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Summary
The amygdala’s historical role in processing stimuli related to threat and fear is being modified to
suggest a role that is broader and more abstract. Amygdala lesions impair the ability to seek out and
make use of the eye region of faces, resulting in impaired fear perception. Other studies in rats and
humans revive earlier proposals that the amygdala is important not for fear perception as such, but
for detecting saliency and biological relevance. Debates about some features of this processing now
suggest that while the amygdala can process fearful facial expressions in the absence of conscious
perception, and while there is some degree of pre-attentive processing, this depends on context and
is not necessarily more rapid than cortical processing routes. A large current research effort extends
the amygdala’s putative role to a number of psychiatric illnesses.

Introduction
A variety of brain structures implicated in social behavior, reward learning, and emotion have
also been implicated in the recognition of emotions from stimuli, such as facial expressions.
For instance, ventral regions of the prefrontal cortex are activated in neuroimaging studies of
fear and anger; and emotion recognition can be impaired by lesions in this region. Sectors of
right parieto-temporal cortex appear important for emotion recognition, especially fear
recognition, as well. Some of the most compelling evidence comes from structures that
participate in processing reward and punishment: the insula, the ventral striatum, and the
amygdala. The insula appears disproportionately important for recognition of disgust (in facial
expressions, related to distaste, and also related to moral disgust). Lesions of the ventral
striatum can impair anger recognition [1]. And, perhaps most studied of all, lesions of the
amygdala can impair recognition of fear from static [2] and dynamic [3] facial expressions.
Similarly, amygdala activation can be disproportionate for facial expressions of fear or threat
[4•] as well as correlate with correct identification of fear faces [5]. These findings are
particularly intriguing given the amygdala’s well-known role in the acquisition and expression
of Pavlovian fear conditioning [6], and may be related to its more recently demonstrated role
in social transmission of fear information in rats [7•] and humans [8•]. Despite the large
literature on this topic, there is considerable discrepancy: for instance, amygdala lesions can
also impair recognition of emotions other than fear, and amygdala activation may not be at all
specific to fear [9,10], nor to facial expressions of emotion [11]. Here I review the latest
developments in the amygdala’s role in fear perception and debates regarding the automatic
and non-conscious aspects of such processing, which rely on a number of different tasks (Table
1).
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Is fear processing fast and automatic?
There is good evidence that at least some aspects of social perception can be quite rapid, based
on faces shown for 100 ms or less [12]. Judgments of threat, but not other judgments, can even
be made with faces that are presented as briefly as 39 ms (backward masked) [13•]. It is
conceivable that a rapid initial sweep of stimulus processing detects basic features and gist,
such as “threat”, and provides the basis for subsequent biasing of further information
processing.

Other studies have argued that threat detection is not only rapid, but automatic, in the sense of
being independent of attention. Data supporting this idea have come from visual search tasks,
in which threat-related stimuli are reported to pop out [14], arguing that some affective
processing precedes (and drives) attention to the stimuli, an idea about the primacy of affective
processing that has a long history of debate in psychology. However, attempts to replicate these
findings on visual search tasks involving threat-related faces have been inconsistent, and some
experiments, perhaps especially with photographic-quality faces that the earlier studies did not
use, argue against automatic processing of threat [15]. Fearful faces do appear to facilitate early
visual processing in some way, however, since their locations enhance contrast sensitivity
discrimination to subsequently shown gratings [16•]. A further complexity is that the extent to
which threat processing is automatic depends on individual differences in anxiety [17]. This
finding is in line with a rapidly expanding field investigating the role of individual differences
in emotional face processing, both at the level of personality traits [18] as well as genetic
polymorphisms [19,20]. Attention may come into play not as an essential ingredient for fear
detection, but rather for modulating the degree of specificity in such detection: the amygdala
responds most specifically to fear when subjects attend to the stimuli, but responds more
broadly to threatening stimuli during unattended processing [21].

Studies of neurological patients have provided further ammunition for the idea of threat-related
processing in the absence of attention. Patients with spatial hemineglect following unilateral
right parietotemporal lesions normally fail to detect stimuli presented contralateral to the side
of the lesion (i.e., left visual field) when shown stimuli in both fields. This attentional failure
under bilateral stimulus presentation, however, is considerably reduced if the to-be-detected
stimulus is a face, and further reduced if the face shows emotional expressions including fear
[22]. A possibly related finding is that fearful facial expressions are most efficacious in
breaking interocular suppression-- they render the face visible under conditions of continuous
flash suppression, when it is typically invisible [23•]. Yet differential responses in the amygdala
to threat or fear-related stimuli also appears to be subject to attentional capacity limitations:
no such differences are seen when attention is entirely occupied with a difficult distractor task
[24,25].

Do threat-related faces “pop out” in search tasks because they signal threat, or because of
particular aspects of contrast or other low-level visual feature properties? The only way to
definitively resolve this issue is to formally decouple sensory from affective properties
experimentally. In one study, visual stimuli (complex but intrinsically neutral visual images)
were fear conditioned and it was found that the fear-conditioned stimuli influenced the
attentional blink phenomenon [26]. In another study, it was found that strongly affective lexical
stimuli (words like “death”, whose association between low-level sensory and affective
properties is truly idiosyncratic) also influenced the attentional blink, and moreover that this
influence depended on the integrity of the amygdala [27]. These findings argue that fear
perception, and the amygdala-dependent processing that underlies it, does incorporate rapid
processing that is pre-attentive to some degree, and that it depends both on the acquired
emotional meaning of stimuli as well as innate components. This interpretation is also
consistent with an fMRI study that found amygdala activation both to emotional facial
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expressions as such, and an additional activation component due to emotional learning
associated with those facial expressions [28].

Conscious and non-conscious processing
The above findings that threat detection can be rapid did not yet address whether it could also
be non-conscious. Indeed, one study of rapid threat judgments emphasized their conscious
nature, since briefer presentations (going from 39 to 26 ms) led to noticeably less reliable results
[13•]. However, there are a number of studies arguing to the contrary: that fear and/or threat
processing occurs in the absence of conscious perception. These studies have focused on the
amygdala in particular, and build on a large related background literature which argues that
the amygdala participates in auditory fear conditioning in part through subcortical inputs, that
it modulates responses to emotional stimuli in visual cortices [29], and that it is important for
fear recognition [2]. The strong hypothesis is that certain aspects of visual information
(contrast, visual motion and low spatial frequency) are conveyed also through a subcortical
route comprising a special subset of retinal ganglion cells that project to the superior colliculus,
which projects to the pulvinar nucleus of the thalamus, which projects to the amygdala; and
that this route can provide the amygdala with rapid information related to threat in the absence
of any cortical processing and in the absence of any conscious awareness of the stimulus.

Several different findings provide circumstantial support for the hypothesis [30]. Unilateral
lesions to the pulvinar thalamus (and subjacent white matter) can abolish the normal
interference of threat-related stimuli on goal-directed task performance and can impair facial
fear recognition if encompassing the medial pulvinar [31]. The amygdala is activated
differentially by fearful faces in patients with blindsight, who lack conscious visual perception
of the stimuli due to damage in early visual cortices [32]. Young infants show behavioral
preferences for faces over other visual stimuli, and possess a very immaturely developed visual
cortex but relatively more developed subcortical pathway [33]. And fearful faces rendered non-
conscious through interocular suppression (as verified by psychophysical assessment) resulted
in a BOLD-response in the amygdala essentially indistinguishable in magnitude from that seen
with consciously perceived fearful stimuli-- an effect that was not observed in the fusiform
gyrus, nor with neutral facial expressions [34••].

Some difficulties with the idea that fear processing in the amygdala can be truly non-conscious
comes from contrary findings arguing that amygdala responses to fearful faces require
conscious perception [35••], raising important issues about how to establish with certainty the
absence of conscious perception. Serious difficulties about the idea of a direct and rapid
subcortical route of processing to the amygdala stem from the lack of anatomical and
electrophysiological evidence. While the basolateral amygdala does receive direct input from
the medial pulvinar [36], the inputs from the superior colliculus terminate in the lateral pulvinar
[37]. This makes it necessary to interpose either intrinsic connections within the pulvinar or a
collicular-pulvinar-extrastriate cortical route to the amygdala, both of which would be expected
to be slower. Finally, there are inconsistencies in the latencies of responses to visual stimuli
observed in the amygdala. Some electrophysiological studies in monkeys [38] have reported
latencies around 60 ms, and MEG studies in humans reported latencies as short as 30 ms [39]
(although these cannot be assigned with certainty to the amygdala given the spatial resolution
of the technique). fMRI studies have also argued for a shorter latency of the BOLD response
in the amygdala to fearful than to neutral faces [40]. By contrast, other studies in monkeys
[41,42] as well as in humans [43–45] have found responses well in excess of 100ms, and as
slow or slower than those observed in temporal visual cortex. Additionally, it appears that
visual response latencies in the pulvinar are similar to those in visual cortex [46].
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The cortical temporal dynamics of emotional face classification were investigated in detail in
a recent study that examined ERP responses to particular facial features [47••] (Figure 1). They
found that fear is processed relatively faster than other emotions for a simple reason: cortical
processing of facial features begins with the eye region of the face, which happens to be the
feature most diagnostic for fear. The finding also suggests that the N170, an early cortical
potential evoked by faces, reflects both automatic (early processing of the eye region of faces)
as well as controlled aspects of processing (termination of processing once features diagnostic
for the discrimination of a particular emotion had been reached). While this study does not
resolve the debates about a direct subcortical route to the amygdala, it does suggest a
mechanism to explain why fearful faces should be processed more rapidly than other
expressions.

What does the amygdala do?
A large prior literature has implicated the amygdala in facial emotion processing, but the
specificity of this finding remains unclear. Curiously, there is no unequivocal evidence that
the amygdala is critical for recognizing fear from body postures or movements ([48]; but see
[49]), nor from auditory stimuli, although it may be necessary for normal fear recognition from
music [50]. Within faces, the eye region of faces is used most prominently when subjects have
to discriminate fear from other expressions [51]. Eye gaze direction modulates amygdala
responses to fearful faces [52], pupil size modulates amygdala responses [53], and the eye
region of fearful faces is most efficacious in breaking conscious suppression of the stimuli
[23] and in activating the amygdala [54], even when they are presented very briefly and masked
[55]. These findings have argued that perhaps particular features, notably the eyes, depend for
their processing on the amygdala.

Bilateral damage to the amygdala results in an inability to fixate the eye region of faces
spontaneously, and produces a consequent impairment in utilizing high spatial frequency
information from the eyes in order to recognize fear [56] (Figure 2). This abnormal fixation
has also been found for real people’s faces, where amygdala damage appears to result in a
propensity to fixate the mouth rather than the eyes [57•]. This has led to a revision of the role
of the amygdala in emotional face recognition: it does not appear to be specialized for
processing threat or fear as such, or perhaps even emotion or reward as such, but rather appears
to come into play when stimuli are particularly salient (which could result from them being
threatening, rewarding, or unpredictable [58]). One recent study in rats and humans found
increased amygdala activity in response to unpredictable compared to predictable tones, an
effect that resulted from slower electrophysiological habituation to the unpredictable tones
[59••]; another study found increased amygdala activation with sounds that increased in
intensity [60]; and a third found amygdala activation depending on how sharp or curved object
contours were, a factor that contributes to their perceived preference [61]. It may be that the
amygdala is one component of a circuit that is important for processing biological relevance
in a broader sense, as has been argued for emotion’s effects on attention more generally [62].
Such processing would be expected to depend on both low-level cues associated with relevance,
as well as on contextual and appraisal-related evaluations relative to the circumstances in which
a stimulus is encountered, and relative to the perceiver’s goals and capabilities.

Conclusions and Future Directions
Historically, research on the amygdala has emphasized two aspects: its role in social behavior
(dating back to the classic studies by Kluver and Bucy in the 1930s), and its role in emotional
learning and memory (such as Pavlovian fear conditioning). Both aspects rely in part on
privileged allocation of processing resources to stimuli that have particular behavioral
relevance, and both incorporate innate and learned components. The recent findings on the
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amygdala’s role in saliency and unpredictability raise the question of whether such a basic
stimulus dimension could also explain other aspects of amygdala function. For instance, is it
the inherently greater unpredictability of social stimuli that renders them more relevant and
that engages the amygdala? While outside the focus of this review, it is also important to note
here that the amygdala is known to play important roles guiding behavioral choice under
uncertainty also in the context of reinforcement learning. It has been found to come into play
during punishment predictions and prediction errors [63], and expectations of forthcoming
reward value computed in the amygdala appear to be relayed to the prefrontal cortex in order
to guide choice [64]. The amygdala is also activated during decisions that involve ambiguity
(missing information), over and above risk [65]. All these findings from tasks involving
decision-making are broadly consistent with the more perceptual/attentional role in processing
saliency/unpredictability reviewed above.

One important extension of the amygdala’s role is to psychiatric illnesses in which the
behavioral relevance of stimuli is abnormally evaluated. Illnesses ranging from phobias [66]
to depression [19] to schizophrenia [67] have shown impaired emotion recognition and/or
abnormal amygdala activation. One particularly interesting recent development has been in
autism, where it was found that people with autism fail to make normal use of information
from the eye region of faces, instead preferring to use the mouth [68], and that duration of eye
gaze correlates with amygdala activation [69]. The finding is being extended also to the first-
degree relatives of people with autism and may constitute part of an “endophenotype” for
impaired amygdala function in autism [70,71], as has been found with respect to other
structures, such as anterior cingulate cortex, that are connected with the amygdala [72].
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Figure 1.
Rapid responses to eyes drive fear discrimination. ERPs recorded from right and left (dashed
lines) occipitotemporal electrodes are plotted versus time (in ms) relative to the onset of
sparsely revealed faces. The peak of this ERP response, corresponding to the classic “N170”
is denoted by the blue boxes. Classification images derived by regressing the magnitude of the
ERP response (in 4 ms time epochs) onto the randomly sampled location of facial features
shown in the sparse stimuli are shown at the bottom. The ERP magnitude is shown by the blue
curves; the overall sensitivity of the ERP to facial information is denoted by the red curves.
Modified from [45••]; courtesy of Philippe Schyns.
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Figure 2.
Bilateral amygdala lesions impair the use of the eyes and gaze to the eyes during emotion
judgment. Data are from patient SM, who has complete bilateral amygdala lesions and is
impaired in recognizing fear [2]. Using sparsely revealed faces to identify face areas used
during emotion judgment, patient SM (brain shown in c) differed from controls such that
controls exhibited much greater use of the eyes than SM, while SM did not rely more on any
area of the face than did controls (a). While looking at whole faces, SM exhibited abnormal
face gaze (b), making far fewer fixations to the eyes than did controls. When SM was instructed
to look at the eyes (d, “SM eyes”) in a whole face, she could do this, resulting in a remarkable
recovery in ability to recognize the facial expression of fear compared to her accuracy prior to
this instruction (d, “SM free”). Modified from [54].
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Table 1
Fear-related processing and tasks to assess it.

Process Tasks

Fear expression Psychophysiology, startle, freezing, facial expression
Fear experience Inferred from fear expression; subjective report in humans
Innate fear Responses to smell of predators, biologically basic sensory stimuli
Learned fear Conditioning through experience, observation, or instruction
Fear detection Reaction time to fear stimuli, or accuracy in discriminating their spatial location of time of occurrence
Fear discrimination Accuracy in distinguishing fear from other contemporaneous stimuli
Fear classification Accuracy in distinguishing fear from a particular closed set of other stimuli
Fear recognition Multivariate judgments related to conceptual knowledge about fear
Rapid Neurological (EEG, MEG, electrophysiology) latency from stimulus onset Response (behavioral, neural, or

psychophysiological) to stimuli of very brief duration
Automatic Pre-attentive responses to stimuli

Pop-out in visual search
Attentional effects by fear stimuli on performance related to other stimuli
(related in time or space)

Non-conscious Neurological, behavioral, or psychophysiological responses to stimuli with null-sensitivity in overt detection or
discrimination
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