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Structural genomics aims to solve a large number of protein
structures that represent the protein space. Currently an exhaus-
tive solution for all structures seems prohibitively expensive, so the
challenge is to define a relatively small set of proteins with new,
currently unknown folds. This paper presents a method that
assigns each protein with a probability of having an unsolved fold.
The method makes extensive use of PROTOMAP, a sequence-based
classification, and SCOP, a structure-based classification. According
to PROTOMAP, the protein space encodes the relationship among
proteins as a graph whose vertices correspond to 13,354 clusters of
proteins. A representative fold for a cluster with at least one solved
protein is determined after superposition of all SCOP (release 1.37)
folds onto PROTOMAP clusters. Distances within the PROTOMAP graph
are computed from each representative fold to the neighboring
folds. The distribution of these distances is used to create a
statistical model for distances among those folds that are already
known and those that have yet to be discovered. The distribution
of distances for solvedyunsolved proteins is significantly different.
This difference makes it possible to use Bayes’ rule to derive a
statistical estimate that any protein has a yet undetermined fold.
Proteins that score the highest probability to represent a new fold
constitute the target list for structural determination. Our pre-
dicted probabilities for unsolved proteins correlate very well with
the proportion of new folds among recently solved structures (new
SCOP 1.39 records) that are disjoint from our original training set.

The number of known protein sequences already exceeds
400,000 and is rapidly growing. Despite recent technological

advances in structural determination (1) it is still infeasible to
solve experimentally the structure of hundreds of thousands of
proteins in the foreseeable future. Therefore, it is necessary to
find ways to predict key structural properties of a protein based
on its sequence and on data derived from structurally solved
proteins. Current attempts to computationally determine a
protein’s structure based on sequence alone still have a limited
success, partly because of the shortage in solved structures that
can be used as models. The challenge, then, is to determine a
relatively small set of representative proteins the solution of
whose structure will enrich our known repertoire of protein folds
(2). Techniques such as comparative modeling and fold recog-
nition then will be applied for large-scale structural prediction
(3). It generally is accepted that reasonable predictions are
possible for proteins that share at least 30% sequence identity
with some solved protein (2). The expansion and eventual
completion of our archive of three-dimensional (3D) protein
templates depend on the development of new methodologies to
properly select an expanded (comprehensive) set of target
proteins (discussed in refs. 4–8).

Data accumulated from complete genomes has accelerated
the development of computational approaches to assign 3D
structures in a genomic scale (3, 9–13). On the experimental side,
several pilot projects in structural genomics were initiated in
recent years. Most of these projects use known structures as
models to assign structure to other related proteins of a specific
organism (Saccharomyces cerevisiae, Haemophilus influenzae,
Pyrobaculum aerophilum, Mycoplasma genitalium, Methanococ-
cus jannaschii, and more). Those proteins, for which no related

structure is known, can form a basis for a list of targets likely to
have unknown folds (2, 14). Of course, a critical requirement for
the selection of targets is a comprehensive and consistent
organization of protein sequences. Several databases have been
developed that provide exhaustive classification of proteins
sequences to families (reviewed in ref. 15).

How many target proteins should be selected in such a
process? The answer to this question is closely linked to the
(currently unknown) number of protein folds that exist in the
entire protein universe (16, 17). Estimates for this number range
from 700 to more than 10,000 (18–23). The total number of
currently known protein folds is 473 according to the SCOP 1.39
classification (24, 25) and 635 folds (topologies) according to
CATH 1.5 (26).

In this study, we address the problem of compiling a list of
target proteins. We develop a statistical model that assigns each
protein sequence a probability to have a new fold. Consequently,
we derive a prioritized list that contains those proteins that are
likely to represent new structural folds. Our work is based on a
comparative study of sequence- and structure-based classifica-
tions of proteins. This study leads to a statistical model according
to which we evaluate the probability that a given cluster (and the
proteins it contains) corresponds to a new fold. Our predicted
probabilities are evaluated against all recently solved structures
whose folds were determined past the computations. There are
about 100 nonmembranous proteins that achieve the highest
probability to have a new fold. A rational selection for 3D
determination of those targets is expected to accelerate the pace
of discovering new folds.

Methods
Sequence- and Structure-Based Classifications. A computational-
statistical method is developed here that assigns each protein an
estimate on how likely it is to represent a new fold. This approach
is based on two classifications of proteins: PROTOMAP, a se-
quence-based classification of the protein space (27), and SCOP,
the structure based classification (28). SCOP is a hierarchical
classification of all known protein structural domains. We have
used SCOP release 1.37 [5,741 natural protein entries that were
registered at the Protein Data Bank (PDB) database before
Oct. 20, 1997]. This release comprises 11,748 records repre-
sented by 2,264 domains. The transformation from the number
of PDB entries to the number of SCOP records and SCOP domains
reflects (i) parsing of proteins to their structural domains and (ii)
a grouping of entries in SCOP records that reflects the redun-
dancy within PDB. These 2,264 domains are classified to 834
families, 593 superfamilies, 427 folds, and eight classes. Two
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more classes (designed proteins and nonprotein) are not con-
sidered in this study. Notice that some changes in SCOP class
definition is associated with a recent release (SCOP 1.48, created
Dec. 20, 1999). SCOP can be accessed at http:yyscop.mrc-
lmb.cam.ac.ukyscop.

PROTOMAP is an automatically generated hierarchical and
relational classification of all protein sequences in SwissProt. To
construct the statistical model in this study, we use the most
relaxed level of classification (level e 5 10-0) of PROTOMAP
version 2.0. This version includes 72,623 protein sequences that
are classified to 13,354 clusters, 5,869 of which contain at least
two proteins and 1,403 clusters at size 10 and above. PROTOMAP
version 2.0 can be accessed at http:yywww.protomap.cs.huji.ac.il.

Local Graphs in PROTOMAP. Each cluster in PROTOMAP has a weighted
list of related clusters. The weights (called quality) reflect
relatedness among clusters. The lists of related clusters encode
many biologically meaningful relations and form the basis for
mapping the protein space. This statement was illustrated for the
Ig superfamily (29), the Ras superfamily (30), and more. The
notion of the PROTOMAP graph and the information that may be
extracted from the PROTOMAP graph are illustrated by a specific
example of the globin family (Fig. 1). The scheme shows a
two-dimensional presentation of all clusters related to cluster 3
and their immediate related clusters. Proteins of the globin
family are all classified to cluster 3. This cluster consists of 621
proteins representing myoglobins, globins, and hemoglobins

throughout the evolutionary tree. Inspection of the map in Fig.
1 indicates that additional globin-related clusters are linked to
cluster 3 either directly or indirectly. For example, cluster 4,328
contains proteins of Calyptogena soyoae (deep-sea clam) that are
only weakly related to globins of other mollusca. Still, a con-
nection can be traced between these globins and myoglobin of
mullusca and insecta (presented in cluster 145) and those of
nematoda (cluster 1,748). Another key feature of this graph is
that a numerical value (quality) is assigned to pairs of related
clusters to quantify their degree of proximity. Indeed, consid-
ering the level of proximity (described by the quality score) it is
evident that edges connecting clusters of the globin family have
higher scores as compared with edges in the periphery. Several
low-score connections to cluster 59 (from clusters 145, 1,033, and
12,322) expose the relation to the globin family via the flavohe-
moproteins (combined with FAD-containing reductase do-
main). The other low-score edges point to additional, nonrelated
local graphs (such clusters are listed in boxes, Fig. 1). This
observation suggests that the graph of related clusters can be
‘‘clipped’’ at different thresholds, by eliminating all edges of
significance below a given threshold. Each threshold yields a
different scheme and thus, the protein universe is partitioned to
connected components of varying sizes and graph connectivity.
In a PROTOMAP graph (at threshold 0.0) 37.7% of the clusters
form one connected component. Clipping the graph at thresh-
olds 0.1 and 0.3 reduces the size of the largest connected
component to 17.2% and 6.1%, respectively. The 13,354 clusters
in PROTOMAP have an average 3.7 of related clusters each.
However, the distribution of this value is very broad and is
correlated with the cluster’s size. For example, most singleton
clusters (5,545 of 7,485) are isolated and have no related clusters
at all.

Results
The Statistical Model and Scheme of the Procedure. Our working
hypothesis is that proximity (i.e., small distances in the PROTO-
MAP graph) is correlated with similarity among protein features,
including 3D structures. This hypothesis should imply that
clusters that are proximal in PROTOMAP tend to share a similar
fold, whereas clusters that are distant tend to have unrelated
folds. This general hypothesis has been put to a number of
biological tests. Such tests were carried out with respect to
several biological features, and in protein structure the following
procedure was applied. We have manually compared several of
the structure-based maps provided by FSSP (31) with PROTOMAP
clusters. In many instances, structurally related proteins that do
not fall into the same PROTOMAP cluster do, however, belong to
neighboring clusters in the PROTOMAP graph (not shown).

To describe the statistical model within which we work some
technical terminology is required. A cluster that contains no
known structures is said to be empty. Otherwise, a cluster is
called occupied. A vacant cluster is said to be new when its
(presently undetermined) corresponding fold is absent from
SCOP, and old otherwise. We based our statistical model on the
distribution of distances among occupied clusters in the PROTO-
MAP graph. Our goal is to derive an estimate for two probability
distributions: (i) The first one consists of distances (within the
PROTOMAP graph) from old clusters to occupied clusters. We
posit that this distribution is a good approximation for the typical
distance distribution from a known structural fold to all clusters.
(ii) The distribution of distances from new clusters to occupied
clusters. This second distribution does the same for yet unsolved
folds.

Our original hypothesis implies that the second distribution
should be biased (compared with the first one) toward larger
distances. These distributions are the basis for evaluating the
distances measured from all vacant clusters to occupied clusters.
Specifically, Bayes’ rule is used to estimate, on the basis of these

Fig. 1. A local graph of the globin family. A representation of the PROTOMAP

graph surrounding cluster 3. The 15 clusters indicated by the circles account for
845 proteins, those that belong to globin family are within the gray area. The
sizes of the circles are correlated with number of proteins (in increasing order
1–5, 5–50, 51–200, and .200 proteins in a cluster). Edges in the graph indi-
cating the proximity between any two clusters as measured by the quality
score. Quality score at e 5 10-0 ranges from 0.99 to 0.01. Edges with quality
.0.1, 0.06–0.1, and 0.01–0.05 are indicated by thick, thin, and dashed lines,
respectively. All solved protein structures associated with the globin map (26
domains in cluster 3; 10 domains in cluster 145, and one domain in cluster
1748) belong to the globin fold. Clusters outside the gray area belong to
unrelated sub graphs in terms of sequence and structure. See details in text.
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two distributions, the probability that a given cluster be new. This
is done by using the measured distances from this cluster to all
neighboring occupied clusters and the estimated number of folds
in the protein space. Such probabilities were calculated for every
vacant cluster in PROTOMAP. Our estimates subsequently were
put to a test by comparing our predictions on all newly released
protein structures, which were still unavailable at the time of
creating the model.

The probabilities of all vacant clusters to have new folds are
estimated in a four-step procedure: (i) Positioning each domain
with a solved 3D structure (from SCOP) into its proper PROTOMAP
cluster. (ii) For each cluster a ‘‘representative fold’’ was deter-
mined based on the folds associated with most structural do-
mains in that cluster. (iii) Distances within the PROTOMAP graph
were computed from each representative fold to the neighboring
folds. The distributions of these distances are used to create a
statistical model for distances among those folds that are known
and those that have yet to be discovered. (iv) Statistical estima-
tion is derived for the probability that any protein has a new, yet
undetermined fold.

Proteins that score the highest probability to represent a new
fold constitute the list of preferred target proteins for structural
determination.

Mapping SCOP Domains to SwissProt Protein Chains (SP-Chains). To
position the known structures vis-a-vis the PROTOMAP graph, the
information from the PDB database is matched with that of the
SwissProt records (SP-chain). We used the 2,264 representative
domains as defined in SCOP 1.37. Among these, 1,986 domains are
successfully associated with SP-chains (the rest do not have a
corresponding record in the SwissProt database). The corre-
spondence among structural domains and SP-chains is bidirec-
tional. Of the 72,623 SP-chains, 1,688 are solved. As noted above,
a cluster is defined as occupied if it contains at least one solved
SP-chain, and as vacant otherwise. Of the 13,354 clusters in
PROTOMAP, 756 are occupied. The distribution of the number of
solved SP-chains in each occupied cluster is shown in Fig. 2.
Whereas 59% of the occupied clusters contain only one solved
SP-chain (with one or more solved domains), 73% of the solved
SP-chains are in clusters with two or more solved SP-chains. An
occupied cluster is mapped to a specific fold if it contains an
SP-chain that is mapped to that fold.

Assigning Representative Folds to Occupied PROTOMAP Clusters. As the
above mapping indicates, there is no one-to-one correspondence
between clusters and folds. It would clearly be desirable if we

could correctly assign a single representative fold to each
PROTOMAP cluster, although it is not a priori clear whether such
a selection can be carried out. This is not just a failure of
PROTOMAP and SCOP. Many proteins are multidomains, and an
SP-chain may correspond to several domains, which usually have
distinct folds. In this view, we define for each occupied cluster
the best representative fold as the one most abundant in the
cluster. For an occupied cluster with only a single domain, this
is, of course, the representative fold of that domain. The same
applies to those occupied clusters that have more than one
domain, all of which with the same fold. The rest of the occupied
clusters include domains of several folds. Several typical exam-
ples are illustrated in Fig. 3. Cluster 10 that contains the highest
number of domains in one cluster consists of 300 trypsin-like
proteases. In this cluster, 45 domains are mapped to 31 solved
SP-chains. These domains are associated with five different folds
(Fig. 3). Still, in 25 of these 31 solved SP-chains a trypsin-like fold
is represented. All other examples in Fig. 3 show clusters that
contain several solved SP-chains, mostly from multidomain
proteins. The selected representative fold in such cases is the one
that occurs in the largest number of solved SP-chains in the
cluster. In a small number of cases, this rule was indecisive
because two distinct folds scored equally. For example, cluster 86
of the lactateymalate dehydrogenase superfamily contains 30
SCOP domains that are associated with 15 solved SP-chains, each
having exactly two different folds of the N- and C-terminal
domain. In such cases, ties were broken arbitrarily.

We turn to discuss the outcome of this selection procedure
from the fold’s perspective. Of the 411 folds in SCOP 1.37 that are
mapped to solved SP-chains, 329 folds were chosen as clusters’
representatives. Of the remaining 82 folds that were never
chosen as representatives, most are coupled to a representative
fold. Many of these folds that were never chosen as represen-
tatives are peptides (class 8 in SCOP) or very short domains that
rarely dominate a cluster.

This selection procedure has worked remarkably well, in that

Fig. 2. Distribution of the number of solved SP-chains in each occupied
cluster. Percent of occupied clusters with indicated number of solved SP-chains
(empty bar) and the percent of solved SP-chains in each category (filled bar) is
shown. The clusters with the largest number of solved SP-chains are indicated
along with the cluster’s signature.

Fig. 3. Representative clusters with solved multidomains SP-chains. The
geometrical symbols represent different folds within each cluster. The num-
bers indicate the occurrence of a specific fold combination among the solved
SP-chain in that cluster. In all of the examples, the representative fold is
indicated by a rectangle. Clusters illustrated in the scheme are: cluster 10,
trypsin proteases; cluster 44, a and b amylases; cluster 50, pyridine nucleotide-
disulphide oxidoreductases; cluster 171, endochitinases; and cluster 462,
shigayricin ribosomal inactivating toxins.
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only 80 solved SP-chains are not mapped to the representative
fold of their cluster. Even among clusters that contain more than
one solved SP-chain, these 80 SP-chains constitute less than 6.5%
of the solved SP-chains. This matching suggests that PROTOMAP
is selective for SCOP folds. That is, a cluster gathers proteins of
the same fold, although not necessarily all proteins of that fold.

Predicting a Protein’s Probability to Have a New Fold. Our statistical
estimates are based on an analysis of distances in the PROTOMAP
graph. Our goal is to predict for each cluster whether it is old or
new (i.e., represents an already known or a yet unknown fold,
respectively). Our basic premise is this: Distances among pairs of
clusters are distributed differently depending on whether or not
the clusters represent the same fold, because similar folds tend
to be close together in the PROTOMAP graphs (e.g., globin-like
fold in Fig. 1). We also assume that occupied clusters and their
distances from other clusters offer a good sample of these two
distributions. Distances are not the only relevant information
that can be extracted from the PROTOMAP graph. The local
density of the graph (number of clusters at given distances)
provides additional and less noisy data. After some optimization,
the most informative parameter turned out to be the maximal
vacant volume around a cluster, the formal definition of which
appears below. We thus consider two distributions: (i) distances
from old clusters to occupied clusters and (ii) distances from new
clusters to occupied clusters. The computational procedures by
which we estimate these two distributions are similar: Start from
any occupied cluster that we call the origin. Consider all neigh-
boring clusters, then their own neighbors, etc. This procedure is
stopped when an occupied cluster is encountered. For the old
distribution, any occupied cluster terminates the procedure. In
the new distribution, the procedure is halted only upon encoun-
tering a cluster whose representative fold differs from the fold
representing the origin cluster. Say that the scanning is halted
because of an occupied cluster at a distance r from the origin
cluster (this parameter r usually will differ in the oldynew
scanning schemes). We define the maximal vacant volume V as
the number of clusters whose distance from the origin is smaller
than r. If there are no occupied clusters in the connected
component of the origin cluster, then the maximal vacant volume
V is defined as empty. This procedure (in both its old and new
versions) is carried out with each of the 756 occupied clusters as
origins. Based on the information collected from scanning the
PROTOMAP graph, the distributions of maximal vacant volumes
are calculated to derive two probability distributions: Dold[V] and
Dnew[V].

There is an additional consideration that is necessary here,
because the PROTOMAP graph can be clipped at different thresh-
old (clipping means eliminating all edges below a certain quality
score, as discussed above). The parameter V strongly depends on
choice of such a specific threshold. To extract as much infor-
mation from the PROTOMAP graph as possible, we carried out the
scanning procedure on the PROTOMAP graph clipped at various
thresholds. Optimizing the threshold for clipping the graph was
based on Kullback-Leiber (KL) divergence (DKL) as a measure
for the difference between the two distributions (Dold and Dnew).
The DKL analysis was carried out for thresholds 0.0, 0.1, and 0.3.
The KL divergence for threshold 0.1 turned out the highest and
thus 0.1 was selected for clipping the PROTOMAP graph. At
threshold 0.0 (no clipping) DKL was only slightly lower than at
threshold 0.1 but at threshold DKL 0.3 is significantly lower. In
the sequel we consider both the 0.1 and the 0.0 graphs.

To construct the distributions of Dold[V] and Dnew[V] some
smoothing is necessary to filter the noise on the parameter V. We
have classified V values to three consecutive intervals and the
value empty. This partition was again optimized by DKL analysis.
The distributions for Dold and Dnew at threshold 0.1 are shown
(Fig. 4A). Notice that the two distributions are substantially

different, so one can hope for meaningful oldynew predictions.
We now turn to all PROTOMAP clusters that are vacant (12,598

clusters). In the same way described above, we take some cluster
X as our origin and proceed from it until the first occupied cluster
is encountered. Thus, a vacant volume V is associated with
cluster X and we want to find the probability:

P[X is newV is X’s vacant volume]. In other words, given a
cluster with a specific vacant volume V, what is its probability to
have a new fold?

According to Bayes’ rule,

P[X is new |V is X’s vacant volume] 5
P@V|X is new] z P@X is new]

P@V#
.

We estimate this probability through

P[X is new|V] >
@Dnew|V] z Q@X is new]

D[V]
.

P[X is new] is estimated by Q[X is new]. This estimate is defined
through the number of known folds (427, according to SCOP 1.37)
and an accepted estimate for the total number of folds, for which
a rather conservative estimate of 1,000 is taken (23). That is Q[X
is new] 5 1 2 (total number of known folds)y(total estimated
number of folds) 5 0.573. The other term in that equation, D[V],
is given by the weighted sum over the two empirical distributions
(as in Fig. 4A), i.e.,

D[V] 5 Dnew[V]zQ[X is new] 1 Dold[V]z(1 2 Q[X is new]).

Fig. 4B shows the values calculated for the probability that a
cluster as a new fold for various vacant volumes (at threshold

Fig. 4. The base distributions of Dold[V] and Dnew[V] for threshold 0.1. (A)
Partition of the vacant volumes to classes was performed as detailed in the
text. Number of clusters counted in the training set in each class is shown. (B)
Probability of having a new fold for various vacant volumes as calculated
according to Bayes’ rule. The dashed line indicates the a priori probability to
be new (see details in text).
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0.1). As seen, the probability function increases monotonically
with the volume, V. Notice that the correlation between the
probability function and V is not a purely mathematical state-
ment, but rather inherent properties of the data. This supports
the initial hypothesis that distances in PROTOMAP graphs reflect
structural relatedness. Unfortunately, for the many clusters to
which no vacant volume can be assigned (denoted empty) this
analysis provides little information (see Discussion). For these
clusters, the probability values slightly exceed the a priori value
(0.573).

Evaluation of the Predicted Probability to Have a New Fold. To
evaluate this prediction, a test was carried out that involved the
membranous proteins. So far, the structures of only few mem-
branous proteins have been solved (mostly classified in SCOP
class 6). Therefore, clusters of membranous proteins can be
expected to be associated with a high probability for being new.
This test involved more than 1,000 membranous clusters (rep-
resenting about 20% of the SP-chains). A cluster is considered
membranous if at least one-third of its proteins have multiple
membrane spanning regions. Indeed, membranous clusters oc-
cur in the highest probability class 6.5 times more often than their
overall occurrence (Table 1). Moreover, this ratio varies mono-
tonically throughout the probability range, as would be expected.
Although these results support our intuition, we currently are
unable to make specific predictions on the number of different
folds among membranous proteins. This test was carried out at
threshold 0.0 and 0.1 (Dold and Dnew were evaluated for each
separately). This is reflected in Table 1: Clusters that are
assigned to the highest class in threshold 0.0 but lower in
threshold 0.1 are joined together (indicated as Add 0.0, Table 1).
Otherwise a cluster is assigned the probability of its class in
threshold 0.1.

A very significant and encouraging test set has been carried
out on data that was not available at the time of creating the
model. The original analysis was performed by using SCOP 1.37
(about 13,000 domains) and re-evaluation was performed
against SCOP 1.39 (about 18,000 domains). SCOP 1.39 contains
2,092 domains that constitute 404 folds. Following mapping to
PROTOMAP, we obtained 388 domains and 48 folds that are in
SCOP 1.39 and not in 1.37. All of these structures were allocated as
before to PROTOMAP clusters and the previously defined prob-
ability scores (based on SCOP 1.37 alone) of these clusters were
recorded. Thus, the new structures fall into the six categories into
which the probability scores are grouped (as defined in Table 1).
Because clusters with high vacant volume have high probability
to adopt a new fold (Fig. 4B), we expect that large fraction of
these clusters are represented by new folds. That is, the propor-
tion of new clusters out of all clusters would increase with the
vacant volume V. Fig. 5 shows the assignment of all SCOP 1.39
domains to the probability classes (Fig. 5A) and the percentage
of (actual) new folds within each category. A strong correlation
between the predicted probability of being new and the propor-

tion of new folds among the recently released structures is found.
The success of this test strongly suggests that selecting targets
from the top probability class will accelerate the discovery of
new folds.

List of Selected Targets for Structural Genomics. The list of targets
at the top probability score contains 713 clusters (5.3% of all
clusters) that account for 8.2% of the SP-chains. Excluding
membranous clusters (as in Table 1) and those with fewer than
five SP-chains in each yields our prioritized target list. This list
contains 125 clusters. The complete list of target proteins and
their properties can be accessed at http:yywww.cs.huji.ac.ily
;elonpyTargets. A structural genomics project at Argonne
National laboratory (Argonne, IL) was initiated to determine as
many new folds as possible by x-ray crystallography. Out of our
proposed target list, more than 80 proteins were selected and are
at different stages of expression, purification, crystallization, and
data collection (unpublished data).

Discussion
The discovery of a novel fold may contribute to the understand-
ing of the functional characteristics of entire protein families.
Thus, a scheme for discovering the currently missing folds is
desirable (31, 32). Although the number of solved structures has
been growing exponentially in recent years, the fraction of new

Table 1. Membranous clusters tests

Classes (V) P (New)
All clusters,
number (%)

Membranous
number (%) Ratio*

Occupied 0.00 756 (5.7) 13 (1.2) 0.2
1 0.46 1,123 (8.4) 45 (4.3) 0.5
Empty 0.62 9,651 (72.3) 639 (61.0) 0.8
2–18 0.63 1,111 (8.3) 91 (8.7) 1.0
Add-0.0 0.76 405 (3.0) 104 (9.9) 3.3
.19 0.82 308 (2.3) 156 (14.9) 6.5
Total 13,354 (100) 1,048 (100)

*Ratio between membranous clusters and all clusters.

Fig. 5. Distribution of new structures from SCOP 1.39 records according to the
probability classes. (A) Number of clusters in a class that were assigned with a
new structure (open bar) and with a new fold (filled bar) from SCOP 1.39. (B)
Proportion of new folds out of new structures that were assigned to any class
as a function of the predicted probability to be new assigned to these classes.
A linear trend line with its r-square value is shown.
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folds among them is constantly decreasing (based on the yearly
deposit of folds by SCOP and on records from the PDB). Here we
present a systematic statistical-computational approach that can
accelerate the pace of discovering new folds (see Fig. 5B). About
5.4% of the SP-chains are assigned a high probability for having
new folds, which amounts to 453 nonmembranous clusters.
Unfortunately, there are many clusters for which our computa-
tional procedure fails to provide any significant information.
This is the case with clusters whose connected components are
completely vacant. Intuitively, these isolated clusters are distant
from any known fold and can hence be expected to provide new
structural information. Most of the empty clusters are either
singletons or reside in small connected-components (up to two
clusters). Our analysis of SCOP 1.39 records show that new
structures that are associated with empty, nonsingleton clusters
(at threshold 0.1) give a high yield of new folds. Namely, 13 of
the 31 (42%) new structures in this class turned out to be new
folds. This is comparable with our highest scoring classes (see
Fig. 5B). In this view, we place all such clusters in a list that can
be found at http:yywww.cs.huji.ac.ily;elonpyTargets.

Our statistical analysis has shown that the PROTOMAP graph
captures structural information about proteins. This is interest-
ing, because PROTOMAP is based solely on sequence information.
This shows that a global approach to the sequence space can yield
significant structural information. As is the case with construct-
ing any such large-scale statistical model, several key decisions
were made based primarily on heuristic arguments: (i) PROTO-
MAP was used at its most relaxed level (e 5 10-0). (ii) A single
representative fold was assigned to each occupied cluster. (iii)
Vacant surrounding volume was used as our parameter to reflect
the distance distribution in PROTOMAP. (iv) A specific threshold
for clipping the graph was used. (v) A single estimate for the total
number of folds was selected. Alternative choices for several of

these heuristic decisions were tested, some of which hardly affect
the outcome of the analysis. For example, for any estimate for the
total number of folds from 700 to 10,000 the relative order of the
predicted probabilities assigned to the classes stays the same.
Some of the other heuristic decisions were made according to
outcome of relevant biological tests (e.g., membranous clusters
test, Table 1).

Not all of the proteins that are predicted to have new fold will
indeed reveal new folds. About 10% of all folds as defined in
SCOP include superfamilies that often share the same fold as a
result of convergent evolution (e.g., triosephosphate isomerase
barrel, ferredoxin folds, etc.). Consequently, we expect that some
of the target proteins, even if they yield no new fold, do represent
new superfamilies that belong to already known folds. In addi-
tion, several of the clusters in our target list are neighbors in the
same PROTOMAP graph. In such instances, it is expected that
these different clusters correspond to the same (yet unknown)
fold. A point is case is cluster 2,050 that was assigned with the
top probability of having a new fold. This cluster resides in a
highly connected subgraph with another 18 clusters, all with the
highest score as well. This set of clusters is a part of a highly
connected local graph of the GCN5 superfamily (not shown).
Despite a relatively low sequence identity and diverged biolog-
ical functions among proteins of those clusters, we predict that
the same fold is shared among all proteins in the graph.
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