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BROOKS AND PEEVER CONCLUDED THAT NEITHER 
GLYCINE NOR GABA, BUT RATHER AN UNKNOWN 
“BIOCHEMICAL SUBSTRATE,” IS RESPONSIBLE FOR 
preventing trigeminal motoneurons from discharging during 
the tonic periods of REM sleep. Nevertheless, based on data 
from intracellular studies, Brooks and Peever stated that it is 
commonly accepted that “glycinergic inhibition of somatic 
motoneurons is responsible for loss of postural muscle tone 
in REM sleep.”1 The reasons why Brooks and Peever failed to 
confirm the results of intracellular studies are discussed as are 
the critical flaws in their experimental design and methodology 
that prohibited them from obtaining physiologically relevant 
data.

The preceding and other aspects of this research are ad-
dressed below within the context of the various sections of the 
Brooks and Peever paper. The intracellularly derived data that 
are referred to regarding glycinergic postsynaptic inhibition of 
motoneurons during REM sleep and related information were 
originally presented in publications listed among the references 
to this paper.2-23

Introduction

Brooks and Peever introduce the reader to their paper with 
the following statement: “There is considerable controversy 
concerning the neuronal mechanisms generating muscle atonia 
in REM sleep.” However, no references are provided to sub-
stantiate their claim that a “considerable controversy” exists. 
In contrast, as recently as this year, Allan Hobson, in a major 
address to The Italo-American Brain Stem Alliance given at the 
Accademia Pontaniana in Napoli (January 18, 2008), discussed 
“the brilliant analysis of REM sleep motor inhibition undertaken 
by Ottavio Pompeiano, Moruzzi’s second in command at Pisa, 
and Adrian Morrison, a visiting veterinarian from Pennsylvania 
over thirty years ago.” Hobson further stated that, “Together 
they showed that the inhibition of muscle tone, seen in REM 
sleep, was produced by descending inhibitory influences from 
the brain stem to the anterior horn cells of the spinal cord,” and 
concluded that, “Michael Chase using intracellular techniques 

confirmed Pompeiano’s theories regarding inhibition of spinal 
motorneurones…”

Brooks and Peever continue by noting that, “although numer-
ous studies have shown that the role of glycinergic inhibition of 
motoneurons is responsible for the loss of postural muscle tone 
in REM sleep,” it is still only an “hypothesis”; further, they state 
that it is based upon the observation that “lumbar and trigemi-
nal motoneurons are hyperpolarized by large amplitude IPSPs 
that are reduced, but not eliminated, by antagonism of glycine 
receptors.”16,19 First, in the entirety of the literature, there is not 
a single report that has questioned the validity of the results 
from intracellular studies that demonstrate unequivocally that 
postsynaptic inhibition of motoneurons, mediated by unique 
glycinergic IPSPs, fully accounts for the atonia of the somatic 
musculature that occurs throughout REM sleep. Thus, glyciner-
gic postsynaptic inhibition resulting in atonia during REM sleep 
is not simply an “hypothesis.” Second, their statement that the 
large amplitude IPSPs are “reduced, but not eliminated by an-
tagonism of glycine receptors” misrepresents the published data 
and opens the door to the possibility that other control mecha-
nisms are present. In point of fact, the studies that Brooks and 
Peever referenced demonstrate that the large amplitude REM-
specific IPSPs can be completely eliminated by antagonism of 
glycine receptors;19 they are not simply “reduced,” as claimed 
by Brooks and Peever. Moreover, IPSPs and hyperpolarization 
are only two of the many membrane potential changes that con-
firm the exclusive role of glycinergic postsynaptic inhibition in 
producing atonia during REM sleep (Table 1).

Methods

One of the principal methodological problems in this study 
was the inappropriate use of the microdialysis technique, 
which, as employed by Brooks and Peever to explore the state-
dependent control of motoneuron activity, was incapable of 
yielding either meaningful or interpretable data. This technique 
would have been appropriate if the trigeminal motor pool were 
a) an isolated nucleus, b) comprised solely of alpha motoneu-
rons, c) controlled exclusively by projections from distant sites, 
and d) functioned solely to modulate the level of discharge of 
motoneurons in a state-dependent fashion. Unfortunately, the 
trigeminal motor nucleus consists of a variety of cells including 
alpha motoneurons, gamma motoneurons, excitatory interneu-
rons, and inhibitory interneurons, as well as projection fibers 
from nearby and distant sites. All of the preceding cells and 
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projection fibers were exposed to the substances that Brooks 
and Peever dialyzed in addition to cells and fibers in the imme-
diately adjacent supratrigeminal nucleus, juxtatrigeminal area, 
intratrigeminal area, and the parvocellular reticular formation 
which interact with each other and with trigeminal alpha and 
gamma motoneurons, principally in the service of promoting 
waking functions involving the masseter musculature. Thus, 
thousands of glycinergic, GABAergic and glutamatergic syn-
apses (that are not responsible for the state-dependent control 
of trigeminal motoneurons, as well as those that are) were si-
multaneously and indiscriminately activated/inhibited by the 
dialyzed substances. This problem was exacerbated due to the 
fact that Brooks and Peever delivered drugs continuously for 
periods of two to four hours, and the tips of the probes that they 
used were located, as they state, not only in the motor pool, but 
sometimes in adjacent sites as well.

Thus, when Brooks and Peever dialyzed neurotransmitters 
and their antagonists, in addition to affecting the relatively few 
receptors on trigeminal alpha motoneurons that are innervated 
by state-dependent projections from distant sites, complex, ar-
tificial patterns of synaptic actions and interactions were ini-
tiated, simultaneously, between all of the preceding neuronal 
groups and projection fibers. For example, when Brooks and 
Peever dialyzed the glycine antagonist, strychnine, glycinergic 
receptors on alpha motoneurons were antagonized, which re-
sulted in an increase in motoneuron excitability. However, since 
inhibitory interneurons (which also contain glycinergic recep-
tors) suppress the discharge of other inhibitory interneurons 
within the trigeminal motor nucleus, strychnine also decreased 
the excitability of alpha motoneurons. In addition, when glycin-
ergic receptors on all cells in the sphere of influence of the dia-
lyzed substances, including receptors on neurons in adjacent 
nuclei, were antagonized, complex nonphysiological patterns 
of synaptic effects which resulted in changes in EMG activity 
that Brooks and Peever used to document the effects of various 
neurotransmitters and antagonists. By recording intracellularly 
from identified alpha motoneurons and ejecting substances jux-
tacellularly, one is able to completely eliminate the confound-
ing effects of the multitude of neuronal actions and interactions 
that occurred when Brooks and Peever dialyzed substances, for 
an extended period of time, into the trigeminal motor nucleus 
and adjacent sites.

Results

The results of Brooks and Peever confirmed data from nu-
merous intracellular studies showing that glycinergically medi-
ated postsynaptic inhibition is responsible for atonia during the 
phasic periods of REM sleep. However, they did not confirm the 
results from the same intracellular studies demonstrating that 
glycinergic inhibition also occurs during the tonic periods of 
REM sleep, even though both sets of intracellular data were ob-
tained during the course of experiments in individual animals, 
throughout alternating tonic and phasic periods of REM sleep, 
which were separated in time by only a few seconds. Brooks 
and Peever did not attempt to explain either the discrepancy or 
the similarity between the results of their studies and those gen-
erated by intracellular experiments. I suggest that because the 
dialysis methodology used by Brooks and Peever induced ab-

normal synaptic patterns of activity, it was simply a coincidence 
that some of their results were similar to those obtained when 
recording intracellularly, while other results were dissimilar. 
Because an enormous number of neurons that are not involved 
in the state-dependent control of motor activity were affected 
by the dialyzed substances, it is literally impossible to conclude 
that the Brooks and Peever data confirmed, or did not confirm, 
the conclusions of intracellular studies, wherein the responses 
to substances were confined to receptors on alpha motoneurons. 
In addition, due to the fact that there was only a single end point 
(EMG activity) in Brooks and Peever’s study, it is not surpris-
ing that they generated inexplicable data; in contrast, intracellu-
lar studies have examined not only EMG activity, but they also 
documented correlated variations in synaptic processes (IPSPs 
and EPSPs), membrane polarization, input resistance, conduc-
tance, time constant, etc. in identified trigeminal and lumbar 
motoneurons.

These intracellular data have shown that during the tonic as 
well as the phasic periods of REM sleep, there is an actively 
generated decrease in motoneuron input resistance and time 
constant, and an increase in conductance as well as specific 
changes in spike and EPSP/IPSP potentials. Table 1 presents 
a coherent set of cellular changes that are present only during 
REM sleep in conjunction with actively generated postsynaptic 
inhibition; they do not occur as a result of disfacilitation (Table 
1).

Some of the most dramatic data sets demonstrating that 
glycinergic postsynaptic inhibition is solely responsible for 
the suppression of motoneuron excitability during REM sleep 
emanate from the studies of Soja et al.24 and Chase et al.19 They 
demonstrated that when glycine is antagonized by strychnine, 
there is no significant difference in any of the membrane proper-
ties (level of polarization, input resistance, conductance, EPSP 
and spike activity, IPSPs, etc.) between NREM sleep and REM 
sleep. There is no significant “leftover” reduction of motoneu-
ron excitability that could be accounted for by a process of dis-
facilitation or by the actions of other inhibitory neurotransmit-
ters or neuromodulators. Therefore, glycinergic postsynaptic 
inhibition was shown to completely account for the entirety of 
the suppression of motoneuron excitability during REM sleep.

The source of the preceding suppression of motoneuron 
excitability has been demonstrated to be due to the actions 
of unique large amplitude IPSPs that only occur during REM 

Table 1—Comparison of Membrane Properties of Motoneurons 
During Postsynaptic Inhibition, REM Sleep, and Disfacilitation 
(Due to the Withdrawal of EPSPs) (for Details see Chandler.6 and 
Soja24)

Membrane Property	 Postsynaptic	 REM	 Disfacilitation
	 Inhibition	 Sleep	
REM-specific IPSPs	 Yes	 Yes	 No
Decreased input resistance 	 Yes	 Yes	 No
Increased membrane
  conductance	 Yes	 Yes	 No
Decreased time constant 	 Yes	 Yes	 No
Decreased antidromic spike
  peak potential	 Yes	 Yes	 No
Increased spike IS-SD delay	 Yes	 Yes	 No
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sleep. Not only do these IPSPs exhibit REM-sleep specific dis-
tinguishing patterns of activity, but their amplitudes, rise-times, 
rates-of-rise, and half-widths are also unique and differentiate 
them from all other IPSPs. They can be completely blocked 
by strychnine; neither picrotoxin nor bicuculline has any effect 
on these IPSPs. Therefore, there is no doubt (as many studies 
have confirmed) that atonia is due to the fact, not hypothesis, 
that motoneurons are “actively” and powerfully inhibited by 
glycinergic postsynaptic inhibitory processes during the tonic 
periods of REM sleep, and that these same processes are not 
only present, but also enhanced during the phasic REM periods 
of sleep.

Discussion

First Discussion Topic: “A tonic glycinergic and GABAergic 
drive at the trigeminal motor pool suppresses masseter motor 
tone in waking.” Brooks and Peever state that, “We confirm the 
presence of an endogenous glycinergic and GABAergic tone 
that contributes to levels of trigeminal motoneuron excitabil-
ity and masseter muscle activity during waking.” According to 
Brooks and Peever, their findings confirmed that, “Intracellular 
studies demonstrate that trigeminal motoneurons are hyperpo-
larized by IPSPs in waking cats.”1 This is a factually inaccu-
rate statement. Evidence of hyperpolarization by IPSPs during 
wakefulness was not included in the referenced chapter or in 
the primary literature, nor was any role described for either gly-
cine or GABA in such nonexistent processes. In fact, opposite 
data were presented; namely, that trigeminal motoneurons are 
tonically depolarized, not hyperpolarized, during active wake-
fulness and that there is no significant change in the level of po-
larization between quiet wakefulness and NREM sleep. Clearly, 
the membrane potential of motoneurons is depolarized during 
wakefulness compared with NREM sleep, not hyperpolarized, 
as stated by Brooks and Peever.

Second Discussion Topic: “Somatic motoneurons are in-
hibited by a tonic glycinergic and GABAergic drive during 
NREM sleep.” Brooks and Peever continue by stating that, 
“Inhibitory tone is maximal during NREM sleep…” However, 
when recording directly from trigeminal motoneurons, there is 
no significant difference in the level of the membrane poten-
tial or motoneuron activity during NREM sleep compared to 
quiet wakefulness. In addition, the data presented by Brooks 
and Peever contradict their own conclusions. In the figures in 
their paper in which records of the tonic activity of the masseter 
muscle is shown (Figures 2, 5, 6, 7, and 8), there is no observ-
able difference between NREM sleep and REM sleep. Thus, 
inhibitory tone is neither maximal during NREM sleep, nor is 
there pervasive inhibitory tone during this state, as claimed by 
Brooks and Peever. In contrast, data derived from intracellular 
studies clearly demonstrate that “inhibitory tone” is only maxi-
mal during REM sleep, as reflected by the phase, “the atonia of 
REM sleep.”

Third Discussion Topic: “A phasic inhibitory drive func-
tions to oppose muscle twitches during REM sleep.” The first 
sentence of this section is as follows: “We demonstrate that 
the functional glycinergic and GABAA-mediated drive present 
at the trigeminal nucleus in waking and NREM sleep is im-
mediately switched off and converted to a phasic glycinergic 

drive during REM sleep.” As discussed above, there are no data 
demonstrating “that a functional glycinergic and GABAA-me-
diated drive is present at the trigeminal nucleus in waking and 
NREM sleep,” as claimed by Brooks and Peever. In addition, 
it is not clear what is meant by the word “functional,” which is 
not defined, nor is their any discussion of the mechanisms that 
could possibly “switch off” glycinergic and GABAergic inhibi-
tory drives, skip tonic REM sleep, and then “convert” one part 
of a tonic (glycinergic) inhibitory drive to a phasic one during 
the rapid eye movement periods of REM sleep. As we and oth-
ers have reported, glycinergic inhibitory drives that are due to 
REM-specific IPSPs predominate during the phasic and tonic 
periods of REM sleep; Brooks and Peever do not refute or dis-
cuss these data.

Fourth Discussion Topic: “Glycinergic and GABAA-medi-
ated inhibition of somatic motoneurons is not responsible for 
mediating REM sleep atonia.” Brooks and Peever begin by 
reiterating their belief that glycinergic inhibition of motoneu-
rons is the “prevailing hypothesis.” They continue by claim-
ing that, “Chase and Morales (2005) established this hypothesis 
because they found that lumbar and trigeminal motoneurons 
are hyperpolarized by the REM-specific large amplitude IPSPs 
that are reduced (but not eliminated) by antagonism of glycine 
receptors.”1,16,19 We did not “establish” an “hypothesis”; we ob-
tained results that have been confirmed in multiple studies by 
different investigators. More importantly, the preceding state-
ment is not only inaccurate but is also misleading because it 
implies that because these IPSPs are not eliminated by strych-
nine, some other mechanism must play a role in hyperpolar-
izing the membrane potential. First, hyperpolarization is only 
one of a multitude of indices of the presence of glycinergic in-
hibition during REM sleep. Second, Chase et al.19 found that 
the REM-specific IPSPs are completely eliminated; they are 
not simply “reduced,” as Brooks and Peever states, by “antago-
nism of glycine receptors.” It is true that occasionally a small 
number of IPSPs remains following the juxtacellular ejection 
of strychnine; however, these potentials are small-amplitude, 
short-duration, state-independent IPSPs. In addition, even if a 
few REM-specific IPSPs that impinge on the distal dendritic 
tree are not completely blocked in all cells, it is a consequence 
of geometry and distance, not of the lack of effectiveness of 
strychnine. The critical point is that all IPSPs are able to be 
completely eliminated by strychnine. Perhaps the most persua-
sive data are those that reveal that there is no statistical differ-
ence during REM sleep and NREM sleep in all of the REM-
related changes in membrane properties when strychnine is 
administered, whether or not a few IPSPs remain! If any other 
mechanism or process were involved in producing atonia dur-
ing REM sleep, then when strychnine was applied, there would 
be statistically different membrane potential values (e.g., input 
resistance, conductance; see Table 1) during NREM and REM 
sleep, but there are not.

Final Discussion Topic: “What is the root mechanism re-
sponsible for REM atonia?” Brooks and Peever argue that 
glycinergic inhibition of motoneurons does not occur during the 
tonic periods of REM sleep because they failed to obtain evi-
dence of its presence. They do not discuss why they believe that 
their data and that from intracellular studies showing glyciner-
gic inhibition during the phasic periods of REM was correct, 
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In conclusion, during wakefulness, numerous receptors on 
a great many neuronal elements in and in the vicinity of the 
trigeminal motor nucleus are normally activated in highly regu-
lated sequences depending upon the specific behavior that is be-
ing performed, such as vocalization, biting, chewing, swallow-
ing, etc. On the other hand, during REM sleep, only receptors 
on alpha motoneurons in the trigeminal motor nucleus, which 
are involved in state-dependent control processes, are excited. 
These latter receptors have been identified as glycinergic and 
have been shown to be activated, monosynaptically, by projec-
tions from the region of the nucleus reticularis gigantocellular-
is. Therefore, there is no justification for Brooks and Peever to 
claim that an unknown “biochemical substrate” is responsible 
for atonia during REM sleep, nor do they provide any data or 
reason not to continue to believe in the veracity of their initial 
statement, reflecting the consensus that “glycinergic inhibition 
of somatic motoneurons is responsible for loss of postural mus-
cle tone in REM sleep.”1
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