Representing Hospital Events as Complex Conditionals

Gilad J. Kuperman, M.D., Ph.D., Jonathan M. Teich, M.D., Ph.D., David W. Bates, M.D., M.Sc.
John McLatchey, B.A., Thomas G. Hoff, B.A.
Center for Applied Medical Information Systems Research, Brigham and Women’s Hospital, Boston,
Massachusetts.

ABSTRACT

We have developed an approach to medical
knowledge representation whereby simple medical
concepts are combined to yield complex statements
of testable medical logic. The logic is created from
a small number of generic medical concepts that are
instantiated and combined to create the rules. Rule
writing is done through a rule editor and requires
knowledge of the system’s data dictionaries, though
no programming is required. We have used the
approach to create a large knowledge base
including panic lab alerting rules, drug-laboratory
interaction alerting rules, an adverse drug event
monitor, and a drug-age interaction detection
program. The rules have been used as part of an
alerting system and for data collection to determine
the frequency of events of interest. The scheme is
extensible and yields a readable form of the created
knowledge. The scheme holds great promise as a
durable form of medical knowledge representation.

INTRODUCTION

Although computerized clinical information systems
(CISs) are becoming ubiquitous throughout the
nation’s medical institutions, the presence of
decision support features[1] within these systems
remains uncommon. Many of the issues that arise
when implementing decision support stem from the
characteristics of the CIS itself (e.g., available
processing power, user interface, coded data, e-mail,
interface to paging systems, automated coverage
lists, etc.). An additional important issue is the
manner in which the medical knowledge is
represented  within  the electronic  knowledge
base.[2] Medical knowledge is most often
represented procedurally using the CIS’s native
programming language. Procedural medical
knowledge can be robust (since it is described by a
general programming language) and requires no
additional system software tools. However, using
the CIS’s native programming language does nothing
to case the "knowledge acquisition bottleneck"[3]
because knowledge base creation and maintainence
requires knowledge of the CIS’s programming
environment. To ease the knowledge maintenance
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task, some researchers have developed programming
languages specifically intended to represent medical
knowledge.[4].[5].[6] These languages are
designed to be easily readable and to optimally
manipulate medical concepts however knowledge
creation and editing requires knowledge of the
language’s syntax. Also, special compilers are
required to convert the rules from the special
language into the native language of the CIS. At
our institution, we have had success with a
declarative, "slot-filling", approach to representing
medical knowledge, specifically in a drug-drug
interaction detection application.[7] Others have
also used declarative representations of knowledge
for decision support and other projects.[8],[9]
The goal of the current project was to represent a
more general class of hospital events declaratively
and to evaluate this representation for alerting and
data collection purposes.

METHODS

General considerations: We had observed that
Tate[10] and Rind[11] had developed rule-
based alerting systems that had been demonstrated
to have a positive impact on patient care. We
therefore felt that, at a minimum, our structure
should be able to emulate their rules. We observed
that each of their rules could be described by
boolean combinations of simpler medical conditions.
Tate’s rules are shown in Table 1. For example,
Tate defines hypokalemia to be present when:

[K+<27]
v ([K+ <33] A [patient is on digoxin])
v ([K+<3.2] A [K+ has fallen more than 1 over
24 hours)).
(v represents logical "or’ and A represents logical
"and’.)
Rind defines worsening renal function as:
[creatinine rises 0.5 while the patient is on a
nephrotoxic medication]
v ([creatinine rises 50% while the patient is on a
renally excreted medication] A [creatinine
>2.0D.

We further noted that many of the simpler medical



Table 1. Tate’s life-threatening laboratory alert rules.
]

Hyponatremia Na < 120
Falling sodium Na fell 15 in 24 hours and Na < 130
Hypokalemia K+<27

or K+ < 3.3 and patient on digoxin
Falling potassium K+ < 3.2 and K+ fell 1 over 24 hours
Metabolic acidosis

C02<15 and BUN>50

or CO2<18 and BUN<50

or CO2<18

or CO2<25 and fallen 10 in 24 hours
Hct fallen 10 since last result and

Falling Hematocrit
Het<35

or Hct fallen 5 since last result and Hct

fallen .4/hr since last result

or Hct fallen 5 since last result and Het

<16

conditions were simply different instantiations of the
same medical concept. For example, *Creatinine >
2.0’ and 'K+ < 2.7’ could both be represented by
the same 3-slot generic concept: 1) a laboratory
test, 2) greater than or less than, and 3) a numerical
value. Similarly, *Na fell 15 over 24 hours’ and 'K+
fell 1 over 24 hours’ could both be represented by a
4-slot concept: 1) a laboratory test name, 2) a
directional change (rise’ or °fall’), 3) a numeric
value, and 4) a time interval. We termed such
multi-slot generic concepts "primitives".

We hypothesized 1) that many events of
medical interest could be represented by boolean
combinations of simple medical conditions, and 2)
that many simple conditions could be represented by
different instances of the same generic concept
(primitive). We chose to represent medical events
as boolean combination of conditions of the form:

(g, Ao, All)
V (e Ao A Lul)
V (e, Aay, Aol )

Each of the a;s is called a "condition” and is an
instantiation of a primitive.  Each complete
expression therefore is a "list of lists of conditions".

We chose to represent events as a list of lists of
conditions rather than as a general (i.e., unrestricted)
boolean combination of conditions because it was
easier to build an editor for the more restricted form
and we felt even the restricted form could express a
large class of medical events.
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Setting: The work was carried out at Brigham and
Women’s Hospital (BWH), a 726-bed tertiary care
hospital in Boston, MA. Computing services at the
hospital are provided by the Brigham Integrated
Computing System (BICS), an internally developed
personal computer (PC) local-area-network (LAN)
based hospital information system providing
administrative, financial, and clinical computing
services. Applications software is written in Mumps
and data (or, in this case, knowledge) are stored in
a distributed Mumps database. We used the above
stated knowledge representation scheme in a general
purpose alerting and data collection program we are
developing.

RESULTS

Primitives developed to date: As of this writing
(April 1995), we have defined 15 primitive medical
conditions (Table 2) that are available for rule
writing. For each primitive, the parameters that need
to be instantiated to create a condition are shown in
capital letters. For example, in primitive #1,
MEDICATION is a field (slot) to be filled in to
instantiate the primitive and make it a condition.
The value of MEDICATION would be selected from
the order entry medication data dictionary used in
the computerized order entry application.[12] In
primitive #3, the fields LAB, RISEN/FALLEN,

Table 2.
writing,
|
1. patient on MEDICATION
2. Any of last L LAB results within last M days are
OP VALUE
3. LAB has RISEN/FALLEN VALUE over K hours
4. LAB has RISEN/FALLEN VALUE since previous
result over last M days
5. LAB has RISEN/FALLEN VALUE per hour since
previous result
6. LAB has RISEN/FALLEN K percent of previous
value
7. Prior LAB Result within last M days is OP
VALUE
8. FIELD is OP VALUE
9. patient on MEDICATION over last M days
10. MEDICATION previously ordered over last M
days
11. TRUE
12. patient has GFR<15
13. patient had LAB ordered over last M days
14. patient had a TPN order over the last M days
15. LAB has RISEN/FALLEN by VALUE/PERCENT
while on MED in last M days.
L |

List of primitives available for rule



Figure 1. Rule editor screen showing hypokalemia logic being edited. The top part of the screen shows the

rule’s boolean logic. The bottom part of the screen shows a condition being edited.

VALUE and K would be filled in to instantiate the
primitive. LAB would be selected from the
dictionary of laboratory tests, RISEN/FALLEN is a
binary variable, and VALUE and K are numeric.

Rule editor: We have developed a rule editor in
Mumps that has permitted us to write a large
number of, and many kinds of| rules by instantiating
and combining these primitives. An example of a
rule being written, and a primitive being instantiated
is shown in Figure 1. The figure shows the logic for
a hypokalemia panic lab alerting rule being edited.
There are 3 lists of conditions in the rule; the first
two lists have two conditions each and the third list
has only a single condition. The fields (slots) for
the second condition in the second list (K has
FALLEN 1 over 24 hours) are being edited.

Categories of rules created: Examples of the
different kinds of rules we have created include:

1) Panic lab rules. Seven of Tate’s life threatening
laboratory alerting rules have been implemented and
are being used as part of an automated alerting
system. In a recent 4 month period, physicians
responded to 342 alerts delivered through an
automated link to the paging system. As part of an
evaluation of the alerting system, physicians said
they would take action as a result of being paged
about a panic lab condition in 253 (74%) of the
alerts. The logic that defines a falling hematocrit
alert for the medical service is shown in Figure 2.
Different logic is used for the surgical service (see
Discussion).
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If HEMATOCRIT has FALLEN 10 since previouy
result
& Any of last | HEMATOCRIT results within last 1
days are < 35

Or HEMATOCRIT has FALLEN 6 since previoug
result

& HEMATOCRIT has FALLEN .4 per hour since
previous result

& Any of last 1 HEMATOCRIT results within last 1
days are < 30

Or  HEMATOCRIT has FALLEN 5 since previoui
result

& Any of last 1 HEMATOCRIT results within last 1
days are < 15

Figure 2. Falling hematocrit panic lab alerting rule.

2) Drug-laboratory interaction rules. Thirty drug-lab
interaction rules have been written. Nine are
operative as part of the alerting system and the
remainder are running in the background to
determine the frequency of such events. In a recent
4 month period, 111 drug-lab alerts were conveyed
to physicians via the automated alerting system.
Physicians said they would "take action" in 58
(52%). In 25 (23%) they said they were already
aware of the condition.

The rule that detects a falling platelet count
while the patient is receiving quinidine is shown in
Figure 3. Representing the concept "quinidine"
requires two medication data dictionary elements:
quinidine sulfate and quinidine gluconate.



Med Orders excluded)

& PLATELETS has FALLEN 25 percent of previor
value

& Any of last 1 PLATELETS results within last 3 day:
are <75

Or patient is on QUINIDINE SULFATE (PRN M
Orders excluded)

& PLATELETS has FALLEN 25 percent of previo
value

& Any of last 1 PLATELETS results within last 3 day
are <75

Figure 3. Falling platelets/patient on quinidine

drug-lab interaction rule.

3) Renal failure-drug interaction rules (Figure 4).
Strictly, these are also drug-lab interaction rules
however they make use of a primitive that infers the
presence of renal failure from the patient’s sex and
age. Thirty renal failure rules have been written and
currently are part of the automated alerting scheme.
In a recent 4 month period, the GFR rules generated
alerts 13 times. In 9 (69%) of those instances the
physicians said they would "take action" as a result
of the message.

If patient does have a GFR<15
& patient is on PROPOXYPHENE NAP.
ACETAMINOPHEN

Or patient does have a GFR<15

& patient is on PROPOXYPHENE NAPSYLATE
Figure 4. Rule to detect patient receiving darvon in
presence of renal failure. GFR=glomerular filtration
rate.

4) Adverse drug event (ADE) rules (Figure 5). As
part of a computerized adverse drug event monitor,
fifty automated adverse drug event screening rules
have been written. Twenty to forty potential ADEs
are written to a file daily for later review by
pharmacy personnel and researchers determining the
frequency of ADEs at our hospital.

Med Orders excluded)

& previous order for DIPHENHYDRAMINE HCL
does Not exist over 7 days

& patient did Not have a Transfusion Order over the
last 1 days

If patient is on DIPHENHYDRAMINE HCL (PRN|

& patient is Not on TAXOL (PACLITAXEL)

Figure 5. Rule to identify new diphenhydramine
order as possible indicator of allergic reaction for
automated adverse drug event monitor.

5) Drug-age rules (Figure 6). As part of a study to
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determine the frequency with which geriatric patients
may be receiving inappropriate drugs, twelve drug-
age rules were written with the results being written
to a file for review.

If Age in Years is > 65
& patient is on CHLORPROMAZINE HCL

Or Age in Years is > 65
& patient is on HALOPERIDOL

Or Age in Years is > 65
& patient is on THIORIDAZINE HCL

Or Age in Years is > 65
& patient is on DROPERIDOL

Figure 6. Age > 65 and patient receiving
antipsychotic medication (drug-age) rule.

DISCUSSION

We have developed a scheme which represents
complex medical events as a boolean combination of
simpler events. Further, the simpler events are
instantiations of a small number of generic concepts
(primitives). Using only a small number of (i.c., 15)
instantiable primitive objects, we have represented
several different categories of medical events (e.g.
panic lab events, drug-lab interactions, etc.) and
have started to use these events in a clinical alerting
system. The alerting system seems to be moderately
well received and and we are studying it further.

We have found this knowledge representation
scheme to be quite satisfactory. One attractive
feature is the scheme’s extensibility. For example,
we are currently developing rules that involve a
patient’s insurance status and admitting diagnosis.
All that is required are new primitives "Patient’s
insurance is INSURANCE" and "Patient’s admitting
diagnosis is DX" and an extension to the inference
engine to evaluate such primitives.

Another attractive feature of our scheme is the
ease of maintenance of existing rules. For example,
our alerting system originally only applied to the
medical service. When we added the surgical
service, we changed the limits of the falling
hematocrit rule from 35 and 30 (Figure 2) to 28 and
we excluded alerts for patients on cardiac surgery
altogether. This change took less than a minute and
required no programming.

We have chosen the complex conditional
approach to knowledge representation over the
Arden Syntax, a different approach, for two main
reasons. First, the Arden Syntax requires the textual
modules to be compiled into native executable code.



The development of such a compiler can consume
considerable resources. In contrast, however, the
rule editor is a resource not required by the Arden
approach. Second, because the approach described
herein is declarative, it allows for concepts (e.g., lab
value above/below a value) to be reused by simple
instantiation. Knowledge base maintenance becomes
a relatively simple task of slot filling and database
management.  Although the Arden Syntax (a
procedural approach) allows for meaningful
expression of rules and easy readability, two similar
rules must still be written as completely separate
modules.

One intent of the Arden syntax is to promote the
sharing of automated knowledge by providing
textual modules that can be shared after minimal
manipulation.[13] We wholeheartedly agree that
creating sharable knowledge is an important goal in
decision support applications development. The
textual representation of our rules (Figures 2-6) are
not as completely specified as a corresponding
Arden module would be but they could well be a
suitable starting point for another institution wishing
to share our knowledge base. It would be an
intriguing experiment to see to what extent our
complex conditional rules could be represented using
the Arden Syntax, and vice-versa.

Using our rule editor to create rules requires
intimate knowledge of the BICS vocabularies (e.g.,
names of lab tests, medications, etc.) however no
programming knowledge is required. Many of the
rules listed in this paper were entered by a research
assistant with no formal programming experience.

There are some limitations of our restricted
boolean form. Most notably is the absence of a
distributive property. For example, the concept

(aA(BVy))

must be represented as

(aAB)V (aAy)

(For examples of this issue, see Figures 3, 4 and 6.)

Also, while we have accounted for a few of the
most common temporal situations, we have not
accounted for any kind of general temporal
syntax.[14]

CONCLUSION
We have described a declarative approach to

medical knowledge representation that combines
simple conditional statements into complex ones.
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We have used the representation to describe a
variety of rules for alerting and data collection
purposes at our institution. The scheme is extensible
and provides a form of the knowledge that, while
not directly compilable, is very readable and could
be a reasonable starting point for other groups
wishing to share knowledge. The scheme appears to
be a good approach to knowledge representation at
our institution.
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