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Abstract
Statistics for linkage disequilibrium (LD), the non-random association of alleles at two loci, depend
on the frequencies of the alleles at the loci under consideration. Here, we examine the r2 measure of
LD and its mathematical relationship to allele frequencies, quantifying the constraints on its
maximum value. Assuming independent uniform distributions for the allele frequencies of two
biallelic loci, we find that the mean maximum value of r2 is ~0.43051, and that r2 can exceed a
threshold of 4/5 in only ~14.232% of the allele frequency space. If one locus is assumed to have
known allele frequencies – the situation in an association study in which LD between a known marker
locus and an unknown trait locus is of interest – we find that the mean maximum value of r2 is greatest
when the known locus has a minor allele frequency of ~0.30131. We find that in 1/4 of the space of
allowed values of minor allele frequencies and haplotype frequencies at a pair of loci, the
unconstrained maximum r2 allowing for the possibility of recombination between the loci exceeds
the constrained maximum assuming that no recombination has occurred. Finally, we use  to
examine the connection between r2 and the D′ measure of linkage disequilibrium, finding that

 for ~72.683% of the space of allowed values of (pa, pb, pab). Our results concerning the
properties of r2 have the potential to inform the interpretation of unusual LD behavior and to assist
in the design of LD-based association-mapping studies.

1 Introduction
Linkage disequilibrium (LD) refers to a non-random association in the occurrence of alleles at
two loci (Hudson, 2001; Pritchard & Przeworski, 2001; Slatkin, 2008). LD finds applications
in diverse contexts, including the inference of demographic events in human evolutionary
history (Tishkoff et al., 1996; Plagnol & Wall, 2006), the fine-mapping of disease genes after
localization via linkage analysis (Devlin & Risch, 1995), and the modeling, selection, and
evaluation of sets of informative single-nucleotide polymorphisms for use in detecting disease-
susceptibility alleles in genome-wide association studies (Kruglyak, 1999; Carlson et al.,
2004; Eberle et al., 2007). Measurements of LD are typically based on comparisons of the
observed frequencies of haplotypes to the frequencies expected based on the frequencies of
the alleles that comprise the various haplotypes. Statistically estimated haplotype frequencies
are used in place of observed frequencies when observed frequencies are unavailable.
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One of the challenges inherent in measuring LD is that the ranges of LD measures can depend
on the frequencies of alleles at the loci under consideration. Hedrick (1987) showed that for
several LD statistics, holding the allele frequencies of one of the two loci in a pair constant,
the maximal values of the statistics could occur only when the allele frequencies of the second
locus were equal to those of the first locus; further, in some cases, the maximum itself was
frequency-dependent. The only statistic considered by Hedrick (1987) whose range was
frequency-independent was D′ (Lewontin, 1964), which ranges from −1 to 1 for any set of
allele frequencies for a pair of polymorphic biallelic markers. However, even D′ is not
independent of allele frequencies in most senses of the concept of “independence” (Lewontin,
1988).

For biallelic markers, one of the most commonly used measures for LD is r2 (Hill & Robertson,
1968), the square of the correlation coefficient between two indicator variables – one
representing the presence or absence of a particular allele at the first locus and the other
representing the presence or absence of a particular allele at the second locus. In a disease
association context, the r2 statistic is often used in calculations of power to detect disease-
susceptibility loci. Under some conditions, the power to detect disease association with a
marker locus when using a case-control sample of size N is approximately equal to the power
to detect disease association with the true causal locus when using a sample of size Nr2, where
r2 here denotes the value of the r2 statistic for the marker locus and the causal locus (Pritchard
& Przeworski, 2001; Jorgenson & Witte, 2006; Terwilliger & Hiekkalinna, 2006). The r2

statistic also underlies popular methods for identifying informative markers for use in LD-
based association studies (Carlson et al., 2004; de Bakker et al., 2005).

Like most LD statistics, r2 has a frequency-dependent range. The maximum value of r2 as a
function of the allele frequencies of two loci under consideration drops sharply with the extent
of the minor allele frequency difference between the loci (Wray, 2005; Eberle et al., 2006;
Amos, 2007). Thus, in some settings, matching loci by allele frequencies prior to measurement
of LD can provide a way to circumvent the frequency dependence of r2. Using genotypes from
71 unrelated individuals of European, African-American, and Chinese descent, Eberle et al..
(2006) found that by restricting their calculations to matched loci with similar allele
frequencies, their ability to identify high LD values using r2 increased considerably, revealing
excess LD in genic regions.

Although the frequency dependence of r2 has often been noted (e.g. Devlin & Risch, 1995;
Zondervan & Cardon, 2004), relatively little is known about the mathematical properties of
this dependence. Wray (2005) showed that if two loci have a value of r2 above a specified
cutoff and one of the loci has known allele frequencies, then the frequencies at the other locus
must lie in a narrow range. Eberle et al. (2006) studied the properties of r2 in a genealogical
context, examining the predictions made by a coalescent model about the expected value of
r2 conditional on the allele frequencies at a pair of loci in the absence of recombination. In this
paper, we consider the mathematical relationship between r2 and allele frequencies in detail.
We investigate the maximum possible value of r2 for a given set of allele frequencies, compute
the mean value of  when frequencies at one of the loci are assumed to be known, and
determine the range of possible allele frequencies for one locus when r2 and the frequencies
for the other locus are known. We also use two possible genealogical histories (a scenario
similar to that of Eberle et al. (2006)) to investigate the effect of recombination on the value
of r2. Finally, we determine the relationship between r2 and D′ using a connection to , the
maximum value of r2 possible given the allele frequencies at a pair of loci.
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2 Theory
Consider two biallelic loci, locus 1 with alleles a and A and locus 2 with alleles b and B. Suppose
the frequencies for alleles a and A are respectively pa and 1−pa, and the frequencies for alleles
b and B are pb and 1 − pb. Because pa and pb each range from 0 to 1, the pair (pa, pb) ranges
over the (open) unit square. The set of combinations of allele frequencies (pa, pb) can be split
into eight components, which we label S1, S2, …, S8 for convenience (Figure 1). Each of the
other seven components, S2, …, S8, corresponds to a transformation of S1 in which alleles are
swapped at locus 1, alleles are swapped at locus 2, loci 1 and 2 are swapped, or two or more
of these exchanges are performed. We will use this symmetry to simplify some of our
calculations.

The r2 measure of linkage disequilibrium is defined as

(1)

where pab is the frequency of haplotypes having allele a at locus 1 and allele b at locus 2 (Hill
& Robertson, 1968). As the square of a correlation coefficient, r2 (pa, pb, pab) can range from
0 to 1 as pa, pb and pab vary.

2.1  (pa, pb)

Our first computation is of (pa,pb), the maximum value of r2 for given values of pa and
pb, considering all possible values of pab. Given (pa, pb), the denominator of r2 is fixed.
Therefore, to maximize r2, it suffices to choose the value for pab that maximizes the numerator.
The possible values of pab are constrained by the fact that the frequency of a haplotype can be
no more than the frequency of the least frequent allele that it contains and no less than 0 or the
minimum overlap that can occur between two alleles based on their frequencies. It is at one of
these extremes – the highest or lowest possible haplotype frequency – that the numerator is
maximized. Thus, the maximum value of r2 occurs either at pab = min(pa, pb) or at pab = max
(0, pa + pb − 1), depending on the component, Si, in which the given (pa, pb) is located. For
S1 and S4, the maximum occurs at pab = pa + pb − 1, so

(2)

For S2 and S7, the maximum occurs at pab = pa:

(3)

For S3 and S6, the maximum occurs at pab = pb:

(4)

Finally, for S5 and S8, the maximum occurs at pab = 0:

(5)

Table 1 summarizes these results. Note that  is continuous on the boundaries between
components. An important consequence of equations 2–5 is that  if and only if
pb = pa or pb = 1−pa.
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Combining equations 2–5, Figure 2 shows a 3-dimensional plot of  for all combinations
(pa, pb). The X-shape of the figure illustrates the symmetries of r2 as a function of pa and pb,
as well as the property that r2 can only equal 1 if the two loci have the same minor allele
frequency. Additionally, the graph shows a very steep decay of  moving away from the
diagonals, indicating that even small differences in allele frequency between the two loci,
especially if the frequencies are not near 1/2, can reduce the range of possible values for r2

considerably.

We can quantify the effect of differences in minor allele frequency observed in Figure 2 by
calculating the average  value assuming independent Uniform(0,1) distributions for pa and
pb. This computation amounts to evaluating the volume below  over the unit square. Using
symmetry, the total volume can be calculated by finding the volume over one of the eight
components in Figure 1 and multiplying by eight. Denoting the volume of  over component
S1 by V1, we have

The last step uses the dilogarithm function  ln(1−t)/t dt = Li2(z), where Li2(0) = 0 and
Li2(1/2) = π2/12 − (ln 2)2/2 (Weisstein, 2003). Consequently the mean  given pa ~ Uniform
(0, 1), pb ~ Uniform(0, 1), and assuming pa and pb are independent is 8V1 = 2π2/3−4(ln 2)2+4
(ln 2)−7 ≈ 0.43051.

This result and the shape of Figure 2 suggest that it is only possible to achieve high values of
r2 over relatively small portions of the space of possible values of pa and pb. For a constant
c, 0 ≤ c ≤ 1, we can calculate the proportion of the allele frequency space where it is possible
for r2 to exceed c, p(c). Again using symmetry, we can restrict our attention to S6. Using
equation 4, the portion of S6 in which (pa,pb) ≥ c, whose area we denote by A6, satisfies

Considering the complement of the area of interest in S6, we have

Thus, the proportion of the allele frequency space where it is possible for r2 to exceed c is
8A6, or

(6)

Figure 3 shows that the proportion of the allele frequency space where it is possible for r2 to
exceed c declines faster than linearly. For example, only over ~0.39709 of the allele frequency
space is it possible for r2 to exceed 1/2 and only over ~0.14232 of the space is it possible for
r2 to exceed 4/5.
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2.2  with pa fixed
In contrast to the previous computations, in which we performed integrations over possible
values of pa and pb, we now consider the case in which pa is fixed. This computation enables
us to identify the allele frequencies for a locus that is able to have high r2 values across the
broadest range of allele frequencies for a second locus. Assuming pb has a Uniform(0,1)
distribution, we can calculate , the mean maximum
r2 value as a function of pa. We can assume that pa ≤ 1/2 and then consider pa > 1/2 by observing
that m(pa) = m(1−pa). For pa ≤ 1/2 we perform piecewise integration across components S6,
S7, S8, and S1 using equations 2–5:

Figure 4 shows that the mean of , averaging over values of pb, has an m-shape as a
function of pa. The maximum of this mean occurs at pa ≈ 0.30131 and pa ≈ 0.69869 and equals
~0.53091. Notice that the largest values of m(pa) occur for intermediate minor allele
frequencies rather than for minor allele frequencies close to 1/2. This finding can be explained
by examining the contour plot of Figure 2, which suggests that slices through the graph made
at intermediate frequencies for pa contain more space with higher values of  than do other
slices.

2.3  with pa and pa − pb fixed
We now consider the situation in which pa and the difference between allele frequencies |pa −
pb| are known. This situation is similar to the scenario considered by Wray (2005) in which
r2 was assumed to exceed some known threshold, pa was assumed to be known, and pb = pa
+ v was investigated.

Let pa and pb be minor allele frequencies (≤ 1/2) with pa ≥ pb, so that we are considering
component S6. Define d = pa − pb ≥ 0. Treating  as a function of pa and d, we can rewrite
equation 4:

(7)

Figure 5 shows a 3-dimensional plot of  as a function of the larger minor allele frequency
(pa) and the difference between minor allele frequencies (pa − pb). The twisted surface
illustrates that for pa fixed,  decreases faster with the difference in minor allele frequency
when pa has smaller values. This observation corresponds to the steeper decline from the
diagonals further from the center in Figure 2.

Holding d constant and nonnegative in equation 7, the maximum of  for pa ≤ 1/2 occurs at
pa = 1/2:

(8)

By rearranging this equation, we can calculate the maximum value of |pa −pb| possible given
a known value of r2,
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(9)

As equation 9 is based on the maximum of  over all possible minor allele frequency values
for pa, it represents the broadest range possible for the difference in allele frequencies. For d
to achieve the maximum value of (1 − r2)/[2(1 + r2)], pa must equal 1/2.

The computation above assumes a known r2 and determines the maximum for d. However, if
we know pa in addition to r2, then we can solve exactly for the set of allowable values of pb.
Assuming again that pa and pb are minor allele frequencies (that is, at most 1/2), we must
consider two cases: pa ≥ pb and pa ≤ pb. For the first case, (pa, pb) is in S6. Rearranging equation
4,

(10)

so that r2pa/(1 + r2pa − pa) ≤ pb ≤ pa. In the second case, (pa, pb) is in S7 so we can rearrange
equation 3 to obtain

(11)

Recalling our assumption that pb ≤ 1/2 and combining equations 10 and 11, we find

This result accords with the values that appear in Table 2 of Wray (2005).

2.4 (pa,pb) and recombination
We have previously been examining r2 with the assumption that it is possible for pab to take
any value within its allowable range. This amounts to an assumption that we are not
constraining the recombination history of the two loci under consideration. In this section, we
consider a different situation: how does recombination affect r2 for two loci that have not
previously experienced recombination? This depends on the genealogical history of the loci.

Consider two possible genealogies (Figure 6). In Genealogy 1, a mutation at locus 1 arises
later, but on the same side of the tree, as a mutation at locus 2. In Genealogy 2, the mutations
at loci 1 and 2 arise on different sides of the tree so that no haplotypes carry both mutations.
Assuming pa ≤ pb ≤ 1/2 so that the minor alleles are derived rather than ancestral, then without
recombination, pab = pa for Genealogy 1, and r2(pa, pb) = pa (1− pb)/[(1 − pa)pb] (Eberle et
al., 2006). For Genealogy 2, without recombination pab = 0, so r2(pa, pb) = papb/[(1 − pa)(1 −
pb)] (Eberle et al., 2006).

In typical settings, recombination reduces linkage disequilibrium, as recombination separates
new alleles from the haplotypic background on which they arose. For Genealogy 1 in Figure
6, the unconstrained maximum r2 allowing pab to take on any possible value is precisely

 (equation 3), the value taken when pab = pa and no recombination has occurred.
Thus, any recombination events that reduce pab below pa will lead to a decrease in r2. However,
with Genealogy 2 we can see that situations do exist in which recombination can lead to an
increase in LD. Consider Genealogy 2 and suppose recombination occurs such that the
frequency of the recombinant haplotype (ab) becomes pab > 0. This haplotype can arise through
recombination events between Ab haplotypes and aB haplotypes. Is it possible for r2, with
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recombination events allowed, to be greater than r2 in the absence of recombination? Solving
the inequality

we obtain

For each pa ≤ 1/2 and pb ≤ 1/2 it is possible to choose a value of pab that satisfies pab ≥
2papb. Recall our assumption that pa ≤ pb, which restricts pab ≤ pa. Thus, if the fraction of
recombinant haplotypes satisfies

(12)

then the occurrence of recombination produces an increase in r2 compared to the maximum
possible value had no recombination occurred on the genealogy. Figure 7 shows an example
of the variation in r2 as a function of pab for pa = 0.3 and pb = 0.4. Once pab exceeds 2papb =
0.24, the value of r2 between loci increases above the initial value in the absence of
recombination.

Using inequality 12, we can determine the fraction of the space of allowed values for (pa, pb,
pab) in which the unconstrained maximum r2 permitting recombination (pab not necessarily
equal to 0) exceeds the maximum under the assumption that no recombination occurs (pab =
0). The volume of the region where recombination inflates r2 is

The volume of the region of allowed values for (pa, pb, pab), assuming pab ≤ pa ≤ pb ≤ 1/2, is

Taking the quotient of these results, the fraction of the space of possible values in which
recombination inflates r2 is 1/4. Thus, averaging over possible values for (pa,pb) with pa ≤
pb ≤ 1/2, on average 1/4 of possible values for pab lead to r2(pa, pb, pab) > r2(pa, pb, 0).

2.5 The relationship between r2(pa, pb, pab) and D′(pa, pb, pab)
So far, we have focused on the r2 measure of LD and on various properties of its maximum
value. A second LD statistic, namely D′, is defined based on maxima and minima. Our
computations with  provide a basis for examining the connection between r2 and D′.

D′ is defined as

(13)

where D = pab−pa−pb, Dmax = min(papb, (1−pa)(1−pb)) if D < 0, and Dmax = min(pa(1−pb), (1
−pa)pb) if D > 0 (Lewontin, 1964). Given any values for pa and pb, D′ can take on any value
from −1 to 1, thus differing from r2 in that its range is not frequency-dependent (Hedrick,
1987; Lewontin, 1988).

D′ is equal to D normalized by its maximum given the allele frequencies; r2 can similarly be
normalized by its maximum to obtain . This quotient is the squared correlation
coefficient between allelic indicator variables at two loci, standardized by the maximum
squared correlation possible given the frequencies of the alleles at the two loci. As D′2 and
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 both have numerator D2, it is natural to compare their different normalization
procedures to determine if they represent the same quantity. We can rewrite  as

(14)

Here,  is defined as pab − papb evaluated at the value of pab that produces the maximum
of D2 as a function of pa and pb. This quantity differs across components of the allele frequency
space, as described in Section 2.1. Comparing equation 14 to equation 13, we find that

The sign of D determines how Dmax is computed. Thus, whether , and consequently
 depends on the sign of D. For example, consider S1, in which pa < 1/2, pb > 1/2,

and pa + pb > 1. In this component, Dmax equals  only when D is less

than 0 (pab < papb). In each of the eight components,  either when D < 0 or when
D > 0, but not in both cases (Table 1). Thus, the region in which  includes some
but not all of the space of possible values of pa, pb, and pab. When  D′2 is always
greater than 

As D′2 and  are functions of pa, pb, and pab, we can fix one of these three variables and
examine the relationship between D′2 and  as a function of the other two variables. If
we fix pab, then the domain for (pa, pb) is a triangle, as pa ≥ pab, pb ≥ pab, and pa + pb − 1 ≤
pab. Inside this triangle, Figure 8 shows the values of (pa, pb) where  for pab=0.1,
0.4, and 0.7. The three graphs represent the three qualitatively different patterns observed for
such graphs as pab varies from 0 to 1. For pab = 0.1, the domain spans all eight components,
S1 to S8. For pab = 0.4, the domain spans all eight components, but in two of these components
there is no region in which  and in two other components there is no region in
which . Finally, for pab = 0.7, the domain spans only two components, S2 and
S3. The transition points between the three cases occur at pab = 1/4, where the boundary line
pab = papb crosses the point (1/2, 1/2), and at pab = 1/2 where the space of allowable (pa, pb)
becomes restricted to the upper right quadrant.

As a function of pab, we can calculate the fraction of the space of possibilities where
. For a given pab, the space of possible values of (pa, pb) is bounded by pa = pab,

pb = pab, and pab = pa + pb − 1, producing a triangle of area (1 − pab)2/2. For 0 ≤ pab ≤ 1/4, we
calculate the area where  by subtracting the area where the two quantities are not
equal from the total area possible, yielding

(15)

For 1/4 ≤ pab ≤ 1/2, we calculate the area where  by summing areas in each quadrant
and noting that the upper left and lower right quadrants have the same area. This area is

(16)

For 1/2 ≤ pab ≤ 1, the calculation of the area where  is simplified due to the
restriction of the space of possible values of (pa, pb) to the upper right quadrant. This area is
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(17)

Computing the integrals in equations 15–17 and then dividing by the area of the space of
possible values of (pa, pb), we find that the fraction of the space where  is

(18)

Figure 9 shows a plot of this function. The minimum fraction of the space where
 is 0.31357, which occurs at pab ≈ 0.37162. The fraction is generally large for large

pab; when pab is large the probability is quite high that D > 0. In S2 and S3, positive D leads to
.

By integrating the function in equation 18 from 0 to 1, we can obtain the fraction of the space
of all three variables – pa, pb, and pab – in which . Again using the dilogarithm,
we obtain

for the probability that a set of values of pa, pb and pab chosen from the space of possible values
leads to  Numerically, this probability is ~0.72683.

3 Discussion
In this paper, we have examined the mathematical relationship between r2 and allele
frequencies, producing a variety of results concerning the frequency dependence of r2. By
evaluating the volume below  we found that the mean  over the space of possible
allele frequencies is only ~0.43051. This number is rather low, implying that for much of the
allele frequency space, the value of r2 is severely restricted. We also calculated the formula
for the proportion of the allele frequency space where it is possible for r2 to exceed some
constant c (equation 6). Using the cutoff of c = 4/5 commonly employed for examining the
genomic coverage of a set of “tag SNPs” in association studies (e.g. Jorgenson & Witte,
2006), we find that it is possible for r2 to be greater than or equal to this value in only ~0.14232
of the allele frequency space.

An additional scenario that we considered is the case in which one of the allele frequencies
was set to a fixed known value. This is the situation, for example, in an association study in
which a marker locus with fixed known allele frequencies is used to detect a trait locus of
unknown allele frequencies. By assuming a uniform distribution for the frequency of an allele
at the other locus, we found that the marker minor allele frequency able to detect high LD with
the largest range of values for the minor allele frequency of the trait locus was ~0.30131, not
1/2 as might have been expected from an assumption that the most polymorphic markers have
the greatest potential for LD detection. Although the specific location of the optimum may
change with the distribution of allele frequencies in an actual population, this result has the
implication that algorithms that choose informative markers for detecting LD might produce
improved performance if they ensure that a considerable fraction of markers near the optimum
frequency are selected. The sharp allele frequency dependence of r2 may also mean that it is
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desirable to choose a range of allele frequencies among “tag SNP” markers in order to increase
the probability of capturing LD with unknown trait loci.

Another perhaps surprising result, obtained by considering the effect of recombination on the
value of r2 for different genealogical histories, is that in certain contexts recombination can
increase rather than decrease the value of r2. This is somewhat counterintuitive; a typical
scenario of loss of LD with recombination involves a decoupling of derived mutations that
have occurred sequentially on the same lineage, such as in recombination events between
haplotypes ab and AB of Genealogy 1 in Figure 6. In our scenarios where recombination can
increase LD, in Genealogy 2 of Figure 6, the LD is produced by recombination that produces
sufficient coupling between derived mutations that have occurred in parallel on separate
lineages. This type of scenario is likely to be a rather unusual outcome under common
assumptions about evolutionary processes; however, we did observe that such scenarios
accounted for a nontrivial proportion of the space of possible values for (pa, pb, pab).

Finally, we considered the relationship between r2 and another commonly used measure of
LD, D′. We found that a close connection exists between r2 and D′, in that D′2 is often equal
to  For any haplotype frequency pab, this equality occurs over at least ~31.357% of the
space of possible allele frequencies (pa, pb), and when  and D′2 are not equal, 
is always less than D′2. Because of its connections to both r2 and D′, there may exist some
potential for  which we term r2′, to serve as a useful LD measure. Although many
measures of LD have situations in which they are particularly applicable (Hedrick, 1987;
Devlin & Risch, 1995; Hudson, 2001; Morton et al., 2001), r2′ – the squared correlation
coefficient between allelic indicator variables at two loci standardized by the maximum squared
correlation possible given the frequencies of the alleles at the two loci – is one of relatively
few that can be used when a measure with allele-frequency-independent range is desired.

Note that in various computations we have considered the entire unit square as the domain for
pa and pb. Some treatments of LD reorient alleles and loci so that only S6 or S7 is examined
(e.g. Amos, 2007), or otherwise use a reorientation that spans more than one of the eight
components in Figure 1 (e.g. Morton et al., 2001). Consideration of only a single component
in some cases will yield results that are identical on the allowed domain to those presented (e.g.
Figure 2). Particularly in the comparison between r2′ and D′2, however, restriction of the space
of allele frequencies may lead to somewhat different results. Within a component,  is
achieved when the haplotype with the major alleles at both loci has as high a frequency as
possible, so that the normalization in the computation of r2′ depends only on the allele
frequencies pa and pb. However, the normalization in the computation of D′ additionally takes
into account which alleles are coupled, so that it depends on whether or not pab exceeds
papb. Thus, reorienting alleles so that pa ≤ pb, pa ≤ 1/2, and D > 0, as is done by Morton et
al. (2001), leads to a domain for pa and pb that cannot be obtained by dividing the plots in
Figure 8 along one of their lines of symmetry. Consequently, given pab, the reorientation of
Morton et al. (2001) will produce a different result for the probability that r2′ is equal to D′2
over the allowed domain.

We have additionally assumed Uniform(0,1) distributions of allele frequencies in many
computations. This assumption can be viewed as a basis for assessing functions of allele
frequencies across their entire ranges, rather than as an assumption that these distributions
apply in any particular population. Our primary interest has been to provide details on the
theoretical properties of r2; future work may have the potential to exploit the properties that
we have uncovered, such as in interpreting unusual LD behavior, or in improving the design
of disease-mapping studies that rely on patterns of LD.

VanLiere and Rosenberg Page 10

Theor Popul Biol. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgments
We thank two reviewers for their comments. This work was supported by NIH grants R01 GM081441 and T32
HG00040 and by grants from the Alfred P. Sloan Foundation and the Burroughs Wellcome Fund.

References
Amos CI. Successful design and conduct of genome-wide association studies. Human Molecular Genetics

2007;16:R220–R225. [PubMed: 17597095]
Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative

set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium.
American Journal of Human Genetics 2004;74:106–120. [PubMed: 14681826]

de Bakker PIW, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency and power in genetic
association studies. Nature Genetics 2005;37:1217–1223. [PubMed: 16244653]

Devlin B, Risch N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics
1995;29:311–322. [PubMed: 8666377]

Eberle MA, Ng PC, Kuhn K, Zhou L, Peiffer DA, Galver L, Viaud-Martinez KA, Taylor Lawley C,
Gunderson KL, Shen R, Murray SS. Power to detect risk alleles using genome-wide tag SNP panels.
PLoS Genetics 2007;3:1827–1837. [PubMed: 17922574]

Eberle MA, Rieder MJ, Kruglyak L, Nickerson DA. Allele frequency matching between SNPs reveals
an excess of linkage disequilibrium in genic regions of the human genome. PLoS Genetics
2006;2:1319–1327.

Hedrick PW. Gametic disequilibrium measures: proceed with caution. Genetics 1987;117:331–341.
[PubMed: 3666445]

Hill WG, Robertson A. Linkage disequilibrium in finite populations. Theoretical and Applied Genetics
1968;38:226–231.

Hudson, RR. Linkage disequilibrium and recombination. In: Balding, DJ.; Bishop, M.; Cannings, C.,
editors. Handbook of Statistical Genetics. Chichester, UK: Wiley; 2001. p. 309-324.chapter 11

Jorgenson E, Witte JS. Coverage and power in genomewide association studies. American Journal of
Human Genetics 2006;78:884–888. [PubMed: 16642443]

Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes.
Nature Genetics 1999;22:139–144. [PubMed: 10369254]

Lewontin RC. The interaction of selection and linkage. I. General considerations; heterotic models.
Genetics 1964;49:49–67. [PubMed: 17248194]

Lewontin RC. On measures of gametic disequilibrium. Genetics 1988;120:849–852. [PubMed: 3224810]
Morton NE, Zhang W, Taillon-Miller P, Ennis S, Kwok P-Y, Collins A. The optimal measure of allelic

association. Proceedings of the National Academy of Sciences USA 2001;98:5217–5221.
Plagnol V, Wall JD. Possible ancestral structure in human populations. PLoS Genetics 2006;2:972–979.
Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models and data. American Journal of

Human Genetics 2001;69:1–14. [PubMed: 11410837]
Slatkin M. Linkage disequilibrium – understanding the evolutionary past and mapping the medical future.

Nature Reviews Genetics 2008:9.
Terwilliger JD, Hiekkalinna T. An utter refutation of the ‘Fundamental Theorem of the HapMap’.

European Journal of Human Genetics 2006;14:426–437. [PubMed: 16479260]
Tishkoff SA, Dietzsch E, Speed W, Pakstis AJ, Kidd JR, Cheung K, Bonné-Tamir B, Santachiara-

Benerecetti AS, Moral P, Krings M, Pääbo S, Watson E, Risch N, Jenkins T, Kidd KK. Global patterns
of linkage disequilibrium at the CD4 locus and modern human origins. Science 1996;271:1380–1387.
[PubMed: 8596909]

Weisstein, EW. CRC Concise Encyclopedia of Mathematics. 2nd edition. Boca Raton: Chapman & Hall/
CRC; 2003.

Wray NR. Allele frequencies and the r2 measure of linkage disequilibrium: impact on design and
interpretation of association sutdies. Twin Research and Human Genetics 2005;8:87–94. [PubMed:
15901470]

VanLiere and Rosenberg Page 11

Theor Popul Biol. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association.
Nature Reviews Genetics 2004;5:89–100.

VanLiere and Rosenberg Page 12

Theor Popul Biol. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
The unit square of possible combinations of allele frequencies (pa,pb), divided into eight
components. The other seven components can all be obtained from a transformation of S1 by
switching alleles at locus 1 (reflection over the line pa = 1/2), switching alleles at locus 2
(reflection over the line pb = 1/2), switching loci (reflection over the line pb = pa), or some
combination of these three exchanges.

VanLiere and Rosenberg Page 13

Theor Popul Biol. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
 as a 3-dimensional plot, with a contour plot shown below.
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Figure 3.
The proportion of the allele frequency space where it is possible for r2 to be greater than a
constant c. By “allele frequency space” we mean the unit square in which pa and pb each range
from 0 to 1.
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Figure 4.
The mean of  assuming pa is constant and pb is distributed uniformly on the unit
interval, as a function of pa.
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Figure 5.
 as a function of pa and pa−pb assuming pb ≤ pa ≤ 1/2. The domain of the graph corresponds

to the component S6 in Figure 1.
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Figure 6.
Two possible nonrecombinant genealogies. In Genealogy 1, allele a arises on a haplotype that
contains allele b. In Genealogy 2, allele a arises on a haplotype that does not contain allele b.

VanLiere and Rosenberg Page 18

Theor Popul Biol. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Example of a situation in which recombination can produce an increase in r2, for pa = 0.3 and
pb = 0.4. Here, pab is the frequency of the recombinant haplotype in the setting of Genealogy
2 in Figure 6. The dashed line is the value of r2 assuming no recombination.
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Figure 8.
The portion of the space of values of (pa, pb) in which . The red triangle indicates
the boundary of the set of values of (pa, pb) possible for a given pab. The blue shaded space
indicates regions where . Each of the three plots represents a “slice” of the three-
dimensional space for (pa,pb,pab), holding pab constant. (A) pab = 0.1. (B) pab = 0.4. (C)
pab = 0.7.
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Figure 9.
The fraction of the space of possible values of (pa,pb,pab) for which  as a function
of pab.
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