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Abstract

We designed a simple position-specific hidden Markov model to predict protein structure. Our new
framework naturally repeats itself to converge to a final target, conglomerating fragment assembly,
clustering, target selection, refinement, and consensus, all in one process. Our initial implementation of
this theory converges to within 6 Å of the native structures for 100% of decoys on all six standard
benchmark proteins used in ROSETTA (discussed by Simons and colleagues in a recent paper), which
achieved only 14%–94% for the same data. The qualities of the best decoys and the final decoys our
theory converges to are also notably better.
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We wished to find a unified and the simplest model for
protein structure prediction, one of the major open
problems in science. We were not interested in trying
PSI-BLAST for easy targets, threading by RAPTOR (Xu
and Li 2003) for harder targets, fragment assembly by
ROSETTA (Simons et al. 1997) for ab initio targets, or
consensus for everything. We were also not interested in
using different methods for different steps, such as Monte
Carlo fragment assembly, clustering, selecting, and
refinement. Nature does not do this. It does not fit with
Occam’s razor principle (Li and Vitanyi 1997; Baker
2000).

Nature prefers simplicity. We wished to find one
theory, one model, as simple as possible that goes from
an input sequence to the final structure. This theory

should embody homology modeling, threading, fragment
assembly (all stages of it), loop modeling, refinement,
side-chain packing, and consensus. The theory must be
simple, robust, and effective.

This work presents our initial efforts in building a
theory toward this goal and our preliminary implementa-
tion of this theory, FALCON, together with clear-cut
experimental results. Some ideas of our work come from
three lines of research: fragment assembly, hidden Markov
model sampling, and Ramachandran basins.

The most successful approach for ab initio structure
prediction is to use short structural fragments to model
local interactions among the amino acids of a segment
and utilize the nonlocal interactions to arrange these short
structural fragments to form native-like structures
(Simons et al. 1997). Despite the importance of nonlocal
interactions in directing the search to discover the native-
like protein structures, the relationship between local
structures and the interactions among amino acids within
a local structure remain active issues of research. An
accurate prediction of the local structural bias for a
sequence segment is critically important to protein struc-
ture prediction.
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According to the Levinthal paradox (Levinthal 1968),
the number of possible conformations of a protein chain
is exponential in the protein sequence length due to the
large degrees of freedom of the unfolded polypeptide
chain. As a consequence, a brute-force enumeration of all
possible conformations for a given sequence is both
computationally and physically infeasible. However, the
local structural bias information restricts the possible
conformations of each sequence segment and therefore
narrows down the conformation space of the whole
polypeptide chain significantly.

Structural motif is a straightforward description of
local structural bias. The idea of structural motif can be
traced back to Pauling and Corey (1951), in which a
protein fold is modeled as an assembly of smaller
building blocks from the regular secondary structure
elements. In past years, considerable work (Rooman
et al. 1990; Bystroff et al. 1996; Han et al. 1997; Bystroff
and Baker 1998; Camproux et al. 1999; Gerard 1999; Li
et al. 2008) has been conducted to define local structural
motifs and analyze their structural characterization and
sequence preferences. The sequence preferences can be
used to predict structural motif for new sequences.
Another approach is to search for recurrent sequence
patterns first and then study the structural motif shared by
these recurrent sequence patterns. This approach can
identify new structural motifs since the important struc-
tural properties need not be specified in advance.
HMMSTR (Bystroff et al. 2000), a hidden Markov model
on structural motif space, attempted to describe the
overlaps of structural motifs and the transition probability
between motifs. HMMSTR can be considered as a
probabilistic version of a structural motif library.

Structural motifs serve as the foundation to obtain
better predictions. For example, ROSETTA (Simons et al.
1997) selected 9-mer structural fragments from known
protein structures as building blocks, while TASSER
(Zhang et al. 2005; Zhang 2007) generated fragments of
various lengths from threading results. Despite the prom-
ising progress of fragment assembly methods, the struc-
tural motif strategy still suffers from its inherent discrete
nature. That is, the structural motif library is discrete
while the conformation space of a protein is continuous.
Therefore, it is impossible to cover the whole conforma-
tion space by a limited number of structural motifs. This
drawback limits the accuracy of protein structure pre-
diction (Holmesand and Tsai 2004; Gong et al. 2005).

An alternative way to describe local structural bias is a
Ramachandran basin (Ramachandran and Sasisekharan
1968). A Ramachandran basin refers to a specific region
of a Ramachandran plot imposed by local interactions
among amino acids. A Ramachandran basin provides
a convenient way to present the preference of a spe-
cific torsion angle. Colubri et al. (2006) employed the

Ramachandran basin technique to investigate the levels of
representation required to predict protein structure. Spe-
cifically, they tested the ability to recover the native
structure from a given Ramachandran basin assignment
for each amino acid. In this method, the Ramachandran
plot is divided into five predetermined Ramachandran
basins. By decomposing the Ramachandran plot into four
or more basins, Shortle (2002) calculated the propen-
sities of amino acids mapped to each basin. Shortle
argued that these propensities are the results of local
side-chain–backbone interactions and may restrict the
denatured conformation ensemble to a relatively small
subset of native-like conformations. Gong et al. (2005)
also investigated the protein structure-reconstructing
problem from coarse-grained estimation of the native
torsion angle. The only difference in these works lies at
the definition of a Ramachandran basin: Gong et al.
(2005) partitioned both f and c angle intervals into six
ranges, each range of 60°; thus, the Ramachandran map is
partitioned into 36 basins uniformly. These three studies
demonstrate that the knowledge of torsion angles helps
the reconstruction of small-size proteins. However, these
three works partition the Ramachandran plot into basins
in a random manner without statistical explanations
describing the torsion angle distributions of each basin.
Furthermore, to give each residue a coarse Ramachandran
basin assignment, the native structure should be known in
advance, which makes these frameworks infeasible for
real-life protein structure prediction.

As the third precursor to our work, Hamelryck et al.
(2006) proposed to apply FB5, a directional distribution,
to parameterize the local structural bias. Using this tool,
they investigated the local bias in (u, t) space rather than
(f, c) space. In this method, the local structural bias for
each amino acid is trained via a hidden Markov model
called FB5-HMM. Instead of HMM, Xu et al. (see Zhao
et al. 2008) proposed a CRFSampler, a protein-structure-
sampling framework based on another probabilistic graph
model, Conditional Random Fields (Bishop 2006), with
improved results. The success of these methods suggests
the advantage of continuous torsion angle distributions
over discrete structural motifs: Using the torsion angle
distribution technique, it is possible to generate confor-
mations with local structures not occurring in the struc-
tural fragment library. In addition, experimental results
demonstrate that the derived local biases can help to
generate native-like conformations and support the view
that relatively few conformations are compatible with the
local structural biases (Hamelryck et al. 2006).

Despite the promising advancements, the FB5-HMM
type of approach has three serious disadvantages. First,
FB5-HMM reports the optimal number of local biases as 75
by training on a large set of representative protein struc-
tures. In other words, the (f, t) map that is used to model

Li et al.

1926 Protein Science, vol. 17

JOBNAME: PROSCI 17#11 2008 PAGE: 2 OUTPUT: Tuesday October 7 15:40:18 2008

csh/PROSCI/170215/ps036442



the local bias is partitioned into 75 basins. This partition
scheme implies that a protein sequence of length n has a
conformation space of size O(75n), which is astronomically
larger than the estimation of O(1.6n) by Sims and Kim
(2006). In addition, it is challenging to select suitable
models from these 75 local biases for a particular residue.
Second, the derived distributions are general, while a
residue may have its specific preference for the distributions
and therefore none of the 75 local biases suits it. Third,
FB5-HMM is incapable of capturing the relationships
among the residues of a local segment. As a consequence,
though equipped with an elegant statistical model, FB5-
HMM has a much lower prediction accuracy compared to
ROSETTA (Hamelryck et al. 2006; Zhao et al. 2008).

The new paradigm

We propose a simple and unified paradigm for protein
structure prediction. The plan is to probabilistically
sample protein structure conformations compatible with
local structural biases for a given protein. The architec-
ture of the model is as below.

1. For residue i, several cosine models (Mardia et al. 2007)
are used to describe the local bias of its torsion angle
pair (fi, ci);

2. a position-specific hidden Markov model (HMM) is
used to capture the dependencies among local biases of
adjacent residues, based on carefully selected fragments
(Simons et al. 1997; Li et al. 2008). This HMM is
referred to as Fragment-HMM;5

3. the Fragment-HMM is used to sample a sequence of
torsion angle pairs for the given protein sequence. An
energy function is used to evaluate the generated decoys
and to direct the sampling process to the better decoys;

4. the generated decoys are fed back to produce more
accurate estimations of local structural biases, a more
accurate Fragment-HMM and thus, better decoys. This
step is executed iteratively to increase the quality of the
final decoys, until convergence.

This model has advantages over existing works as follows:
Our Fragment-HMM model combines the very suc-

cessful fragment assembly method (Simons et al. 1997)
and the elegant FB5-HMM idea (Hamelryck et al. 2006).
Rather than using the fragments as building blocks, we
use them to produce local bias information. We use the
directional distribution to model local biases, and use
HMM to explore the dependency among the adjacent
residues. Unlike FB5-HMM, our Fragment-HMM is
position specific.

Our Fragment-HMM naturally enables step 4 to resam-
ple decoys. Immediately, one would observe that this
applies to obtaining fragments from a known structure.
Thus, this naturally enables homology modeling, thread-
ing, refinement (requiring more hidden nodes to model
side chains), loop modeling, and consensus, unifying all
these approaches under one roof.

Step 4 is similar to that of primal and dual optimization
processes. The primal goal is to minimize the energy,
which is done by discriminating decoys with an energy
function, and the dual process is done via sampling our
Fragment-HMM to improve the estimation of torsion
angles. Step 4 differs from the traditional fragment
assembly methods that end with a population of decoys,
some good and some bad. Our model does not stop here,
but iterates until convergence.

The search space is narrowed down step by step. Monte
Carlo is a popular technique for fragment-assembly-based
protein structure prediction. However, Monte Carlo suffers
from its low efficiency since it does not explore
the characteristics of the search space. Specifically, for a
protein of length n, the search space size is O(200n) if each
sequence segment has 200 candidate structural motifs. This
search space remains unchanged in the whole Monte Carlo
search process. In contrast, our Fragment-HMM narrows
down the search space after each iteration step since the
local structural biases are estimated more and more
accurately.

We have implemented this theory in FALCON, Fragment-
HMM approximating local bias and consensus. The first
concern obviously is if FALCON will actually converge to
some native-like decoys. We take all six proteins from the
ROSETTA benchmark data used by Simons et al. (1997).
FALCON converges 100% to within 6 Å for all six proteins
after only four iterations.

In order to make further comparisons to evaluate our
model, we remove step 4, the iteration step, from
FALCON. Then FALCON still generates significantly
better results than ROSETTA for these six proteins.
FALCON improves both the percentages of good decoys
and the RMSD of the best decoys for five proteins out of
six. For three of them, the percentages of good decoys are
improved by >80%. Similarly FALCON, without step 4,
generates better results than FB5-HMM, by far.

These results suggest that succinct, accurate, and
flexible descriptions of local biases can significantly
improve the quality of protein structure prediction.

Methods

Parameterizing backbones

A protein backbone of n residues consists of a sequence
of atoms: N1, Ca1, C1,. . ., Nn, Can, Cn. The backbone

5In this paper, in order to obtain strictly fair comparisons, we
did not use the fragments of FRazor (Li et al. 2008). We uniformly
used the ROSETTA fragments.
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conformation is fully specified by bond lengths, bond
angles, and torsion angles. Three types of torsion angles
are defined: fi, ci, and vi for each residue except for the
C and N termini. The angle vi is restricted to close to
180° or �180°. Bond lengths and bond angles are nearly
constants. Therefore, we can parameterize a protein
backbone with torsion angle pairs, i.e., the backbone of
a protein of length can be approximately reconstructed
from torsion angle pairs (f1, c1), . . ., (fn, cn), assuming
f1 and cn are defined for notation simplicity.

Representing local bias of torsion angle pairs

The local structural bias for residue i is represented by the
joint distribution of its torsion angle pair (fi, ci). We use
the cosine model, a bivariate von Mises distribution over
angular or directional space (Singh et al. 2002; Mardia
et al. 2007). The probability density function of the
cosine model is specified by five parameters k1,k2, k3,
m, and y:

f f;cð Þ= c k1; k2; k3ð Þek1 cos f�mð Þ+ k2 cos c�yð Þ+ k3 cos f�m�c + yð Þ

where m is the mean value of f, y is the mean value of c,
and c (k1, k2, k3) is a normalization constant:

c k1; k2; k3ð Þ�1 = 2pð Þ2

3 I0 k1ð ÞI0 k2ð ÞI0 k3ð Þ+ 2 +
‘

p = 1

Ip k1ð ÞIp k2ð ÞIp k3ð Þ
( )

in which Ip (k) is the modified Bessel function of the first
kind and order P (Abramowitz and Stegun 1972).

An alternative bivariate circular distribution is the sine
model (Singh et al. 2002). Mardia et al. (2007) argued
that the cosine model outperforms the sine model due to
its ability to fit more closely a larger set of distributions.

Given a set of torsion angle pairs A ¼ {(f, c)}, we
utilize a set of M cosine models to parameterize these
data. The cosine models are combined into a mixture
model, which can be formulated as:

F f;cð Þ= +
M

j = 1

wj f j f;cð Þ

where fj, 1 # j # M denotes a cosine model with
parameters uj ¼ (kj

1,kj
2,kj

3,mj,yj), wj is the weight of model
j with Sj wj ¼ 1. We employ an expectation-maximization
(EM) algorithm to derive the most likely estimation of the
parameters of the mixture model (Mardia et al. 2007).

The number of cosine models to fit these data is
unknown in advance. It is vital to choose a suitable M.
Here we use Rissanen’s minimum description length

(MDL) principle (Li and Vitanyi 1997) to determine the
best value for M, i.e., we choose M to minimize the
following equation:

MDL Að Þ = � 2 ln L A;Mð Þ+ 5 ln Aj jð Þ

where L is the likelihood that M mixture models explain
A, and 5 is the number of parameters in each model.

Fragment-HMM: A position specific
hidden Markov model

We use an HMM to capture the local dependencies among
the adjacent residues. Unlike FB5-HMM, our HMM is
position specific, i.e., each residue is associated with a
specific subset of hidden nodes and the subset of hidden
nodes for all the residues are mutually disjoint.

Model topology

An HMM is a directed graph, where the vertices denote
the hidden nodes, and directed edges are used to capture
transition and emission probabilities. For each residue i,
we obtain a set of possible hidden nodes, denoted as Hi.
Given two adjacent hidden node sets Hi and Hi+1, a
directed edge <h, h9> is created for each pair of hidden
nodes h 2 Hi and h9 2 Hi+1. Each possible hidden node
(denoted as h) has two types of emissions: a secondary
structure type (denoted as S) and a torsion angle pair T ¼
(f, c).

For the ith amino acid, our position-specific HMM
describes the following joint probability:

Pr : S; Tð Þ= +
h2Hi

Pr : T S; hjð Þ Pr : S hjð Þ Pr : hð Þ

where S is the secondary structure type for the ith amino
acid and T ¼ (f, c) is its torsion angle pair.

Figure 1 shows an example of Fragment-HMM for five
residues. Each residue is associated with a hidden node
subset. As illustrated by Figure 1, the hidden node subset
H1 for residue one has two hidden nodes while H2 for
residue two has three possible hidden nodes. Each hidden
node is associated with its own cosine model.

Creating hidden nodes

Our HMM is both position and sequence specific. We
do not assume we have enough training data available
for the target sequences to be predicted. Therefore, the
classical Baum–Welch (Baum et al. 1970) method cannot
be applied to estimate the parameters. Here, we build
the hidden nodes and estimate parameters with a position-
specific fragment library, hence the name Fragment-
HMM.

Li et al.
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The construction process has three steps. First, we
parse the target sequence into segments with a sliding
window of length l and step size one. In total, there are
n � l + 1 segments. We index these sequence segments
by 1, 2, . . ., l. For sequence segment i, we can predict
a subset of structural fragments via ROSETTA or FRazor
(Li et al. 2008). Since the fragments via FRazor are
shown to be better than ROSETTA’s fragments (Li et al.
2008), in all experiments in this work, we use only
ROSETTA’s fragments so that the comparisons are fair.
A structural fragment for segment i consists of a predicted
torsion angle pair and secondary structure type for each
residue from i to n � l + 1. The set of structural fragments
is denoted as F. Second, we retrieve all predicted torsion
angle pairs for residue i from fragments in F, and use the
EM method to generate a set of cosine models. Lastly, for
each cosine model, we create a hidden node.

Denote the cosine model specified by hidden node h as
mh. The density of mh with parameters (f, c) is written as
fh (f, c).

Estimating transition probabilities

We describe the parameter estimation method without
considering the secondary structures here for clarity. The
secondary structure information is easily integrated into
our framework.

The transition probabilities are estimated with frag-
ment library F. Given a fragment q 2 F and a hidden node
h 2 Hi, we first define the probability that h emits the
torsion angle pair predicted by q for residue i as follows:

1. If q contains a predicted torsion angle pair (f, c) for
residue i, we use the value of probability density
function fh with parameters (f, c);

2. otherwise, we define the probability to be 0.

We denote the above probability as gh (q).
The joint probability Pr.(h9 2 Hi+1,h 2 Hi j q) for edge

<h,h9> given fragment q is specified as follows: If a
structural fragment q does not contain predicted torsion

angles for both residue i and residue i + 1, we let Pr.(h9 2
Hi+1, h 2 Hi j q) ¼ 0; otherwise, we define Pr.(h9 2 Hi+1,
h 2 Hi j q) as

Pr : h9 2 Hi + 1; h 2 Hi qjð Þ= gh qð Þgh9 qð Þ
+h92Hi + 1;h2Hi

gh qð Þgh9 qð Þ

The above probability is normalized to ensure

+
h92Hi + 1;h2Hi

Pr : h9 2 Hi + 1; h 2 Hi qjð Þ= 1

Then, the joint probability Pr.(h9 2 Hi+1, h 2 Hi) can be
calculated by

Pr: h92Hi + 1; h2Hið Þ= +
q2F

Pr : h92 Hi + 1; h 2 Hi qjð Þ Pr : qð Þ

where Pr.(q) can be estimated as the inverse of the number
of the fragments in F which contain predicted torsion
angle pairs for both residue i and residue i + 1.

Now, we are ready to compute the transition probability
Pr.(h9 2 Hi+1, j h 2 Hi) by

Pr : h9 2 Hi + 1; h 2 Hijð Þ
+h92Hi + 1

Pr : h9 2 Hi + 1 h 2 Hijð Þ

The distribution of hidden nodes h 2 Hi, 1# i # n�1 is
expressed by

Pr : h 2 Hið Þ= +
h92Hi + 1

Pr : h9 2 Hi + 1; h 2 Hið Þ

We have specified a Fragment-HMM of order one for
simplicity. A Fragment-HMM with higher order can be
defined accordingly. We used order-7 and order-2 Fragment-
HMM’s in FALCON.

Sampling protein structure conformation

Given the position specific Fragment-HMM, to sample
a backbone conformation is straightforward.

Sampling hidden nodes

To sample a sequence of hidden nodes, we start by
picking up a hidden node from set H1: A node h is picked
according to the probability Pr.(h), h 2 H1. Given a
hidden node h for residue i, we sample a hidden node h9

for residue i + 1, according to the transition probability
Pr.(h9 2 Hi+1, j h 2 Hi).

Sampling torsion angle pairs

Then we sample a sequence of torsion angle pairs, one
pair per residue according to the cosine model specified by

Figure 1. Fragment-HMM: A position-specific hidden Markov model.

Fragment-HMM: A new approach to protein structure

www.proteinscience.org 1929

JOBNAME: PROSCI 17#11 2008 PAGE: 5 OUTPUT: Tuesday October 7 15:40:21 2008

csh/PROSCI/170215/ps036442



the respective hidden node. A backbone is constructed
according to these torsion angles with ideal bond lengths
and bond angles. Coupling the angle sampling process, we
also sample a sequence of secondary structure types, which
is useful for the energy function to evaluate the sampled
structure.

Conformation optimization

Similar to the fragment library, for the purpose of fairly
testing our theory, we use the energy function of
ROSETTA 2.1.0 (released in September 2006).

Initially, we sample a whole sequence of angle pairs
and construct a new three-dimensional (3D) backbone
structure from these angles. Then we resample a subse-
quence of torsion angle pairs for a given backbone
structure and rebuild a new 3D backbone structure. If
the new structure has an energy value better than or equal
to that of the previous structure, the new structure is
accepted. Otherwise it is accepted with a certain proba-
bility by the Metropolis criteria. The process is repeated
until the energy is converged or the maximum number of
iterations is reached.

Iteratively improving the Fragment-HMM

An energy function directs the generation of a set of
decoys. Based on these decoys, some infeasible cosine
models may be pruned, and some new cosine models are
to be formed. Then these new cosine models can be
integrated to build a more accurate Fragment-HMM with
refined transition and emission probabilities. In turn,
accurate cosine models and HMM will result in better
structures.

Therefore, we take a set of generated decoys as a
position-specific fragment library and use them as input
to regenerate cosine models and a new Fragment-HMM.
This way, we generate a set of better decoys. Iterating,
more and more accurate cosine models would be
obtained, if the energy function biases toward the
native-like structures.

Results

FALCON is implemented with C++ on Linux

Data set

We used the six proteins that were used in previous
studies (Simons et al. 1997; Kolodny et al. 2002;
Hamelryck et al. 2006). They are displayed in Table 1:
Protein A (code 1FC2), Homeodomain (code 1ENH),
protein G (code 2GB1), Cro repressor (code 2CRO),
protein L7/L12 (code 1CTF), and calbidin (code 4ICB).

The position-specific fragment library for each protein
was obtained from the recently released ROSETTA
version 2.1.0. Its structural fragments were selected from
a set of 1020 protein chains, which are included in
ROSETTA’s fragment generation module. We used
ROSETTA’s energy function and its default settings.

We predict 200 structural fragments for each 9-mer
sequence segment of the target protein. The homology
proteins of the target sequence are identified by running
NCBI-BLAST first (Altschul et al. 1997), and then are
removed before we predict the structural fragments.
Therefore, we can avoid the possible overlaps between
the training and testing sets and make the experiments
convincing.

Torsion angle distributions

We derived the most likely torsion angle distributions
for each residue of the six proteins. A typical and
concrete example for residue 13 of protein 2CRO is
plotted in Figure 2A. Figure 2A contains two cosine
models, which are centered at (�1.55,�0.28) and
(�1.58,2.57). This indicates that the residue has two
possible local bias preferences: One corresponds to an
a-secondary structure type and the other corresponds to a
b-secondary structure type. This is one of the major
differences between our Fragment-HMM and FB5-HMM:
In FB5-HMM (and CRFSampler) the number of distribu-
tions and the corresponding parameters are uniform for
all the residues.

Table 1 lists the average number of cosine models per
residue for the six proteins generated from the fragment
library. These proteins average 1.66 cosine models per
residue. Most residues have no more than two cosine
models. This observation confirms the fact that for a
protein relatively few conformations are compatible with
the local biases of all residues. Interestingly, the number
of possible conformation clusters, C, is estimated to be
C ¼ 1.6n (Sims and Kim 2006), which is consistent with

Table 1. The number of cosine models per residue

Target protein Residue

PDB code L a,b 1 2 3 4 Ave.

1FC2 43 2,0 12 25 3 2 1.66

1ENH 54 2,0 24 24 6 0 1.21

2GB1 56 1,4 28 21 7 0 1.63

2CRO 65 5,0 52 12 1 0 1.22

1CTF 68 3,3 50 14 3 1 1.34

4ICB 76 4,0 47 23 3 3 1.50

L ¼ length. a,b column is the number of a-helices and b-strands of the
target protein. Columns numbered 1–4 are numbers of residues with 1, 2,
3, and 4 cosine models, respectively. Ave. ¼ average number of cosine
models per residue.

Li et al.
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the estimations given by Tendulkar et al. (2005) and Dill
(1985), coinciding with our study here. There are several
different estimations: According to the Levinthal paradox
(Levinthal 1968), the conformational space has a size at
least C ¼ 3n (Zwanzig et al. 1992); the number of pos-
sible conformation clusters can be estimated to be C ¼
4n via decomposing the Ramachandran map into four
basins (Ramachandran and Sasisekharan 1968; Shortle
2002), and Hamelryck et al. (2006) assigned 75 possible
states for every amino acid by decomposing the (u, t)
plane, which implies a conformation space of size C ¼
75n. Compared with these estimations, our estimation is
drastically smaller. This observation suggests that (1)
local structural biases can be accurately described and
captured and (2) the conformation space to be searched is

greatly reduced, and thus it may be possible to sample a
native-like structure from a space where the conforma-
tions are compatible with the derived local biases.

Local bias representation: Fragment-HMM versus
structural fragments

Local structural biases can be described by structural frag-
ments, or Fragment-HMM with cosine models. We now
investigate which approach is better in representing local
bias for generating decoys. To answer this question, we
compare FALCON, without step 4, and ROSETTA (version
2.1.0) in terms of the percentage of good decoys (<6 Å to the
native structure) and RMSD values of the best decoys. To do
a fair evaluation, we used ROSETTA’s energy function for

Figure 2. Torsion angle pair distributions and generated protein structure. Panels A–D display the evolution of torsion angle pair

distributions for residue 41 of protein 2CRO. The x-axis is f angle and the y-axis is c angle. (A) Iteration 1: Two cosine models centered at

(1.55, 0.28) and (1.58, 2.57). (B) Iteration 2: Three cosine models centered at (1.25, 0.52), (1.75, 1.26), and (1.82, 0.07). (C) Iteration 3: Two

cosine models centered at (1.22, 0.44) and (1.82, 0.09). (D) Iterations 4 and 5: One cosine model centered at (1.86, 0.13), and then to (1.86,

0.13) in iteration 6. (E,F) The native structure and the best decoy predicted by FALCON, respectively. The RMSD is 0.557 Å.
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both programs. The input fragment libraries are generated by
ROSETTA and are identical for both programs.

In this experiment, 1000 decoys are generated for each
protein, by each of ROSETTA and FALCON. Six angstroms
are used as the cutoff value for good decoys. The same
criteria are used by Hamelryck et al. (2006). Since the
decoys for ROSETTA and FALCON are generated inde-
pendently, the percentage of good decoys is not expected to
fluctuate too much when more decoys are generated.

Observing Table 2, FALCON generates significantly
more good decoys than ROSETTA. FALCON improves
the percentage of good decoys for 1FC2, 2GB1, 2CRO,
1CTF, and 4ICB, five out of six proteins. Especially for
2GB1, 1CTF, and 4ICB, the improvements are from
53.7%, 14.3%, and 19.9% to 93.4%, 25.6%, and 46.3%,
respectively. The quality of the best decoys for these five
proteins, 1FC2, 2GB1, 2CRO, 1CTF, and 4ICB, are
improved too. We display in Figure 2E a structure with
a RMSD of only 0.557 Å to the native structure for 1CTF.

While one of the roots of our Fragment-HMM was
FB5-HMM (Hamelryck et al. 2006), Fragment-HMM has
shed its skin to evolve into a significantly stronger model.
FB5-HMM describes local biases by using 75 basins in
the (u, t) plane, while FALCON uses only 1.66 basins on
average. Under admittedly different conditions, for the
same six proteins in Table 2 and in that order, FB5-HMM
(Hamelryck et al. 2006) reports the best decoy accuracies
to be 2.6 Å, 3.8 Å, 5.9 Å, 4.1 Å, 4.1 Å, and 4.5 Å,
respectively, and good decoy percentages (<6 Å), 17.1%,
12.1%, 0.001%, 1.09%, 0.35%, and 0.38%, respectively,
from 100,000 decoys.

FALCON: Zero in on the native structure

We use the cosine model to describe the local bias and use
energy function to capture global interactions. Energy function
directs the search to discover native-like structures. Hence,
energy function may help to reshape the local biases. This
conjecture has led to step 4 of FALCON: Feed back the

decoys as new positive-specific fragments and iterate. The
results are pleasing and illustrative.

Six iterations are executed for each protein, and 1000
decoys are generated at each iteration per protein. The
first iteration takes as input the position specific fragment
libraries from ROSETTA. The (i + 1)th iteration takes the
set of decoys generated by the ith iteration as input.

Table 3 displays the RMSD values of the decoys over
the iterations for protein 2CRO. We observe that the
RMSDs are converging. After five iterations, the RMSD
values of 94.9% of the decoys converge to the range of 3
to 4 Å. Both the best and the worst decoys disappear over
the iterations. However, the best decoys diminish far
more slowly than the worst decoys. The decoy RMSD
distributions for other proteins exhibit similar trends.

Figure 2 shows the evolution of torsion angle pair
distributions for residue 41 of protein 2CRO. Initially, the
torsion angle pairs acquired from structural fragments
display two clusters: One lies at the b-strand area, and the
other lies at the a-helix area, both initially wrong.
Interestingly, the subsequent iterations tend to correct
the torsion angle distributions step-by-step.

At the second iteration, the initial two clusters are
diminishing, and a new cluster centered at (�1.82,�0.07)
emerges. At the third iteration, the b-strand distribution
disappears completely, and the new cluster becomes
dominant. Next the a-helix distribution disappears
at the fourth iteration. In the fifth and sixth iterations,
the new cluster becomes denser and denser. Finally, we
obtain a distribution centered at (�1.86,�0.13) after
six iterations. Notice that there is a small gap between
the center of this distribution and the native torsion
angle pair (�1.44,�0.63). This gap is inevitable since
we adopted the standard bond lengths and bond angles
in our structure-generating model (Holmesand and Tsai
2004).

Percentage of good decoys

Table 4 displays the percentages of good decoys, which
increase steadily with iterations. All six proteins reach
100% of good decoys after four iterations. In particular,
the percentage of good decoys for 1CTF and 4ICB is
boosted up to 100% from 25.6% and 46.3%, respectively.

Quality of the final reported decoys

The Fragment-HMM is not only used to sample decoys
but it is also used to rank a given decoy. We rank each decoy
from the fifth iteration according to the probability that the
Fragment-HMM generates the decoy and outputs the decoy
with the highest probability as FALCON’s prediction. Table
5 displays the comparison of FALCON with ROSETTA.
ROSETTA’s results are obtained by the ROSETTA’s clus-
tering program with the default configuration.

Table 2. Decoy quality of ROSETTA and FALCON

Target protein

ROSETTA FALCON

<6.0 Å (%) <6.0 Å (%)
Best Best

1FC2 2.82 80.2 2.64 94.3

1ENH 1.52 94.4 1.81 92.8

2GB1 2.21 53.7 2.18 93.4

2CRO 2.56 70.4 2.48 75.8

1CTF 1.44 14.3 0.56 25.6

4ICB 3.87 19.9 2.93 46.3

Columns 2–3: RMSD of the best decoy (Å) and percentage of the good
decoys (RMSD < 6Å) for ROSETTA. Columns 4–5: corresponding values
for FALCON.
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As illustrated in Table 5, for five of the six benchmark
proteins, 1FC2, 1ENH, 2CRO, 1CTF, and 4ICB, FALCON’s
final predictions are better than that of ROSETTA, under
the RMSD metric. For protein 2GB1, ROSETTA reports a
better prediction than FALCON.

We have done further experiments on eight larger
proteins with over 100 residues. These proteins are
selected from CASP7 free modeling targets (The 7th
Critical Assessment of Techniques for Protein Structure
Prediction). As shown in Table 6, for five of the eight
proteins, i.e., T0283, T0350, T0354, T0361, and T0373,
FALCON shows better performance than ROSETTA
under the RMSD metric. For example, for target protein
T0361 with 169 residues, ROSETTA reports a decoy with
a RMSD of 20.009 Å while FALCON reports a decoy
with a RMSD of 12.225 Å.

Conclusion

Based on the belief that the simplest theories and models
are the better ones, we set out to look for a simple, clean,
and unified theoretical model with which we can compute
the protein structures.

We have proposed such a theory, based on several
previous ideas including the fragment assembly method
and hidden Markov model sampling. Our new Fragment-
HMM overcomes the difficulties of stiff structural frag-
ments in the sequence assembly approach and the high

dimensionality problem in the simple HMM approach.
We have implemented our theory and produced clear-
cut results. With the iteration technique that is enabled by
our Fragment-HMM, we have unified the procedures of
fragment assembly, clustering, and final decoy selection.

Ideally, the quality of decoys should converge to its
native structure over iterations. However, we notice that,
for example, the RMSD values of the decoys for 2CRO
converge to 3 Å–4 Å. We believe that the main reason is
due to the lack of an accurate energy function at the
backbone level to direct the search process and an all-
atom energy function for a refinement process. Another
reason might be that we have used the idealized bond
angle and bond length. This problem can be modeled into
our model as well, allowing the sampling program
to sample different bond angles and bond lengths as well.

The new model also conveniently embodies other
approaches such as homology modeling, threading, loop
modeling, refinement, and consensus. We will also
integrate our own FRazor fragment library (Li et al.
2008) to improve accuracy. These projects are under way.
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Table 3. RMSD distribution over iterations for protein 2CRO

RMSD (Å)
Iterations

1 2 3 4 5 6

[0,3) 0.1 0 0.1 0.1 0 0

[3,4) 22.8 47.2 75.3 87.9 94.7 94.9

[4,5) 41.5 45.4 24.5 12.0 5.3 5.1

[5,6) 11.4 4.7 0.1 0 0 0

[6,7) 8.5 0.8 0 0 0 0

[7,N) 15.7 1.5 0 0 0 0

Columns numbered 1–6: Percentages of decoys with RMSD values in the
corresponding intervals.

Table 4. Percentage of good decoys with RMSD below 6 Å after
each iteration

Iterations

Target protein 1 2 3 4 5 6

1FC2 94.3 98.5 100 100 100 100

1ENH 92.8 95.0 96.9 100 100 100

2GB1 93.4 96.4 100 100 100 100

2CRO 75.8 97.3 100 100 100 100

1CTF 25.6 68.8 97.0 100 100 100

4ICB 46.3 90.5 99.3 100 100 100

Table 5. Quality of the final reported decoys of ROSETTA
and FALCON

Target protein ROSETTA FALCON

1FC2 3.660 3.652

1ENH 2.717 2.464

2GB1 2.755 3.323

2CRO 3.997 3.477

1CTF 8.327 3.035

4ICB 4.866 4.770

Columns 2–3: RMSD (Å) of the final chosen decoys of ROSETTA and
FALCON.

Table 6. Quality of the final reported decoys of ROSETTA and
FALCON on eight larger CASP-7 free-modeling targets

Target protein PDB entry Length ROSETTAa FALCONa

T0283 2HH6 112 11.544 11.083

T0300 2H3R 102 7.577 9.282

T0307 2H5N 133 14.822 16.343

T0327 2HGC 102 9.394 11.149

T0350 2HC5 117 10.635 7.406

T0354 2ID1 130 11.254 8.085

T0361 2HKT 169 20.009 12.225

T0373 2HR3 147 19.097 14.224

a RMSD (Å) of the final chose decoys of ROSETTA and FALCON.
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