A Comparison of the Temporal Expressiveness
of Three Database Query Methods
Amar K. Das and Mark A. Musen
Section on Medical Informatics, Stanford University School of Medicine

Stanford, California 94305-5479
das @camis.stanford.edu

Time is a multifaceted phenomenon that developers of
clinical decision-support systems can model at various
levels of complexity. An unresolved issue for the
design of clinical databases is whether the underlying
data model should support interval semantics. In this
paper, we examine whether interval-based operations are
required for querying protocol-based conditions. We
report on an analysis of a set of 256 eligibility criteria
that the T-HELPER system uses to screen patients for
enrollment in eight clinical-trial protocols for HIV
disease. We consider three data-manipulation methods
for temporal querying: the consensus query
representation Arden Syntax, the commercial standard
query language SQL, and the temporal query language
TimeLineSQL (TLSQL). We compare the ability of
these three query methods to express the eligibility
criteria. Seventy nine percent of the 256 criteria require
operations on time stamps. These temporal conditions
comprise four distinct patterns, two of which use
interval-based data. Our analysis indicates that the
Arden Syntax can query the two non-interval patterns,
which represent 54% of the temporal conditions.
Timepoint comparisons formulated in SQL can
instantiate the two non-interval patterns and one interval
pattern, which encompass 96% of the temporal
conditions. TLSQL, which supports an interval-based
model of time, can express all four types of temporal
patterns. Our results demonstrate that the T-HELPER
system requires simple temporal operations for most
protocol-based queries. Of the three approaches tested,
TLSQL is the only query method that is sufficiently
expressive for the temporal conditions in this system.

TEMPORAL DATA MODELS

Time is a fundamental property of the clinical
information that health-care providers record and use
during patient care. The answers to such questions as
“when did the problem start?,” “how long did it last?,”
or “how many times has it occurred?” place a patient’s
chief concern in a temporal context that is essential to
reasoning about diagnosis, treatment, and prognosis.
Modeling the temporal semantics of clinical data,
however, is not effortless, because time is a complex
phenomenon. Kahn [1] has noted that a multitude of
formalisms is available for the design of temporal data
models in clinical decision-support systems. System
developers, consequently, must choose those features of
time that are most appropriate for their applications.

0195-4210/95/$5.00 © 1995 AMIA, Inc.

331

Developers of clinical data-management systems, for
example, have represented time traditionally as discrete,
precise, and linear. These choices permit database
systems to map timepoints to an integer-based
representation, which is both efficient for storage and
simple for manipulation. For protocol-based decision-
support systems, two issues still remain unresolved for
the design of clinical databases: (1) whether the data
scheme should support instant stamps, interval stamps,
or both, and (2) which temporal operations are necessary
for a query method to verify protocol-based conditions.

Most databases, including those of the HELP system
[2] and of the Regenstrief Medical Information System
[3], continue to use the temporal model proposed in
1975 for the Time Oriented Database (TOD) [4]. TOD
stamps each patient parameter with the time of the
latter’s occurrence during a clinical event (such as a visit
or a laboratory test). This temporal scheme creates a
cubic view of data, along the dimensions of (1) time, (2)
patient identification, and (3) parameter type; temporal
operations on this representation permit selection of data
based on temporal ordering or during a window of time.
The HELP and the Regenstrief systems have shown that
query languages that can evaluate these types of patterns
are useful for a variety of simple protocol-based alerts.

An important limitation of the TOD model is the
latter’s inability to support interval semantics: The
model cannot represent explicitly interval-based data
(such as medication dosages and patient problems), and
cannot formulate queries about interval-based patterns
(such as context and duration). Recently proposed
temporal models, such as those of the TNET system [5]
and the Chronus system [6], overcome this problem by
providing interval semantics for both the storage and the
manipulation of clinical data. Although these two
systems have shown that their querying capabilities are
required for certain types of clinically relevant temporal
conditions, many current query methods do not support
interval semantics. The Arden Syntax [7], for example,
does not include operators on interval-based data in its
ASTM-standards representation of database alerts; Arden
developers argue that the number of such temporal
constructs would complicate the development of a
consensus query method [8]. Certain developers of
decision-support systems [9] have examined, for their
data-management needs, commercial standards for query
languages such as the Structured Query Language (SQL)
for relational databases. SQL does not support intervals

as a primitive data type, but does have general
comparison operators that can manipulate timepoints.

In this paper, we address the question of whether
interval-based query methods are necessary temporal
semantics for a protocol-based decision-support system.
We create a test suite of temporal conditions from a set
of eligibility criteria from clinical-trial protocols that are
encoded in the T-HELPER system [10]. We classify the
temporal conditions into basic temporal patterns, and we
use the test suite to compare the temporal
expressiveness of three query methods — the Arden
Syntax, SQL, and TimeLineSQL (the query language of
the Chronus system [6]). Our analysis indicates that
temporal conditions are common in this set of protocol-
based conditions; however, complex temporal patterns
that require a general interval-based query language occur
infrequently. We discuss the implication of these
results for the design of a general query method for
protocol-based decision support.

METHODS FOR TEMPORAL QUERYING

Arden Syntax

The Arden Syntax [7, 8] is the result of a multi-
institutional project to share the decision logic found in
various database-surveillance programs, such as the
HELP and the Regenstrief systems. The primary
purpose of the Arden Syntax is not to define a database
query language, but rather to create a specification
language that encapsulates situation—action rules as
medical logic modules (MLMs). The various systems
that implement MLMs have legacy databases with
heterogeneous temporal and coding representations; the
creation of sharable MLMs thus entails a standardized
syntax to describe queries. Our inclusion of the Arden
Syntax as a candidate query method in this study allows
us to evaluate the common temporal querying
capabilities of well-known legacy databases.

An MLM has a logic slot that specifies a decision
rule, and a data slot that uses database queries to
instantiate variables used in the rest of the MLM. The
data slot consists of system-specific and system-
independent components. The Arden Syntax thus
permits both variability of data descriptions among
existing decision-support systems and standardization of
common query constructs (such as temporal conditions).
The general form of a data-slot query is
var := READ [aggregation] ({body} [WHERE IT
OCCURRED time constraint])
where var is the variable that the query instantiates;
aggregation is an aggregation operator (such as
LAST); body is a written description of the data
elements that a user must map to a system-specific
query language; and time_constraint is one of the
following constructs: BEFORE a certain temporal
instant, AFTER a certain temporal instant, or WITHIN
a certain range of time [7, 8]. (The portions of a syntax
in brackets are optional.)

The Arden Syntax assumes that the underlying
database associates each stored parameter with a single

332

primary time. This temporal model is similar to that of
TOD: Only discrete temporal instances are associated
with clinical data in the underlying data scheme, and
queries can select data based on temporal ordering or by
occurrence in a window of time. Unlike the TOD
model, the Arden Syntax temporal model does allow the
storage and manipulation of a duration parameter. The
duration parameter, however, is not anchored to any
point in time; for example, the database can store the
patient’s age as a duration of 37 years, but does not need
to represent an exact birthdate. The Arden Syntax thus
does not support time intervals as primitive temporal
elements.

Structured Query Language

Like the Arden Syntax, SQL is a query syntax
maintained by a national standards organization (ANSI)
[11]. Unlike the Arden Syntax, SQL is based on a
formal model of data — the relational data model.
During the past decade, SQL has emerged as the leading
industry-wide standard for a database query language.
One of the primary reasons for the ascendancy of SQL is
that the relational model has well-defined data-definition
and data-manipulation methods [12]. In the relational
model, the data-definition language is cast in terms of
relations, which are two-dimensional tables in which the
columns are called attributes and the rows are called n-
tuples. The data-manipulation language of the relational
model comprises a set of operators on relations; these
relational operators define the semantics for the
constructs in the SQL syntax. A retrieval statement in
SQL has the following clauses:
SELECT attribute_list [aggregation_list]
FROM relation_list
[WHERE [search_condition | subqueryl]
[GROUP BY attribute_list]

Such a statement instructs the query method (1) to take
the product of relations listed in the FROM clause, (2) to
select any tuples that satisfy the Boolean conditions in
the search_condition of the WHERE clause, and
(3) to return those attributes specified in the
attribute_list of the SELECT clause [12]. The
GROUP BY clause allows grouping of the results by
unique values (such as patient identification); the
database can derive from each group the result of any
aggregation operators (such as MIN) in
aggregation_list. An important feature of SQL
is that every query returns data in a relational format that
can be queried further; the subquery construct permits
nesting of multiple queries in one retrieval statement.
The SQL syntax illustrates that the language provides
no specific clauses for temporal operations. The
underlying relational representation does permit the
storage of both instant and interval stamps as attributes,
and the search conditions in the WHERE clause can make
simple comparison operations (such as >, <, and =) on
time stamps in the relations. SQL does not support,
however, nonrelational temporal operators (such as
ordinal selection or concatenation). The language also

does not give special status to the temporal attributes in
the results of a query. For example, if a user does not
specify, in the list of attributes in the SELECT clause,
the time-stamp attribute(s) stored in a relation, the
resulting set of data will not have a temporal dimension.
Therefore, a major limitation to the use of SQL as a
temporal query method is that a user must formulate
queries in a manner that is consistent with an
application’s temporal model.
TimeLineSQL

Many researchers [13, 14] have attempted to overcome
the lack of temporal semantics in SQL by defining
novel temporal extensions to the relational model.
Based on such prior research, we have designed a
temporal relational model tailored to the temporal
querying needs of clinical decision-support systems [15].
The result of our research is (1) a data-definition
language that defines a canonical representation of
temporal data as interval-stamped relations (histories),
and (2) a data-manipulation language that consists of
temporal operators on data in histories. To implement
our approach, we have created the Chronus system, a
temporal-query server that is built on top of a
commercial relational database (Sybase) and that
supports our model’s interval-based operators in a query
language that we call TimeLineSQL (TLSQL) [6]. A
retrieval statement in TLSQL has the following syntax:

GRAIN grain_size

SELECT [ordinal] [CONCATENATED]
attribute_list [aggregation_list]
[INTO history]

FROM history [, historyl]

[WHEN [temporal_join |

temporal_comparison]]
[WHERE nontemporal_condition]
[GROUP BY [attribute | grain_size]]
TLSQL is based on the simple framework of SQL.
Unlike SQL, however, TLSQL permits the formal
specification of temporal queries through six new
constructs:

1. A GRAIN term to set the granularity level (such as
day) at which the query performs all temporal
comparisons on timepoints (for precedence, we can
compare only timepoints of the same grain size)

. An ordinal term to define an ordinal selection
(such as FIRST, SECOND, or LAST)

3. A CONCATENATED term to undertake the temporal
concatenation of intervals with equivalent
nontemporal values

. Temporal_join conditions in the WHEN clause to
allow the temporal intersection or temporal difference
of the time stamps of data in two histories

. Temporal_comparison conditions in the WHEN
clause to specify instant- or interval-based
comparisons between time stamps

. Grouping by grain_size (such as MONTH or
YEAR) to permit temporal grouping of data

333

In addition to these syntactic changes to SQL,
TLSQL uses the semantics of the interval operators to
ensure that the result of any query on histories also will
be in the history format. Interval stamps, consequently,
are returned always from a query on a single history, and
are derived automatically from a temporal join of two
histories. A user can manipulate the results of one
query in subsequent retrieval statements by saving the
results into a new history (as specified in the INTO
clause). The primary limitation of the use of TLSQL as
a temporal query method is that the data scheme of the
underlying database must support the interval-based
representation. This representation requires that we
store instant-based data as intervals with equivalent
endpoints and nontemporal information as intervals that
exist at all time periods. The Arden Syntax and SQL
query methods do not require such restrictions on the
representation of temporal data.

STUDY DESIGN

Selection of Test Suite

Our motivation to find a temporal query method
suitable for protocol-based decision support derives from
the needs of the THERAPY-HELPER (T-HELPER) clinical
workstation [10] — an advice system for protocol-
directed care of patients who have HIV disease. One of
the goals of the T-HELPER system is to determine
whether decision support can improve clinic-trial
enrollment in community health-care settings. The
eligibility-determination program (EDP) [16] in
T-HELPER provides a method to screen patients for
eligibility in HIV or AIDS clinical trials that are
ongoing at two public hospitals in the San Francisco
Bay area. The EDP provides advice on only eight
randomly selected clinical-trial protocols at these two
sites; the remaining protocols at the two sites provide
baseline accrual rates for comparison.

The EDP encodes the eligibility criteria for the eight
clinical trials as templates in an expert-system shell, and
uses rule matching to instantiate the templates with
patient data. Each time that the EDP must verify a
patient’s eligibility status, the program loads into its
memory-resident fact base the patient’s record from the
central database (a Sybase SQL server). If the medical
record is large, such data transfer is time consuming.
Furthermore, the verification of the protocol criteria by
the EDP requires the programmer to implement
temporal querying methods for the fact base. The
developers of the EDP would prefer to instantiate these
templates by queries to the database. We thus examine
which of three methods for temporal querying — the
Arden Syntax, SQL, and TimeLineSQL — is sufficient
for the task of screening patients for protocol
enrollment.

Classification of Conditions

To create a test suite of queries for our comparison,
we use the templates encoded in the EDP. We define an
elementary condition as any condition that does not
contain a conjunction or disjunction. We define a

temporal condition as any elementary condition that
makes comparisons or computations on the time
stamp(s) of a clinical parameter. We subdivide the set
of temporal conditions into distinct temporal patterns,
and then formulate for each temporal pattern a matching
query statement in the candidate query methods.

Suitability of the Test Suite

This set of conditions is an appropriate test suite for
the evaluation of a query method. We did not select the
set of eligibility criteria based on our ability to
instantiate the criteria by a database query method. If
we had chosen conditions that a decision-support system
could verify already through database queries, we would
have biased the test suite to reflect the capabilities of
that query method. The semantics of the conditions in
the test suite are also unambiguous: The developers of
clinical-trial protocols attempt to reduce variability in
the interpretation of the protocols at different clinical
sites by defining the criteria precisely.

RESULTS

Temporal Patterns
From the developers for the EDP, we learned that the

program did not have templates for 20 criteria from the

eight encoded protocols. Twelve of these criteria used a

parameter that the developers could not define properly

(such as “the class of surgical interventions that affect

drug absorption”), whereas the other eight criteria

contained a complex temporal pattern not readily
modeled in a template format (such as “no combination
therapy for greater than two weeks with 2 or more
agents active against MAC more than 1 month before
enrollment™). The latter set of unencoded criteria all
qualified as temporal conditions by our definition, and
the clinical parameters that they required were in the

database. None of the conditions in the former set had a

temporal component, and these 12 poorly defined criteria

were excluded from our analysis.

By combining those elementary conditions that are
encoded in the EDP with the unencoded temporal
conditions, we created a test suite of 256 elementary
conditions. We examined this test suite and found 202
conditions that satisfied the definition of a temporal
condition. The frequency of temporal conditions was
thus 79% (see Table 1). We reviewed these temporal
conditions, and found four types of temporal patterns:

1. Temporal duration. This condition checks
whether the duration of time between a reference
timepoint and the instant stamp associated with a
clinical datum is greater or less than a certain length
of time. Figure 1 provides a visual representation of
this temporal pattern. The protocols used this
condition to make queries only on a patient’s age
(which is the duration between the birthdate value
and the current time). The temporal-duration pattern
represented 5% of the temporal conditions.

. Temporal window. This condition finds the
most recent occurrence of a patient datum within a
window of time prior to a reference timepoint. The

334

database stores each parameter used in this type of
condition as an instant-based datum. This temporal
pattern is shown in Figure 2. The temporal-window
pattern involved 49% of the temporal conditions.

3. Prior presence. This condition determines
whether a clinical parameter with an interval time
stamp was ongoing during a window of time prior to
a reference timepoint. As depicted in Figure 3, this
temporal condition must verify three different
interval relations. We noted this temporal pattern in
42% of the temporal conditions.

. Temporal concatenation. This condition
requires the concatenation of adjacent interval stamps
of a parameter into larger intervals. For example,
the condition may require that all adjacent interval
times of a drug given at different dosages be
concatenated to create periods during which the
medication was given regardless of the dosage. After
concatenation, the condition requires the duration of
the resultant interval. Temporal concatenation is
needed in 4% of the temporal conditions.

Table 1. Frequency of temporal patterns in a set of
eligibility criteria.

Pattern Type Frequency (%)

Nontemporal patterns 21

Temporal patterns 79
Temporal duration 4
Temporal window 39
Prior presence 33
Temporal concatenation 3

Query Method Expressiveness

Each of the temporal conditions in the test suite
satisfies one and only one of the four temporal patterns.
As a result, we can choose for each pattern a
representative condition, and can illustrate with a single
example the ability of a query method to support that
type of pattern. We do not include the nontemporal
conditions in our analysis, since all three query
languages can check these criteria readily.

In the following examples, the queries return for each
condition the parameter value and the time stamp(s).
The EDP uses a reference time to evaluate certain types
of temporal conditions; the reference time is equal to the
time stamp of the patient’s most recent datum. We use
the variable r_time to refer to this value in the
example queries. We also use patient identification
(PID) 2207 to represent an example patient.

Temporal Duration. An example pattern of this
type is in ACTG protocol 177, and states that a patient
should be “greater than or equal to 13 years old.” Given
a reference time, we can express this condition in the
Arden Syntax as
data: birth_date := READ ({‘birth_date’})
logic: IF 1r_time - birth _date >= 13 THEN
CONCLUDE TRUE;

Figure 1. The temporal-duration pattern finds the
length of time between a reference time ¢ and the time
u of a clinical datum.

P

Figure 3. The prior-presence pattern determines
whether the interval stamp of a datum overlaps a span
of time d prior to a reference time z. Three separate
interval comparisons (as represented by Tj, T2, and
T3) can instantiate this pattern.

o—»

Figure 2. The temporal-window pattern selects the
last occurrence of a instant-stamped patient datum
within a span of time d prior to a reference time ¢.

&

Figure 4. The temporal-concatenation pattern requires
the union of adjoining or overlapping intervals, T and
U. This pattern returns the duration of the resultant
interval.

The Arden Syntax cannot express this condition in the

data slot alone, since it must specify how to calculate a

duration in the logic slot. In the SQL syntax, we would

express the condition as

SELECT birth_date

FROM demographics

WHERE pid = 2207 AND DATEDIFF (year,
birth_date, r_time) >= 13

For the SQL query, we assume that the parameter is in

the demographics relation. The DATEDIFF

function in the WHERE clause returns the length of time

between the final two operands at a grain size that is

defined by the first operand. In TLSQL, we can encode

this pattern in a manner similar to SQL:

GRAIN year

SELECT birth_date

FROM demographics

WHEN DURATION (birth_date, r_time) >= 13

WHERE pid = 2207
The DURATION function in TLSQL is equivalent to the
DATEDIFF function in SQL; the value of grain size in
the GRAIN clause determines the granularity at which
the resulting value is returned.

Temporal Window. ACTG protocol 268 provides
a typical temporal-window pattern: “The most recent
platelet count within the past 60 days should have value
greater or equal to 50,000.” In the Arden Syntax, we
create a new variable start_time (defined outside the
data-slot syntax) to be equal to 60 days prior to the
reference time. The query in the Arden Syntax is as
follows:
data: platelet_count := READ LAST ({‘'platelet
count’} WHERE IT OCCURRED WITHIN start_time
TO r_time)

335

logic: IF platelet_count > 50000 THEN
CONCLUDE TRUE
As is true with the temporal-duration pattern, we cannot
specify in Arden the complete temporal condition in the
data slot alone. SQL can express the condition in a
retrieval statement with a subquery (which returns the
all timepoints within the temporal widow):
SELECT time stamp, result
FROM laboratory_tests
WHERE pid = 2207 AND result > 50000
AND type = ‘platelet count’
AND time_stamp =
(SELECT MAX(time_stamp)
FROM laboratory_tests
WHERE time_stamp >
DATEADD (day, -60, r_time)
AND time_stamp < r_time)
AND pid = 2207 AND
result > 50000 AND
type = ‘platelet count’
In SQL, we can use the DATEADD function to create a
timepoint value equal to 60 days prior to the reference
time. In TLSQL, the ADDGRANULE function has the
same capabilities as the DATEADD function in SQL.
TLSQL does not have the subquery capability of SQL,
but can express the condition in two query statements
— the results of the first query are saved as an
intermediary result that is used by the second query.
The syntax of the TLSQL statement is as follows:
GRAIN day
SELECT result INTO tmp
FROM laboratory tests
WHEN start_time DURING
[ADDGRANULE (-60, r_time), r_time]

SELECT LAST result
FROM tmp
WHERE pid = 2207 AND type = ‘platelet count’

AND result > 50000
Prior Presence. An example prior-presence
pattern is found in CCTG protocol 553, and requires the
patient to have “no treatment with the fluconazole
medication at a dose greater than 200 mg/d within the
past 30 days.” The T-HELPER database stores interval
stamps for medication data. The Arden Syntax does not
have the ability to express the start and stop times of
interval-based data, so it cannot express this pattern. In
SQL, we specify the condition as
SELECT start_time, end_time, drug _name
FROM medication
WHERE pid = 2207 AND drug_dose > 200 AND
drug_name = ‘fluconazole’ AND
((start_time >
DATEADD (day, -60, r_time) AND
start_time < r_time) OR (end_time >
DATEADD(day, -60, r_time) AND
end_time < r_time) OR (start_time <
DATEADD(day, -60, r_time) AND
end_time > r_time))
The query syntax in TLSQL is similar, but can express
all temporal comparisons as one interval comparison:

GRAIN day

SELECT drug_name

FROM medication

WHEN [start_time, end_time] OVERLAPS

[ADDGRANULE (-60, r_time), r_time]
WHERE pid = 2207 AND drug_dose > 200
AND drug_name = ‘fluconazole’

Temporal Concatenation. The temporal-
concatenation pattern comprises the eight complex
temporal criteria that the EDP does not support. For
these conditions, the temporal union of adjacent or
overlapping intervals is the first step of verification.
Neither the Arden Syntax nor SQL supports
concatenation or other interval computations. TLSQL
can concatenate intervals readily, and can use the
resulting intervals for further temporal querying [6].

ACTG protocol 177 provides an example temporal-
concatenation pattern that requires a patient to have a
“documented history of a positive PPD skin test,
without subsequent treatment with more than 1 month
of any antimycobacterial medication.” Such a criteria
requires two queries: The first query concatenates the
adjacent or overlapping intervals of any
antimycobacterial medication that the patient was
taking, and the second query verifies the duration of the
concatenated intervals and the relation of the intervals to
an episode of tuberculosis in the problems relation:

GRAIN day

SELECT CONCATENATED drug_class INTO tmp
FROM medication

WHERE pid = 2207 AND drug_class =

‘antimycobacterial medication’

336

SELECT tmp.drug_name
FROM tmp, problems
WHEN [problems.start_time,
problems.end_time] BEFORE
[tmp.start_time, tmp.end_timel AND
DURATION (tmp.start_time,
tmp.end_time) < 30
problems .name ‘PPD_TB'
AND problems.value = ‘yes’
AND tmp.pid = problems.pid

Our results indicate that the Arden Syntax can support
two temporal patterns (54% of the temporal conditions).
SQL is more expressive than is the Arden Syntax: SQL
can encode three types of temporal patterns (96% of the
temporal conditions). TLSQL can express the same
patterns as does SQL, but also has the ability to query
the remaining infrequent complex temporal patterns that
involve concatenation.

DISCUSSION

An undetermined issue for temporal data management
is whether or not a general query language should
support operations on intervals. Our previous research
[6, 15] has indicated that both instant-based models
(such as that of Arden) and the relational model that
underlies SQL are limited in their ability to express
complex interval-based queries. We had not determined,
however, whether such limitations hinder the use of
these data models for the design of a general data-
management technique. In this paper, we have provided
an analysis of the set of temporal conditions needed by a
protocol-based decision-support system. Our results
indicate that interval-based queries are indeed common,
but that complex temporal queries that require the
capabilities of a general interval-based query method
(such as TLSQL) occur infrequently.

We must consider our comparison of temporal query
methods in the context of the goal to find a generalized
query method for decision support. The Arden Syntax is
currently the only specification language for sharing
both the situation—action rules for protocol-based
conditions and the database queries necessary to
instantiate these rules. Yet, because Arden’s implicit
model of time supports only the temporal formalisms of
legacy database systems, the data slot in the Arden
Syntax cannot express the significant number of
interval-based conditions found in protocol documents.
Users of the Arden Syntax can overcome this limitation
by writing in the logic slot rules for interval operations.
Such specifications, however, create undesired
variability in the temporal models across different sites.
In addition, if users choose SQL to instantiate data for
Arden rules, they will limit unnecessarily SQL’s ability
to formulate certain interval-based queries.

Because relational-database technology is increasingly
widespread, SQL appears to be a viable option for a
standard query method. Our results show that, on
average, SQL could express all queries but one for each
of the eight clinical-trial protocols. Unlike the Arden

Syntax, the SQL syntax does not provide clauses for
temporal patterns — a deficiency that makes queries
with temporal conditions awkward to express and
difficult to understand. The lack of an underlying
temporal model in SQL also requires the user to specify
queries in a manner consistent with the temporal model
of the application. Thus, the expression of temporal
queries in SQL can create a significant data-engineering
obstacle for the developer of a decision-support system.

TLSQL can express interval-based comparisons more
succinctly than does SQL (for example, consider the
queries for the prior-presence pattern). As we have
demonstrated previously [6], these temporal constructs
in TLSQL incur only a small additional cost to the
search times in a relational database. The interval-based
operators that we provide in TLSQL can serve also to
extend the Arden Syntax, so that the latter method can
support more than two temporal patterns.

We have built and validated a system (Chronus) that
implements the TLSQL query method on top of
relational databases. A current limitation of embedding
Chronus in legacy systems is that the method requires
the database schema to support our uniform
representation of time. To overcome this problem, we
are extending our temporal query method, so that it can
map automatically data with heterogeneous temporal
representations into the canonical interval-based format.
Our extended system (which we call Synchronus) will
have the ability, consequently, to query legacy SQL
databases that support various time-stamping methods.

Although we continue to refine our temporal query
methods, we do not consider the representation and
manipulation of interval-based data an unresolved
research issue that hinders the development of a general
query method. The analyses reported in this paper and
in prior studies [6, 15] demonstrate that decision-support
systems require well-established interval semantics for
querying temporal conditions. Our interval-based model
of time provides TLSQL the flexibility to instantiate a
wide variety of temporal patterns, including the complex
interval-based conditions that the Arden Syntax and SQL
cannot express.

Acknowledgments

We thank S. Tu for his comments on this research and L.
Dupré for her editorial assistance in the preparation of the
final paper. This work has been supported in part by grant
HS06330 from the Agency for Health Policy and Research,
and by grants LM05208, LM05708, and LM07033 from the
National Library of Medicine. Dr. Musen is a recipient of
an NSF Young Investigator Award.

References

1. Kahn, M.G. Modeling time in medical decision
support programs. Medical Decision Making, 1991.
11:249-64.

2. Kuperman, G.J., Gardner, R.M., and Pryor, T.A.
HELP: A Dynamic Hospital Information System.
1991, New York: Springer-Verlag.

3. McDonald, C.J.,, Tierney, W.M., Martin, D.K., and
Overhage, J.M. The Regenstrief Medical Record

337

10.

11.
12.

13.

14.

15.

16.

System: 20 years’ experience in hospital outpatient
clinics and neighborhood health centers. M D
Computing, 1992. 9:206-217.

Wiederhold, G., Fries, J.F., and Weyl, S.
Structured organization of clinical data bases.
AFIPS NCC. AFIPS. 1975, pp. 479-85.

Kahn, M.G., Fagan, L.M., and Tu, S. Extensions
to the Time-Oriented Database model to support
temporal reasoning in medical expert systems.
Methods of Information in Medicine, 1991. 30:4—
14.

Das, AK., and Musen, M.A. A temporal query
system for protocol-directed decision support.
Methods of Information in Medicine, 1994. 33:
358-370.

Hripcsak, G., Clayton, P.D., Pryor, T.A., Haug,
P., Wigertz, O.B., and van der Lei, J. The Arden
syntax for medical logic modules. Fourteenth
Annual Symposium on Computer Applications in
Medical Care. Washington, DC. R.A. Miller (ed),
IEEE Computer Society Press. 1990, pp. 200-
204.

Hripcsak, G., Ludemann, P., Pryor, T.A,, Wigertz,
O.B., Clayton, P.D. Rationale for the Arden
Syntax. Computers and Biomedical Research, 1994.
27:291-324.

Huff, S.H., Berthelson, C.L. and Pryor, T.A.
Evaluation of an SQL model of the HELP patient
database. Fifteenth Annual Symposium on
Computer Applications in Medical Care.
Washington, DC. P.D. Clayton (ed), McGraw-Hill.
1991, pp. 386-390.

Musen, M.A., Carlson, C.W., Fagan, L.M.,
Deresinski, S.C., and Shortliffe, E.H. T-HELPER:
Automated support for community-based clinical
research. Sixteenth Annual Symposium on
Computer Applications in Medical Care. Baltimore,
MD. ME. Frisse (ed), McGraw-Hill. 1992, pp.
719-23.

Date, C.J. A Guide to the SQL Standard. 1989,
Reading, MA: Addison-Wesley.

Ullman, I.D. Principles of Database and
Knowledge-Base Systems. Vol. 1. 1988, Rockville,
MD: Computer Science Press.

McKenzie, L.E., and Snodgrass, R.T. Evaluation of
relational algebra incorporating the time dimension
in databases. ACM Computing Survey, 1991.
23:501-543.

Tansel, A.U., Clifford, J., Gadia, S., et al.
Temporal Databases: Theory, Design, and
Implementation. 1993, Redwood City, CA:
Benjamin/Cummings.

Das, AK., Tu, S.W., Purcell, G.P., and Musen,
M.A. An extended SQL for temporal data
management in clinical decision-support systems.
Sixteenth Annual Symposium on Computer
Applications in Medical Care. Baltimore, M.D.
Ilv;ZE Frisse (ed), McGraw-Hill. 1992, pp. 128-
Tu, S.W., Kemper, C.A., Lane, N.M., Carlson,
R.W., and Musen, M.A. A methodology for
determining patients’ eligibility for clinical trials.
g'llgthgzdg of Information in Medicine, 1993. 32:

