
respectively.

Comparisons of the more closely related sequences, such as
mouse–rat, pig–cow, also suggest that Pecan is able to resolve cor-
rectly many remaining errors, where an increase in sensitivity and
specificity of 3.1% and 0.7%, respectively, for the pig–cow compari-
son implies a near halving in the number of true-negatives and

quarter reduction in false-positives, with respect to the next best
program. Supplemental Table S2 shows these results in full.

Assessment of the complete Enredo-Pecan pipeline

We assess the entire pipeline, comparing it to the Mercator seg-
mentation program followed by either Mlagan or Pecan (Merca-
tor-Mlagan, and Mercator-Pecan), and to the MULTIZ alignments
from UCSC. For the assessment we use a metric based upon an-
cestral repeats, similar to that introduced in Margulies et al.
(2007). Briefly, this scheme relies on the presence of ancestral
repeats due to a burst of transposon activity in the common
ancestral lineage of the sequences (human, mouse, rat, dog, cow)
in the alignment. The repeat copies can be aligned by two inde-
pendent methods: firstly, via the extant homologous sequences,
without reference to the repeat consensus, and secondly, via the
set of pairwise alignments of each copy of the repeat to the con-
sensus. Although there is ambiguity in the alignment of the ex-
tant copy to the transposon consensus, this latter method has
two key advantages. First, the alignment to the consensus prob-
lem is simpler than the homologous sequence alignment prob-
lem. Naively the divergence distance from the consensus to an
extant copy is roughly half of the distance of that between any
two extant copies, due to the star-like phylogeny in the early
mammalian radiation. Second, any ambiguity in the alignment
to the consensus is unlikely to favor any particular homologous
aligner. Fixing the alignment to the consensus as the gold stan-
dard therefore provides a fairly objective measure of alignment
accuracy that does not explicitly favor any alignment scheme.

We classified alignment columns containing ancestral re-
peats into three classes: (1) full matches, being all species consis-
tent with the consensus alignment, (2) partial matches, being
that at least two species are consistent and the other species have
other, nonrepeat matches, and (3) mismatches, being that the
homologous alignment places two ancestral positions from dif-
ferent consensus positions in the same column. Figure 6A shows
the coverage (proportion of ancient repeat bases aligned, analo-
gous to sensitivity) vs. accuracy (proportion of ancient repeat bases
covered by a full match, analogous to specificity) for Mercator-
Mlagan, Mercator-Pecan, Enredo-Pecan, and MULTIZ. Figure 6B
shows a more complete breakdown of the specificity of the dif-
ferent methods. There is no significant difference by ancient re-
peat type (see Supplemental Data). It is clear here that Enredo-
Pecan produces both higher coverage alignments and more ac-
curate alignments than any other combination of programs.
Closer examination of the results indicate the main problem
with the Mercator-based pipelines is the lack of a significant
number of ancestral repeats in any alignment, due to the inabil-
ity of its model to handle inversion or duplication events. Turn-
ing to the alignment programs, Pecan provides a consistently
higher sensitivity and specificity of alignments than Mlagan,
agreeing with the simulation results. MULTIZ, where we cannot
separate out the segmentation process from the base-pair align-
ment, performs better than the Mercator-Mlagan combination,
but not as well, either in coverage or accuracy, as Enredo-Pecan.

Overall Enredo-Pecan alignments can align (cover) around
one third of the bases of ancient repeats at ∼45% complete accu-
racy (full matches), and align ∼75% of ancient repeat bases to at
least two species with a consistent alignment (partial matches).
The alignment of ancient repeats, which are mainly neutrally
evolving and have accumulated many lineage specific deletions,
is one of the more challenging criteria to assess alignments.

Figure 5. A comparison of different alignment algorithms on 50 50k
simulated nine-way alignments (Blanchette et al. 2004). Graphs show
representative alignment pair comparisons. Data for MAVID (Blanchette
et al. 2004), TBA (Blanchette et al. 2004), and Mlagan (Brudno et al.
2003a) computed using the latest publicly available release. Data for
Dialign (Morgenstern et al. 1998; Morgenstern 1999), ClustalW (Thomp-
son et al. 1994), and Dialign-Chaos (Brudno et al. 2004) reproduced from
Blanchette et al. (2004).
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Firstly, some of these repeats were inserted significantly earlier
than the mammalian radiation, and thus have accumulated spe-
cific mutations in each instance, increasing alignment ambigu-
ity. Taking the most accurately aligned repeat, MER82, 60% of
the ancient repeat positions in the Enredo-Pecan alignments
have a full match, and 78% have a full or partial match. Sec-
ondly, many of these repeats present in human will not have any
orthologous counterpart in the other species due to deletions in
early lineages of the mammalian tree. Thus, our coverage esti-
mates are likely to be a significant underestimate of the coverage
of alignments in regions undergoing selection.

As a final assessment we reprise the previously described
assessment of projected exon chains to compare the final Enredo-
Pecan alignments with the Mercator-Mlagan and MULTIZ align-
ments. In this more detailed comparison we used the indepen-
dent phylogenetic trees, based on protein coding sequences (A.J.
Vilella, J. Severin, A. Ureta-Vidal, R. Durbin, L. Heng, and E. Bir-
ney, in prep.) to check for each human gene if it was aligned to
its predicted orthologous sequence in each of the other species.
Table 5 shows the number of gene tree relationships that are
consistent with the different segmentation programs using two
criteria. The first, a more liberal method, records a match as soon
as there is a one base-pair overlap in the coding sequence be-

tween the segmentation results and the gene tree results (labeled
“partial CDS” in Table 5). The second, more stringent criterion,
the gene extent measure, requires the segmentation result to en-
compass all the gene structure on both species (labeled “com-
plete gene” in Table 5). As well as handling orthologs, the crite-
rion was also extended to look at recent (Ape or later) duplica-
tions in human (timed via the presence of outgroups in the tree
from other primates). By definition, as Mercator and MULTIZ do
not generate lineage-specific duplications, these programs have
0% recovery. Manual investigation of a number of the cases
where MULTIZ captured an ortholog which Enredo did not
showed a tendency toward regions of poor assembly, suggesting
that MULTIZ’s more local, aggressive matching approach is more
tolerant to assembly errors. This suggests that improvements in
mammalian assemblies will automatically improve the Enredo
segmentation.

Conclusions

We have developed and benchmarked a multistep pipeline for
providing a segmentation of extant genomes into homologous
colinear regions that can handle deletions, duplications, and re-
arrangements. We have also developed a new large-scale multiple
alignment program that makes practical the method of consis-
tency alignment at a genome scale. These two methodologies
perform in isolation at least as well as existing methods and, in
many metrics, have clear benefits. In particular the ability to
accurately handle duplicated regions has long been unfeasible in
other analyses. These multiple alignments can also be used for
more sophisticated inference, such as the inference of ancestral
sequences described in Paten et al. (2008, this issue).

This pipeline runs robustly and is now a standard part of the
Ensembl (Flicek et al. 2007) project pipeline for mammalian se-
quences. As part of this integration we have developed a number
of display and access methods for the data within the Ensembl
genome browser. The alignments can be shown in the main con-
tigview of all the aligned species, and, when zoomed in, as a
base-pair alignment. We have also developed a specialized view,
the AlignSliceView, that provides a browsable representation of
the multiple alignment containing annotations projected from
the underlying species to the multiple alignment. As well as these
web browsable resources, we provide a number of programmatic
and direct download views of the genome. There is a complete
ftp dump of the multiple alignments for each segmentation
block, in Ensembl Multiple Format (EMF), a format which allows
us to present both extant sequences, ancestor sequences, and
conservation metrics (such as GERP; Cooper et al. 2005) in a
single file. The Ensembl Compara API also provides flexible
methods to access these alignments.

The construction of the Enredo graph has some similarities
to the use of de Bruijn-like graphs in sequence analysis (Chaisson
et al. 2004; Price et al. 2005; Zerbino and Birney 2008), where
consistent sequences between two nodes in extant species are
collapsed on to the same edge. Clearly the Enredo graph and the
de Bruijn graph are radically different in terms of elements. The
nodes in the Enredo graph are sets of genomic anchor points, and
the edges are the large intervening sequences, whereas the nodes
in a de Bruijn are strings of length k (k-mers) and the edges rep-
resent the adjacencies between these k-mers in an observed se-
quence. However, the key property used in both schemes is that
any subsequence considered to be “identical” or homologous by
some metric is represented only once in the graph.

Figure 6. (A) Plots showing the coverage and accuracy of different
alignments to inferred ancient repeat sequences. Coverage is measured
as the proportion of all ancient repeat bases aligned. Accuracy is mea-
sured as the proportion of all columns categorized as full matches. (B) A
bar chart showing the distribution of different types of agreement (full,
partial, and mismatch) to the repeat consensus alignment for different
combinations of segmentation and alignment methods.
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Enredo does not attempt to reverse-engineer the ancestral
history of large-scale rearrangements. However, our pipeline pro-
vides a near ideal starting point for grappling with such a chal-
lenge. Essentially what is required as input to such a method is a
set of colinear segment-groups, each of which is unbroken by any
large scale rearrangement, and a set of segment-group trees, giv-
ing the evolutionary relationships between the extant sequences
in the segment-group. Given these data, which is exactly analo-
gous to our set of alignments and trees, a method for reversing
evolution, such as Ma et al. (2006, 2008), can apply algorithms to
infer a history.

One issue currently with Enredo is the number of free param-
eters. Given the nature of the graph it is difficult to devise training
strategies to learn these parameters from the data. The tuning of the
current implementation of the program has therefore relied on
careful manual analyses of the results. Another feature of the
current alignments, though this is not a requirement of Enredo,
is the human-specific way the GPA set was constructed. In the
future we will improve on both these limitations, firstly, by ex-
tending and developing further the set of Enredo graph modifi-
cations, and secondly, by investigating new ways to build the set
of GPAs.

The Pecan program attacks the multiple sequence alignment
problem, which even at the genome scale has quite a long pedi-
gree. However, fundamentally, we have shown that taking a
methodology developed primarily for protein alignments and
engineering it to be practical at a genome scale gives rewards, by
providing the comparative genomics community with a valuable
new tool and good or better alternative alignment sets. It is un-
fortunately very difficult to make absolute, quantitative judg-
ments about the biological performance of different alignment
strategies, and this is best done by independent groups to the
alignment program developers. Recent assessment metrics (Mar-
gulies et al. 2007) indicate that Pecan performs well compared to
preexisting programs. Backing these findings up, our larger-scale
comparisons of ancient repeat data give us further direct biologi-
cal evidence of Pecan’s abilities.

While metrics based upon real data are preferable to simu-
lations for making useful, biologically realistic conclusions, they
often address only certain subclasses of sequence, i.e., exons or
particular types of repeats. They are also of often unknown ac-
curacy. We therefore believe that simulations are also useful in
this field, but that they are limited and should be judged only in
the context of what they attempt to model. The set of simula-
tions that we tested Pecan upon indicate that Pecan outperforms
all other available programs for large-scale nucleotide alignment,
in terms of both sensitivity and specificity, at a wide range of
approximate divergence distances.

In general we believe that it is important and possible to
improve alignment assessment metrics for genomic sequences,
both for the problem of colinear alignment, and fully incorpo-
rating nonlinear rearrangement operations. For simulations it
would be useful for further high-quality data sets to be created,
both using different simulation methodologies and different
sources of biological data to generate the parameters. In this way
bias in simulations might be more easily identified and dis-
counted. We note that the unsupervised training method em-
ployed to train the pair-HMM model used by Pecan produced
parameters which appear to fit the tested alignment simulations
well.

The near-term future goals of our pipeline are twofold. First
we will incorporate other mammalian sequences, many of them
currently sequenced at 2�, into our alignments. This will give
rise to a potential greater than 20-way species alignment. We will
pragmatically extend the alignment to the 2� genomes, by using
the pairwise alignment to human as a guide to which sequences
are present in which Enredo segment. However, this will neces-
sarily overcollapse recently duplicated sequences in each of the
2� genomes. Given the presence of next generation sequencing
technologies we hope that improvements to these 2� genomes
will be rapidly achieved to remove this problem. Secondly we will
apply the pipeline to the teleost (bony fish) lineages. In teleosts,
the presence of an additional whole genome duplication fol-
lowed by a process of differential retention and loss means that
modeling duplications and deletions will be critical for effective
whole genome alignments.

Methods

Assessment methodologies
The following describes extra details of the assessment method-
ologies used. Detailed further descriptions of the methods for
Enredo and Pecan can be found in the Supplemental material.

Projection of exon chains using the Enredo segmentation
To assess the conservation of order and orientation of exon
chains we used the Ensembl Human (version 49) gene set, taking
only the single longest transcript for each gene.

Enredo coverage of complete genes
We used the human gene set from Ensembl version 47, available
at http://oct2007.archive.ensembl.org/. Full matches correspond
to genes that are fully covered by the segmentation method,
including UTRs and introns. For genes with alternative splicing,
we consider a gene fully covered if a matching genomic region
includes the first nucleotide of the first transcript and goes to the

Table 5. Data showing the consistency of the segmentation results with protein-based gene trees

Type

Mercator-Mlagan MULTIZ Enredo-Pecan

Partial CDS Complete Gene Partial CDS Complete gene Partial CDS Complete gene

Ortholog 1-1 97% 25% 98% 4% 91% 28.3%
Ortholog 1-n 30% 9.9% 50.9% 6.9% 29% 9%
Ortholog n-n 3.4% 1.5% 13.5% 2.6% 2.6% 1%
Recent paralog 0% 0% 0% 0% 8.4% 3.4%

Data showing the consistency of the segmentation results with protein-based gene trees. Partial and complete matches are defined in the main text.
The rows show ortholog categories, divided into those that show a one-to-one, one-to-many, and many-to-many relationship. Where the relationship
is one-to-many or many-to-many, we give results over every possible pairing.
CDS, coding sequence.
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last nucleotide of the last transcript. It is worth noting that a gene
can be covered by different contiguous segments and still be
counted as a full match. If there is at least one uncovered nucleo-
tide we count the match as a partial match.

Pairing of human chromosome X
In order to assess the quality of the segmentation programs we
looked at whether human X regions pair with autosomal regions.
The test is very conservative. Regions paired with either chromo-
some Y or an unmapped contig are not considered as mis-
matches. Additionally, cases where a segment of the human
chromosome X is paired to both a region of chromosome X or Y
and an autosomal region are still regarded as valid matches. Only
when a multiple alignment has a region of human chromosome
X matching only regions definitively within non-X chromo-
somes is it considered incompatible.

Ancestral repeats assessment
We used the following Type II transposons for this analysis:
MER82, Charlie4, MER119, Charlie1, MER20, MER5A, Cheshire,
MER45B, and MER58B. All these repeats are present in all the
genomes considered. The repeat instances were detected using
RepeatMasker (http://www.repeatmasker.org). Each repeat in-
stance found was aligned to the consensus of the ancestral repeat
using Exonerate (Slater and Birney 2005). We then tested wheth-
er the nucleotides aligned in the multiple alignments corre-
sponded to the same position in the consensus sequence.

On several occasions, we found a human repeat instance
aligned to a related repeat in another species. For instance,
Charlie4a can be considered a subrepeat of Charlie4 in which the
central region has been deleted. To improve the coverage of our
test, we aligned the consensus sequence of these related repeats
to the consensus sequence of the repeat found in the human
genome. This, for example, allowed us to transform Charlie4a
coordinates into the Charlie4 ones. More details on the list of
repeats and their relatives can be found in the Supplemental
Material.

Homology assessment using gene trees
We used data from Ensembl version 47 to assess the Mercator-
Mlagan and Enredo-Pecan alignments. The MULTIZ data were
compared with data from Ensembl version 46, as the MULTIZ
alignments included an older version of the mouse assembly.

Segmentation data sets
The Mercator-Pecan and Mercator-Mlagan alignments are available
upon request. The MULTIZ alignments were downloaded from
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/multiz17way/.
The latest Enredo-Pecan-(Ortheus) alignments are available from
ftp://ftp.ensembl.org/pub/release-50/emf/ensembl-compara/.
The original five-way Enredo-Pecan data set used in this analysis
is available on request.
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