
A Genetically Hard-Wired Metabolic Transcriptome in
Plasmodium falciparum Fails to Mount Protective
Responses to Lethal Antifolates
Karthikeyan Ganesan1.¤, Napawan Ponmee1,2,3., Lei Jiang1, Joseph W. Fowble1, John White1, Sumalee

Kamchonwongpaisan3, Yongyuth Yuthavong3, Prapon Wilairat2, Pradipsinh K. Rathod1*

1 Department of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America, 2 Department of Biochemistry, Faculty of Science,

Mahidol University, Bangkok, Thailand, 3 National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency,

Klong Luang, Pathumthani, Thailand

Abstract

Genome sequences of Plasmodium falciparum allow for global analysis of drug responses to antimalarial agents. It was of
interest to learn how DNA microarrays may be used to study drug action in malaria parasites. In one large, tightly controlled
study involving 123 microarray hybridizations between cDNA from isogenic drug-sensitive and drug-resistant parasites, a
lethal antifolate (WR99210) failed to over-produce RNA for the genetically proven principal target, dihydrofolate reductase-
thymidylate synthase (DHFR-TS). This transcriptional rigidity carried over to metabolically related RNA encoding folate and
pyrimidine biosynthesis, as well as to the rest of the parasite genome. No genes were reproducibly up-regulated by more
than 2-fold until 24 h after initial drug exposure, even though clonal viability decreased by 50% within 6 h. We predicted
and showed that while the parasites do not mount protective transcriptional responses to antifolates in real time, P.
falciparum cells transfected with human DHFR gene, and adapted to long-term WR99210 exposure, adjusted the hard-wired
transcriptome itself to thrive in the presence of the drug. A system-wide incapacity for changing RNA levels in response to
specific metabolic perturbations may contribute to selective vulnerabilities of Plasmodium falciparum to lethal
antimetabolites. In addition, such regulation affects how DNA microarrays are used to understand the mode of action of
antimetabolites.
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Introduction

Malaria parasites infect over 300 million people around the

world and the most virulent species, Plasmodium falciparum, kills 1–2

million individuals per year [1–3]. The availability of genome-

wide DNA microarrays for P. falciparum, has facilitated insights into

many complex biological problems. During erythrocytic develop-

ment, over 3,000 genes are expressed in a cascade of simple,

mostly unique, sigmoidal patterns [4–7]. While some genes are

expressed at a steady rate, hundreds of genes show at least 30-fold

change in expression during the erythrocytic cycle [4]. In addition

DNA microarrays have been used to understand stage-specific

differentiation [8–10], to determine invasion preferences [11,12],

and possibly pathogenesis [13–16].

At first, it was expected that DNA microarrays would also

permit a quick, unbiased look at the mode of action of antimalarial

drugs, particularly simple antimetabolites [17]. An underlying

premise was that parasites would sense metabolic perturbations

from a drug and make compensatory changes in its transcriptome

to adjust for the perturbations. Indeed, studies in other organisms

have demonstrated the value of such approaches. In Saccharomyces

cerevisiae, Mycobacterium tuberculosis, Candida albicans, mammalian cells

and even plants, specific antimetabolites up-regulated dozens of

target-related RNA by greater than 10-fold [18–23]. In many of

these systems confidence in the power of DNA microarrays to

reveal mechanisms of drug action come from perturbation of well-

understood metabolic pathways.

Our early preliminary studies had suggested that RNA levels for

metabolic targets in malaria parasites are not sensitive to lethal

antifolates nor to resulting specific metabolic perturbations [24–

27]. Here, in a complete, carefully controlled microarray study, we

definitively demonstrate that global gene expression in malaria

parasites is regulated in a fundamentally different way from model

organisms such as E. coli and yeast. Parasite transcription for

intermediary metabolism is hard-wired and not responsive to

specific, lethal, metabolic perturbations. We further demonstrate

PLoS Pathogens | www.plospathogens.org 1 November 2008 | Volume 4 | Issue 11 | e1000214



that candidate pathways involved in drug-induced death may still

be identified through unconventional strategies, including probing

for subtle RNA changes with a large number of replicates and

tracking alterations in the hard-wired transcription program itself.

Results

A defined experimental system
To guard against broad pleotropic transcriptional effects that

may be difficult to interpret in drug-treated parasites, our study

exploits the potency and specificity of the antifolate WR99210

against P. faciparum (Structure, Figure S1). The parasite clone Dd2

fails to proliferate when exposed to 10 nM WR99210 for 48 h

[25,28–30]. A concentration of 10 nM was selected because it is

enough to kill all sensitive Dd2 cells (EC50 = 0.1 nM). Biochemical

assays and genetic complementation studies (using human DHFR)

have established P. falciparum DHFR-TS as the major target of

WR99210 [25,28–30].

To identify transcriptional changes that were directly related to

death events caused by the lethal effects of WR99210 on DHFR,

the present battery of microarray hybridizations included a control

WR99210-resistant cell-line, B1G9, which harbors a single

integrated copy of human DHFR in a Dd2 background [25,29].

B1G9 is resistant to as much as 500 nM WR99210.

Finally, to help frame drug-induced changes in RNA levels in

the context of cell physiology, Dd2 and B1G9 parasite lines were

exposed to 10 nM WR99210 for varying time periods and the

effects assessed with respect to clonal cell viability, continued

synthesis of nucleic acids, RNA levels for individual genes coding

for the effected pathways, and the global transcriptome.

Robust metabolism and development
A comparison of biochemical changes, morphological alter-

ations and loss of cell viability in WR99210-treated Dd2 provided

the first indication that malaria parasites resisted broad metabolic

or developmental arrests in response to specific lethal perturba-

tions. Using clonal viability as a measure of drug-induced death

[31], 50% of P. falciparum trophozoites became less viable after as

little as 6 h of exposure to 10 nM WR99210 (p,0.01) and

practically all parasite cells were non-viable after 12 h of drug

exposure (Figure 1A). However, even after 24 h of WR99210

treatment, trophozoites continued to follow a preordained

metabolic program for converting short pulses of radioactive

hypoxanthine into DNA, albeit with a lower amplitude (Figure 1B).

Microscopic examination of WR99210-treated trophozoite forms

of the parasite failed to show morphological changes until about

24 h after treatment when the schizonts appeared unhealthy

(Figure 1C). At subsequent hours, control cells released merozoites

and generated healthy rings but the WR99210-treated parasites

remained as ill schizonts. In parallel assays, WR99210-resistant

B1G9 cells behaved like untreated Dd2 (data not shown).

Tracking genome-wide changes
In a single large controlled experiment, Plasmodium transcrip-

tome changes were followed in WR99210-treated parasites using

DNA microarrays with 7,685 oligonucleotide probes per slide,

representing all open reading frames in the genome [4,17]. For

added value and confidence, the custom array also carried multiple

probes per gene for key enzymes in the target pathway of folate and

pyrimidine metabolism (Table S1 and S3). RNA samples from

synchronized Dd2 and B1G9 trophozoites, that had been treated

with 10 nM WR99210 for varying durations, were hybridized

against a common pool of trophozoite RNA from a cognate clone

(Figure 2A). For each time point, samples from biological

duplicates were hybridized to four microarray slides, including

dye exchanges. The biological duplicates were from independently

propagated cultures to minimize misleading, stochastic variations

in gene expression for surface proteins ([32], Figure S2 and Figure

S3 for description of data normalization and variation between

technical and biological variability). In total, the present

normalized data is derived from 123 microarray hybridizations.

As discussed below, this redundancy and accuracy was necessary

to interpret some small but informative perturbations in RNA in P.

falciparum. For some genes, it was possible to detect as little as 10–

20% changes in RNA levels, with statistically significant

reproducibility. Details of the experimental design, raw output,

and statistical analysis are presented in MIAME-compliant format

to the NIH-based GEO database (Accession # GSE9724 for

WR99210 data from Seattle and # GSE9853 and # GSE9868 for

the pyrimethamine data from Bangkok).

‘‘Unresponsive’’ target pathways
During normal 48-hour developmental changes in erythrocytes,

RNA levels for individual enzymes for pyrimidine and folate

biosynthesis change nearly 10-fold [4]. During continual WR99210

treatment for 24 h, malaria parasites showed very little deviation in

their transcriptome, even as they died from antifolate treatment.

First, expression of DHFR-TS, the immediate target of

antifolates was examined in detail. Fluorescently labeled cDNA,

generated from WR99210-treated and non-treated cells, was

hybridized to 12 unique oligonucleotides derived from different

parts of the 1,863 bp DHFR-TS coding strand (Figure 2A and

2B). Regardless of the WR99210-susceptibility status of the

parasite clone, and regardless of whether the cells were treated

with solvent or the antifolate, hybridization of fluorescent cDNA to

most probes for DHFR-TS did not increase (and actually

decreased slightly) during the 24 h normal progression of

trophozoites to schizonts, (Figure 2D). Based on combined data

from all 12 probes, RNA coding for DHFR-TS did not increase by

more than 20% at any time point after WR99210-treatment

(Figure 2C). This microarray-based analysis of DHFR-TS is

Author Summary

Traditional knowledge of gene regulation, learned largely
from non-pathogenic model organisms such as E. coli,
yeast, and mice, suggests that RNA for metabolic pathways
are regulated in large part by DNA-binding transcriptional
factors that are responsive to cellular metabolic needs. We
demonstrate that the malaria-causing Plasmodium falci-
parum parasites, under lethal drug pressure from an
antifolate with a known mechanism of action, are
incapable of large reproducible changes in RNA levels for
the target pathways, or for any other gene throughout the
genome. Small RNA changes, possibly informative of
perturbed pathways, can be detected in dying parasites.
In addition, significant RNA changes are seen when the
hard-wired program, governing RNA levels, itself is altered.
Our data formally proves that RNA levels for intermediary
metabolism in malaria parasites are largely predetermined.
We propose that as a parasite with a complex life cycle
travels from one largely predictable intracellular biochem-
ical environment to another, such hard-wiring may be
sufficient to manage transcript levels for intermediary
metabolism without employing sensory functions. Such a
system-wide host–parasite difference in gene regulation
may create unexpected pharmacological opportunities
when important target pathways are rigid in the parasite
but dynamically regulated in host cells.

Robust RNA in Dying Malaria Parasites
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consistent with earlier limited measurements using RNA Protec-

tion Assays (RPA) [25] and qRT-PCR [33]. For additional

certainty, given recent description of differential expression of

small regulatory RNA within the coding region of mammalian

DHFR [34,35], we undertook an independent detailed analysis of

DHFR-TS expression using qRT-PCR spanning twelve different

parts of the DHFR-TS coding region. As seen with the different

unique oligonucleotide microarray probes (Figure 2D), qRT-PCR

(Figure 2E–F) unambiguously confirmed that DHFR-TS RNA, or

parts of DHFR-TS RNA, were not overproduced at protective

levels in parasites treated with the lethal antimetabolite WR99210.

Since the 10 nM WR99210 treatment was at 100-times the EC50

for Dd2 (0.1 nM), complete protection through increases in target

RNA levels would require at least 100-fold increases in DHFR-TS

RNA. Even a 10% protection from a RNA-based mechanism

would require at least a 10-fold increase in DHFR-TS RNA.

Second, in addition to DHFR-TS, the expression of fourteen

additional enzymes in the folate and pyrimidine biosynthesis

pathways also did not deviate significantly from their normal

transcriptional patterns. This analysis was based on at least two

different microarray probes for each of the enzymes listed in Figure 3.

The only two RNA species that showed small, consistent, significant

changes from their normal expression program were serine

hydroxymethyltransferase (SHMT) and a ribonucleotide reductase

small subunit gene (RNR2). However, even these two responsive

RNA species showed, at most, only a 2-fold change at very late time

points (maximum 105% increase at 24 h, p,0.002). Even though the

methylenetetrahydrofolate-using thymidylate synthase is thought to

be the ultimate target of DHFR inhibition, the unresponsiveness of

pyrimidine biosynthesis to DHFR-TS inhibitor have not previously

been reported. Just as our preliminary microarray data had reported

[24,26,27], a qRT-PCR study from an independent group has also

shown that RNA for folate-biosynthesis enzymes are not up-regulated

in response to pyrimethamine-treatment [33]. This other study did

not look at changes in RNR2 and did not pickup the subtle drug-

dependent alterations in transcripts for SHMT that are seen with the

current large microarray data set.

‘‘Unresponsive’’ genome
Given the inability of P. falciparum transcriptional program to

overproduce RNA for DHFR-TS and related enzymes after

antifolate treatment, we wanted to understand the extent of the

overall transcriptional obstinacy in drug-sensitive parasites. In the first

3 h after WR99210 treatment, when death events were underway

(p,0.05, Figure 1A), no genes showed statistically significant

deviations from their normal developmental program that was

greater than 2-fold in expression. Even 24 h after WR99210-

treatment, when all cells are completely committed to die, greater

than 99% of the genes in the Plasmodium transcriptome did not deviate

significantly in gene expression.

Death-related ‘‘RNA whispers’’
By exploiting our experimental design, which included side-by-

side treatment of isogenic sensitive and resistant malaria parasite

Figure 1. The antifolate WR99210 rapidly triggers commitment to death but fails to shut down metabolism or development. While
10 nM WR99210 is sufficient to commit 50% of the cells to lethality within 6 h, the parasites continue to obey normal metabolic pattern for
hypoxanthine uptake and incorporation into DNA (albeit at a lower amplitude) and continue to develop to schizogony for upto 24 h. (A) Rapid
decrease in clonal viability of WR99210 exposed Dd2 cells. Trophozoite forms of infected erythrocytes in 10 ml cultures were exposed to 10 nM
WR99210 for varying periods. Washed cells were diluted and plated in 96-well plates (see methods). Control diluted cells revealed about 20 positive
colonies starting at 12–16 days. (B) Continued incorporation of hypoxanthine in WR99210-treated cells. Young trophozoite forms of infected
erythrocytes in 10 ml cultures were exposed to 10 nM WR99210 for varying periods. Cells were pulsed directly with radioactive hypoxanthine for 1 h.
Incorporation of radioactive hypoxanthine into DNA was measured by precipitation of nucleic acids on glass fiber filters. Maximum incorporations
was seen at 4–8 h into trophozoite development. N; Solvent-treated cells, &; WR99210-treated cells. (C) Synchronized Dd2 cells at early trophozoite
stage were treated with 10 nM WR99210 or 0.1% DMSO (control) for 48 h. Parasites were visualized by light microscopy of Giemsa-stained blood
smears. Images at 6 h, 12 h, 24 h, and 30 h of WR99210 treatment are shown. Based on microscopy, the parasites followed normal development up
to about 24 h after WR99210 treatment.
doi:10.1371/journal.ppat.1000214.g001

Robust RNA in Dying Malaria Parasites
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cell lines with a potent, specific, and lethal antifolate, it was

possible to detect small reproducible changes in RNA in dying

cells and only in dying cells.

Figure 2. RNA for the antifolate target dihydrofolate reduc-
tase-thymidylate synthase is not overexpressed in WR99210-
treated cells. Using multiple probes for DNA microarrays, as well as
multiple primer sets to amplify different regions of the DHFR-TS cDNA
by qRT-PCR, it is shown that mRNA for DHFR-TS is not overexpressed in
protective amounts after antifolate treatment. Note that the microarray
data color bar has been set at high sensitivity to pick up any small but
significant and reproducible changes in expression. (A) Design of the
DNA microarray experiment. This simple scheme was repeated twice for
each combination of treatments (WR99210 or DMSO solvent) and
varying parasite clones (Dd2 vs B1G9) in Seattle. Young trophozoites
were split into treated cells (3 h to 24 h), and untreated cells (0 h). After
WR99210 treatment at 10 nM concentrations for various durations, RNA
was extracted, converted to cDNA, fluorescently labeled, and hybridized
against RNA from pooled reference untreated cells (0 h). One,
duplicates from the same biological samples were run with dye
inversion. Two, the exact scheme was repeated with independently
grown parasites, thus generating 4 hybridizations per time point of
WR99210 treatment. This scheme was labeled SD, for Sensitive cells
treated with the drug analog WR99210. Finally, the whole scheme of
duplicates, was repeated 3 more times (Sensitive clone Dd2 with Solvent
(SS), Resistant clone B1G9 with the drug analog WR99210 (RD), and
Resistant clone B1G9 with Solvent (RS). Altogether this resulted in
microarray data generated from over 123 slides, each carrying about
7,685 oligonucleotide probes. Details of the large experiment are
presented in the Methods section. (B) Illustration of regions of DHFR-TS
gene queried with oligonucleotide probes (black plus blue boxes) and
qRT-PCR primers (black boxes) to measure DHFR-TS mRNA levels in
parasites treated with the antifolate WR99210. The DNA sequences
corresponding to the 12 unique microarray oligonucleotide probes for
DHFR-TS are presented in Table S1. The DNA sequences for the primers
used for DHFR-TS qRT-PCR are presented in Table S2. (C) WR99210-
treated sensitive cells do not increase DHFR-TS RNA to high levels, as
judged by DNA microarrays data that was collected and averaged from
12 different, unique DNA microarray probes representing different parts
of the complete DHFR-TS coding region (see Figure 3B). Hybridization
of fluorescent cDNA samples originating from parasites treated with
WR99210 for various times (red fluorescence) were compared to non-
treated parasites (green fluorescence) and represented as R/G ratios on
a log2 scale: A black box signifies no change in expression compared to
starting trophozoites, a red box represents some over-expression and a
green box designates a decrease in DHFR-TS RNA, compared to starting
trophozoites (time 0 h). Missing data is shown as gray. Each bar (SD, SS,
RD, and RS) represents different combinations of cell clones (S or R) and
treatment (D or S), starting from 3 h to 24 h of treatment. (D) Individual
DHFR-TS probes revealed no significant differences in RNA levels from
within the DHFR-TS coding region. (E) WR99210-treated sensitive cells
do not increase DHFR-TS RNA to high levels as judged by qRT-PCR (3–
24 h treatment). To independently measure the magnitude of DHFR-TS
RNA levels in antifolate treated Dd2 cells, qRT-PCR was applied to 4
different regions of the DHFR-TS coding mRNA sequence. The primer
pairs from around nucleotide 13, 135, 1409, and 1542 of the coding
region, confirmed that during the 24 h maturation of DHFR-TS, solvent-
treated parasites showed a gradual decrease in DHFR-TS RNA.
Furthermore, while the qRT-PCR revealed a slightly higher level of
DHFR-TS RNA in WR99210-treated Dd2 cells at 24 h, this was not due to
an increase over the RNA present before initiation of drug treatment.
DHFR-TS mRNA level are represented for solvent-treated cells at 9 h and
15 h (gray bar), for solvent-treated cells at 24 h (light-green bar), for
WR99210-treated cells at 9 h and 15 h (black bar), and for WR99210-
treated cells at 24 h (dark-green bar). Data are shown as means6SEM.
(F) DHFR-TS RNA, probed across the whole coding region, failed to
show up-regulation in WR99210-treated Dd2 cells at 24 h. There was a
very small but consistent and significant failure to undergo normal
repression at 24 h. However, the failure to overexpress protective
quantities of DHFR-TS was consistent with the DNA microarray data.
DHFR-TS mRNA level in solvent-treated cells (light-green bar) and in
WR99210-treated cells (dark-green bar) are shown as means6SEM.
doi:10.1371/journal.ppat.1000214.g002

Robust RNA in Dying Malaria Parasites
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Figure 3. As seen for DHFR-TS RNA levels, RNA for other enzymes in the folate and pyrimidine biosynthesis do not increase to high
levels in WR99210-treated sensitive-parasites, Dd2. DNA microarray data was examined, not just from the coding region of the known
antifolate target DHFR-TS (Figure 2), but also from the coding sequences for all the known enzymes of de novo pyrimidine and folate metabolism.
Each gene was probed with at least two unique oligonucleotide probes (see Table S3 for oligonucleotide sequences). As in Figure 2C, hybridization of
fluorescent cDNA originating from parasites treated with WR99210 for various times (red fluorescence) was compared to non-treated parasites (green
fluorescence) and represented as R/G ratios on a log2 scale: A black box signifies no change in expression compared to starting trophozoites, a red
box represents some over expression and a green box designates a decrease in DHFR-TS RNA, compared to starting trophozoites (time 0 h). Each bar
(SD, SS, RD, and RS) represents different combinations of cell clones (S or R) and treatment (D or S), starting from 3 h to 24 h of treatment.
doi:10.1371/journal.ppat.1000214.g003

Figure 4. Death-related up-regulated expression changes in WR99210-treated parasites. Genes whose expression changed in dying cells
but not in three other controls were identified. Expression levels were compared between SD and SS, SD and RD, and SD and RS at each time point.
Probes were selected against these three comparisons jointly, with multiple testing adjusted p,0.01. Thirty four genes showed a drug-dependent
increase in gene expression (Table S4 for PlasmoDB gene number).
doi:10.1371/journal.ppat.1000214.g004

Robust RNA in Dying Malaria Parasites
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Out of 7,685 oligonucleotides examined, there were 34 genes

whose expression levels increased at least at one time point during

the 24 h WR99210 study (Figure 4, and Table S4 for gene names,

gene ID numbers, and fold-changes). There were 21 genes whose

expression levels decreased at least at one time point (Figure 5 and

Table S5). These changes were considered antifolate death-related

genes (AFDG) because they were not seen in solvent-treated, drug-

sensitive Dd2 parasites, and were not seen in solvent-treated or

WR99210-treated resistant B1G9 cells.

The numerous death-related RNA changes were subtle and

probably not protective, but they were statistically significant and

possibly reflected larger physiologically important metabolic

perturbations in dying parasite cells. The death-related transcripts

provide the first insights into downstream events that may connect

inhibition of DHFR-TS by antifolates to ultimate loss of cell

viability (Table S4 and S5 for PlasmoDB gene numbers). Given

the known mechanism of action of antifolates, the presence of

ribonuceotide reductase and DNA repair endonuclease on this list

was satisfying. The intriguing presence of putative cell-signaling

proteins (phosphotyrosine phosphatase activator; a GTP binding

protein; a Rab18 GTPase; and a calcium-dependent protein

kinase) and some potential degradative enzymes (cysteine protease

SERA3; protease; 20S proteosome beta 4) on the list of death-

related genes should stimulate investigations of their possible role

in antifolate toxicity. The list of death-related genes also included

some known enzymes whose role in antifolate-mediated death is

not obvious but should also be of interest (inorganic pyrophos-

phatase; gamma-glutamylcysteine synthetase; elongation factor

Tu; and long-chain fatty acid ligase-oxalyl CoA decarboxylase).

Finally, this genome-wide analysis revealed that, of the 55

antifolate-triggered small transcript changes, there were 25

hypothetical gene products with no previous known functions in

other cell types.

Confirmation and cross-checks
To evaluate the validity and reliability of the small changes in

RNA levels detected in the DNA microarray experiments, two

different approaches were taken.

Conventional quantitative RT-PCR was used to compare RNA

expression in independently cultivated P. falciparum Dd2 cells,

before and after 10 nM WR99210 treatment for 24 h. This time

point was used because the most significant changes on the

microarray occurred after 24 h and the magnitude of the changes

approached the resolution limits of RT-PCR. Out of 3 randomly

chosen up-regulated genes, all 3 showed the expected small up-

regulation upon WR99210 treatment (Table 1). Out of 3

randomly chosen down-regulated genes, 2 showed down-regula-

tion as expected but one did not. Overall, we concluded that,

though small, most RNA ‘‘whispers’’ picked up by the DNA

microarrays were verifiable by qRT-PCR.

In a completely different approach, two partner labs from two

different parts of the world compared microarray data to

determine if antifolate-treated parasites shared some common

signatures in their transcriptome. Realistically, all the WR99210-

reponsive genes from the Seattle study were not expected to show

up in the Thailand study because the two groups were working

with independently printed arrays, different parasites strains (Dd2

vs TM4/8.2), different antifolates (WR99210 vs pyrimethamine),

and different treatment antifolate doses (99.9% vs 50% IC values).

Yet, some of the most relevant changes should be shared, given the

common mechanism of action of WR99210 and pyrimethamine.

Indeed, a genome-wide comparison of transcript differences in

antifolate-treated parasites versus solvent-treated parasites not only

revealed 4 genes that were up-regulated and 5 genes that were

down-regulated in concordance but the changes occurred at

approximately the same time after antifolate treatment (Figure 6).

In addition to some new proteins with no prior known functions,

Figure 5. Death-related down-regulated expression changes in WR99210-treated parasites. Genes whose expression changed in dying
cells but not in three other controls were identified. Expression levels were compared between SD and SS, SD and RD, and SD and RS at each time
point. Probes were selected against these three comparisons jointly, with multiple testing adjusted p,0.01. Twenty one genes showed a drug-
dependent decrease in gene expression (see Table S5 for PlasmoDB gene number).
doi:10.1371/journal.ppat.1000214.g005

Robust RNA in Dying Malaria Parasites
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this set included a DNA repair endonuclease (MAL13P1.346) and

a ubiquitin-conjugating enzyme (PF10_0330). It is not clear why

the drug-induced down-regulation of RNA for the cytoadherance

linked protein CLAG2 (PFB0935w) [36,37] was seen in this set,

but it appeared consistently in all other measures of antifolate

toxicity in the present microarray study.

Altered hard-wiring
It was hypothesized that even if a genetically determined hard-

wired transcriptome is insensitive to real-time arrival of antime-

tabolites in the cell, perhaps the hard-wired program itself may

evolve to tolerate an antimetabolite, particularly if given a chance

to adapt over successive generations. Indeed, in the present large

experiment with multiple controls, it was possible to identify genes

whose expression in the resistant B1G9 cells was rewired in

concordance with protection against the drug WR99210 (Figure 7

and Figure S4).

In this most compelling gene set, expression in the drug-resistant

B1G9 cells behaved normally (as in non-treated, drug-sensitive

Dd2 cells) only when B1G9 cells were under WR99210 pressure (Figure 7

and Table S6). In other words, expression of these genes was

rewired so that it matched normal cells only when the antifolate

WR99210 was present. The expression pattern of these genes was

dissimilar in dying, drug-sensitive Dd2 cells exposed to WR99210,

or resistant B1G9 cells grown without WR99210 (Figure 7). This

data set included up-regulation of subtilisin-like protease 2

(PF11_0381) which might promote egress and reinvasion [38–

42], an ADP-ribosylation factor-like protein (PFI1005w) [43,44],

and several ‘‘hypothetical proteins’’. While detailed follow up

studies will clearly be needed, the alteration in subtilisin-like

protease expression ties nicely with morphological arrest of

WR99210-treated parasites as ill schizonts and failure to see

reinvasion and rings at later time points (Figure 1C).

A second set of permanent genetic alterations in the transcription

program involved genes whose expression in the resistant B1G9

cells was different from the WR99210 sensitive Dd2, regardless of

whether the antifolate was present or not (Figure S4 and Table S7).

While it is possible that these genes also contribute to antifolate

resistance mechanisms, this second data list should be accepted with

caution since at least some of the RNA changes may have arisen

through adventitious changes in the cell line due to collateral genetic

damage during WR99210 adaptation.

Discussion

Many commonly accepted paradigms for designing selective

antimetabolites originate from the study of antifolates. Prior to the

availability of genome sequences, mechanisms of drug action and the

role of active site in selectivity were identified through intuitive

comparisons to normal metabolites [45] and validation through

resistance and transfection [46–48]. Our understanding of selective

and potent antimetabolites continues to improve: Low, fixed levels of

target enzyme in the parasite and the selective ability of host cells to

overexpress target enzymes can play an important role in drug

selectivity [25]. While useful, all such approaches have always relied

on existing knowledge of biochemistry, metabolism, and pharmacol-

ogy. Now, with the availability of genome sequences for Plasmodium

parasites [49–51], and accompanying tools such as DNA microarrays

[52,53], there is much enthusiasm about using open ended tools to

decipher drug action [17], particularly downstream biochemical and

cellular events that lead to cell death.

Table 1. qRT-PCR cross-check of representative microarray data.

Present label PlasmoDB ID Description Microarrays qRT-PCR

Ratio relative to time 0 SD/SS Ratio relative to time 0 SD/SS

SD24 SS24 SD24 SS24

AFDG-U13 PFD1120c membrane protein 3.42 1.03 3.31 2.82 0.98 2.89*

AFDG-U15 PF10_0330 ubiquitin-conjugating enzyme 2.70 1.14 2.37 3.18 0.82 3.89

AFDG-U28 PFC0710w inorganic pyrophosphatase 1.51 0.44 3.42 1.65 0.29 5.75

AFDG-D9 PFB0915w liver stage antigen 3 0.42 1.50 0.28 1.23 3.25 0.38

AFDG-D11 PFB0635w T-complex protein 1 0.68 2.01 0.34 1.70 1.46 1.17*

AFDG-D21 MAL6P1.231 lc fatty â CoA ligase/oxalyl CoA DC 0.90 3.77 0.24 0.86 1.95 0.44*

p-value of microarray data and half of qRT-PCR were ,0.05. * p,0.16.
doi:10.1371/journal.ppat.1000214.t001

Figure 6. Independent DNA microarray-based confirmation of
death-related expression changes in antifolate-treated para-
sites from two different labs. Early trophozoites (approximately
20 h post invasion) were treated with antifolates (10 nM WR99210 for
Dd2 and 0.5 mM pyrimethamine for TM4/8.2) for varying periods. RNA
was isolated and converted into labeled cDNA, and hybridized to a 70-
mer microarray as described in the Methods section. The expression
ratio of antifolate-treated to untreated control (SD/SS) at each time
point was plotted. WR99210 data at 3 h, 6 h, 9 h, and 24 h were
compared to pyrimethamine data at 2 h, 4 h, 8 h and 24 h.
doi:10.1371/journal.ppat.1000214.g006
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First, the present study shows that WR99210 treatment of P.

falciparum does not trigger overexpression of RNA for DHFR-TS,

the known target of the antifolate (Figure 2). Casual observation of

the microarray data clusters may suggest that DHFR-TS levels

increase slightly. However, the color representations can be

deceiving, in part because they are set at very high sensitivity

(Figure 2D). The actual DHFR-TS increases are neither large nor

statistically significant. While the follow up quantitative RT-PCR

(Figure 2E and 2F) did show slightly higher levels of DHFR-TS

RNA in treated cells, this was not due to RNA induction. The

small ‘‘increases’’ in DHFR-TS RNA level in WR99210-treated

Dd2 cells arise from a slight delays in normal degradation of

DHFR-TS RNA, mostly at very late time points in the dying cell.

When one asks the big question, do malaria parasites overexpress

the target DHFR-TS RNA to protective levels when treated with

the antifolate WR99210? The answer is clearly negative. Can

DNA microarrays be used to unambiguously assign mechanisms of

antifolate action through real-time changes in RNA levels after

drug exposure? The answer, again, is unambiguously negative.

Beyond the immediate target DHFR-TS, the parasites also do

not overproduce RNA for any of the enzymes of pyrimidine or

folate metabolism, two pathways known to be effected by

antifolates (Figure 3). Most importantly, long after P. falciparum

cells treated with WR99210 were committed to death, there were

no large consistent reliable increases in RNA for any of the genes

in the P. falciparum genome. The last observation shows that the

transcriptional obstinacy of P. falciparum is not just restricted to

folate biochemistry but permeates through much of the parasite’s

metabolic network involved in control of cell proliferation, and

eventually cell death. Since this large project started and has been

reported in preliminary form at scientific meetings, several other

smaller DNA microarray studies have also encountered transcrip-

tomes resistance to antimetabolites. This includes work on the

antimalarial choline analogue T4, the mitochondrial inhibitor

atovaquone, and most recently the polyamine biosynthesis

inhibitor DFMO [54–56]. Earlier claims that malaria parasites

show specific large transcriptional responses to chloroquine [57],

were reversed [58]. The later conclusion appears to be correct

since an independent study has also recently claimed a lack of real-

time changes in RNA levels in chloroquine-treated P. falciparum

[59]. Doxycycline a protein synthesis inhibitor for subcellular

organelles caused a whole-sale shutdown of apicoplast RNA, not

specific up-regulation of RNA for the target protein [60]. The

emerging general consensus is that malaria parasites do not mount

large increases in RNA in response to antimetabolites. Our

conclusions from the original discovery using antifolates remains

compelling because the study uses a potent, specific inhibitor

(WR99210) that targets a genetically validated target (DHFR):

Drugs with broad or poorly defined mechanism of action were

avoided because they can add to existing uncertainty about

malarial transcriptional responses.

Even though large protective changes in RNA were not seen in

drug-treated malaria parasites, the tightly controlled nature of the

present study led to unbiased glimpses into small, subtle

downstream RNA changes in drug treated malaria parasites.

One type of change involved small, reproducible real-time changes

in RNA in sensitive cells and only in the sensitive cells (Figure 3, 4

and 5). These include RNA coding for proteins involved in

relevant target pathways: ribonucleotide reductase of nucleotide

metabolism and serine hydroxymethyltransferase of folate metab-

olism. In addition, there were dozens of new genes whose

expression was perturbed and whose role in folate pharmacology

would be new and unexpected, including enzymes involved in

DNA replication, cell signaling, and protein turnover. Secondly,

while the hard-wired transcription for metabolic genes in malaria

parasites was largely unresponsive to drug-treatment in real-time,

the hard-wiring program itself could evolve in a population that is

under continual drug pressure. Such alterations in the transcrip-

tomes offer glimpses into new biochemistry related to drug action

(Figure 7). The last finding presents a clear caution to malaria

scientists who rely heavily on DNA transfections to study drug

action. Transfection of the malarial parasite line Dd2 with single

copy of the human DHFR originally proved the primary

mechanism of action of WR99210 [29]. However, emergence of

transformants always involve long delay phases, very similar to

those seen during in vitro selection for drug resistance in the

laboratory [61,62]. It is very likely that while human DHFR helps

confer resistance to WR99210, additional genetic changes in the

Figure 7. Adaptive changes in P. falciparum under long-term WR99210 exposure. Genes in resistant clone B1G9 under drug pressure (RD)
acted like sensitive clone Dd2 without drug pressure (SS). Expression levels of RS were compared with SS and RD (RS vs SS and RS vs RD) at
corresponding time points and correlation coefficient (r) were computed between SS and RD. Probes that met the criteria of p,0.01 for both
comparisons and r.0.85 were selected (Table S6 for PlasmoDB gene number).
doi:10.1371/journal.ppat.1000214.g007
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hard-wiring of gene expression are necessary to fully realize the

WR99210 tolerance and optimum growth in the transformed cell.

Identification of these secondary genetic changes are expected to

be fertile grounds for fully understanding downstream biochemical

changes that lead from DHFR-TS inhibition to cell toxicity.

The present findings add some general rules to help us

understand how some good antimalarial drugs work. First, as

gene amplification can contribute to drug resistance [63],

unconditional suppression of target protein and RNA for

metabolic enzymes may contribute to unusual vulnerabilities in

the parasite. Previously, P. falciparum DHFR-TS protein was shown

to bind its cognate RNA sequence differently than the host protein

[25]. Now we show that the production of RNA itself may be

severely limited and this repression of transcription is largely

insensitive to metabolic changes. Second, in principle, while

natural metabolites and their toxic homologues may not induce

large scale changes in target gene expression in malaria parasites,

it is conceivable that some other antimalarial molecules could

exhibit broad toxicity, in part, by misdirecting the hard-wired

transcriptional program of P. falciparum. Third, if there is limited

flexibility in regulating gene-expression, perturbations by drugs

must be balanced by compensating mutations affecting the

transcriptome [64]. This would influence frequencies of drug

resistance in unpredictable ways [62,65], as well as leave molecular

footprints of prior drug exposure throughout the genome [66,67].

The evolutionary implications of the hard-wired malaria

parasite transcriptome to control metabolism are significant.

Parasites appear to have at least two fundamentally different

strategies for gene regulation: Alterations in expression of genes for

surface proteins occur randomly to help parasites ‘‘outmaneuver’’

unpredictable immune responses from each new host the parasite

encounters [68–70]. In contrast, for intermediary metabolism, the

obligatory parasites seem to have evolved a deterministic

transcriptional program to match the defined and predictable

biochemical makeup of host cells. Compared to variations in

immune responses, the biochemical environment between differ-

ent host individuals probably does not vary significantly. The

biochemical adaptations which accompany these evolutionary

choices in gene regulation must be significant. A priori, the

systematic, sequential, rhythmic expression of metabolic genes in

malaria parasites must be determined by a sequential expression of

regulatory molecules which are largely insensitive to intracellular

levels of important metabolites. Of course, while such a model

could apply to repeated erythrocytic cycles, it need not preclude a

signal-based strategy for influencing differentiation of parasites.

Materials and Methods

DNA microarrays for P. falciparum
The present experiments used spotted DNA microarrays [71]

that were fabricated as previously described [9,32]. Commercially

available malaria oligonucleotides (Operon, version 1.1, https://

www.operon.com/arrays/oligosets_malaria.php) were combined

with in-house oligonucleotides representing P. falciparum genes in

folate and nucleic acid metabolism. The in-house oligos were

designed at the University of Washington using ArrayOligoSe-

lector [52] and synthesized by Operon Biotechnologies, Inc. The

arrays, each representing the majority of malarial open reading

frames plus the custom oligonucleotides, were printed on

polylysine-coated slides using an ultra fast, linear servo driven

DeRisi microarrayer. Slides were post-processed and hybridized

following the protocols as previously described (http://cmgm.

stanford.edu/pbrown/protocols/index.html). Each platform used

in the following experiments is described and can be accessed at

the NIH-based GEO database (Accession # GPL6187 for

WR99210 data from Seattle and # GPL6187 and # GPL6269

for the pyrimethamine data from Bangkok).

Parasites
At the University of Washington, Seattle, WA, P. falciparum

clones Dd2 and B1G9 were used for treatment with WR99210.

Clone Dd2 was derived from clone W2 from Southeast Asia and is

resistant to a variety of antimalarials, but not WR99210

[25,65,72]. The isogenic clone B1G9, which harbored a single

integrated copy of human DHFR in a Dd2 background, conferred

resistance to WR99210 and was kindly provided by Drs. David

Fidock and Thomas Wellems [25,29]. At the National Center for

Genetic Engineering and Biotechnology (BIOTEC), Bangkok,

Thailand, a pyrimethamine-sensitive laboratory clone TM4/8.2

was treated with pyrimethamine prior to microarray analysis. The

TM4/8.2 clone was obtained from Dr Sodsri Thaithong,

Chulalongkorn University, Thailand. At both sites, parasites were

cultured in vitro by standard methods [73].

Clonal viability
Clonal viability of WR99210-treated parasites was based on a

previously established assay [31]. Forty 10 ml cultures, with

synchronized early-trophozoite forms of infected erythrocytes,

were treated for different durations with 10 nM WR99210 in a

final concentration of 0.1% DMSO. Treatment times ranged from

3 h to 24 h, with two flasks per time-point. At appropriate times,

cells from each flask were washed and clonally diluted in drug-free

medium. Representative dilutions from each flask were plated at a

density of about one infected erythrocyte per well in 24 wells of a

96-well plate (4 samples per time point). Growth in each well was

monitored microscopically in drug-free medium for two to four

weeks. On average, 20 ‘‘colonies’’ (i.e. parasite containing wells)

were identified from solvent treated, time-zero parasite popula-

tions.

Rates of DNA metabolism
Trophozoite forms of infected erythrocytes in ten ml cultures

were incubated with 10 nM WR99210 for 1–24 h and then pulsed

with radioactive hypoxanthine (2 mCi per flask, 22 mCi/umol) for

one hour prior to collection of precipitable radioactive DNA on

glass fiber filters. In the absence of drug treatment, maximum

incorporation was seen at 4–10 h into trophozoite development

(approximately 5,000 cpm; 500 pmol/flask).

Drug treatment and RNA extraction
Overall, in Seattle, for the master DNA microarray experiment,

two large populations of Dd2 cells and two large populations of

B1G9 cells were prepared for treatment with WR99210. Dd2

clones, starting with about 100 infected erythrocytes per flask,

were setup in 60 flasks and propagated until 30 ml cultures were

established at 5% parasitemia, 2% hematocrit in each flask. These

independently propagated parasites were pooled and redistributed

into 60 flasks before drug treatment (see below). A second set of

biological replicates of Dd2 were propagated, pooled, and split

independently to give two truly independent populations of Dd2.

The overall goal was to neutralize stochastic changes in gene

expression for surface proteins [32]. This whole exercise was

repeated separately with clone B1G9.

To describe the details of the parasite preparation, in each set

above (each biological replicate of Dd2 or B1G9), parasites were

initially seeded in 10 ml cultures with about 100 infected

erythrocytes per flask. When parasitemia reached about 5%, the
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cells were transferred to 30 ml cultures. When parasitemia

reached 5% in each 30 ml culture the first time, the infected cells

were synchronized with 5% sorbitol [74]. When parasitemia

reached 5% again, and when most of the infected erythrocytes

were in the ring stage, the synchronization was repeated once

more. These parasites (in one set) were pooled and redistributed

into 30 ml flasks, until they reached early trophozoite stage. Half

of these samples were saved as ‘‘Time zero, trophozoites’’ and

served as reference RNA for the time-course experiments. Of the

remaining parasites, half the 30 ml flasks were treated with 10 nM

WR99210 (1:1,000 dilution of 10 mM WR99210 stock in 100%

DMSO) and the other half were treated with solvent (final

concentration of 0.1% DMSO). At various time-points (3 h to

24 h), infected erythrocytes were centrifuged down, and parasites

were released by saponin treatment [75]. After two washes in PBS,

the parasites were resuspended in lysis buffer (RNAqueouse Kit,

Ambion) and RNA was isolated according to the manufacturer’s

instructions. As discussed above, 2 preparations of independently

derived Dd2 were treated with solvent or with 10 nM WR99210.

Similarly, 2 preparations of independently propagated B1G9 were

treated with DMSO solvent or with 10 nM WR99210.

In Thailand, for each treatment, three 30 ml culture plates

(90615 mm) of TM4/8.2 parasites were set up at 4% hematocrit

and 7–10% parasitemia. After two rounds of synchronization, an

early trophozoites culture (approximately at 18–20 h post

invasion) was treated with 0.5 mM pyrimethamine. The final

concentration of DMSO solvent in each treatment was 0.1%. A

culture containing 0.1% DMSO lacking drug was used as a

control. After 2 h, 4 h, 8 h and 24 h of drug exposure, parasites

were collected and extracted from erythrocytes by saponin lysis.

Total RNA was purified from parasite cells using Trizol reagent

(Invitrogen) according to the manufacturer’s instructions. Exper-

imental treatments were carried out from at least two independent

cultures to wash out stochastic biological variation.

For RT-PCR based confirmation experiments, appropriate

clones of independently seeded parasites were grown in 10 ml

cultures and RNA was collected by RNAqueouse Kit (Ambion)

according to the manufacturer’s instructions. Contaminating DNA

was removed from the total RNA samples using RQ1 RNase-Free

DNase (Promega).

Fluorescent cDNA preparation and hybridization
For each hybridization, 10 mg of total RNA was annealed with

5 mg pd(N)6 random primers (Amersham Biosciences Corp.) and

reverse transcribed to produce aminoallyl-dUTP (Sigma)-labelled

cDNA using StrataScript reverse transcriptase (Stratagene). Oligo-

(dT)21 primer was used instead of the random hexamer for

pyrimethamine treated samples from Thailand. The labelled

cDNAs were coupled with either monoreactive-Cy3 or -Cy5

(Amersham Biosciences) as previously described [32]. Purified

Cy3- and Cy5-labelled cDNAs were resuspended and mixed in

24 ml of hybridization solution containing 36 SSC, 0.2% SDS,

0.025 M HEPES and 0.75 mg/ml of poly A (Sigma) and

hybridized on a P. falciparum 70-mer microarray for 16 h at 63uC.

Data collection and analysis
After washing, slides were scanned in an Axon GenePix 4000B

microarray scanner and the intensity of spots was quantified using

GenePix Pro 3.0 Software (Axon Instruments, Inc.) as previously

described [32]. Briefly, during the gridding process, images were

inspected and visually problematic spots were manually flagged

and removed. Spots with foreground intensity less than 2.1-fold of

background intensity were considered too weak to be reliable and

also removed. A scaled print-tip intensity-dependent lowess within-

slide normalization was performed on each slide, followed by an

across-slides normalization, using Aroma package version 0.89

[76] run in R project environment (http://cran.r-project.org).

Differential expression and statistical analysis of Seattle data were

done using a linear model method package Limma [77]. The

criteria of the p-value of ,0.05 and expression ratio$2-fold

change were employed for selection of differentially expressed

genes. For Thailand data, statistically significant differences in

gene expression were monitored using the Significance Analysis of

Microarrays (SAM) program [78] and genes showing false

discovery rate (FDR) = 0% and expression ratio of $1.5-fold in

both directions were considered differentially expressed. Cluster

analysis was performed using CLUSTER and visualized using

TREEVIEW [79].

Quantitative RT-PCR confirmation
Six of AFDG genes whose ratio of SD/SS was greater than 2 at

24 h of WR99210 exposure were selected for qRT-PCR

validation. These were PFD1120c, PF10_0330, PFC0710w,

PFB0915w, PFB0635w and MAL6P1.231. Three hundred

nanograms of total RNA was primed with Oligo(dT)/random

nanomers mix (at final concentration of 100 ng each/reaction)

and converted to cDNA in 20 ml reactions using AffinityScriptTM

QPCR cDNA synthesis kit (Stratagene) as recommended by the

manufacturer. The reverse transcription reaction was then diluted

with 40 ml of nuclease-free PCR-grade water before using in the

PCR amplification step. Real-time quantitative PCR was

performed on a thermal cycler (DNA Engine, BioRad) equipped

with a detector (Chromo4, BioRad). Primers were designed using

PRIMER3 (http://www-genome.wi.mit.edu/genome_software/

other/primer3.html) and optimized for annealing/extension

temperature, concentration, and single product amplification.

The designed primers are listed in Table S2. Amplifications were

performed in 25 ml final volume, using 12.5 ml of 26 BrilliantH
SYBRH Green QPCR Master Mix (Stratagene), 2 ml of the cDNA

template, and 250 nM of each primer. Cycling conditions were:

10 min at 95uC and 40 cycles of 95uC for 15 sec followed by 58uC
for 60 sec. The specificity of the amplifications was monitored by

melting curve analysis and gel electrophoresis. The threshold cycle

of fluorescence (Ct) was determined by Opticon Monitor 3

software (BioRad). The quantity of cDNA for each gene was

normalized to the Seryl-tRNA synthetase (PF07_0073) concentra-

tion in each sample (DCt, Ctgene2CtPF07_0073). Relative gene

expression was calculated by 22DDCt method [80], where DDCt is

the ratio of expression of each treatment relative to that of the

trophozoite stage reference. Each PCR experiment was performed

in duplicates with at least three RNA templates prepared from

independent parasite cultures.

Analysis of the DHFR-TS oligos was performed with slight

modifications to the procedure described above. Two hundred

seventy nanograms of total RNA was used per cDNA synthesis

reaction and then diluted with 25 mL of nuclease-free PCR-grade

water. The annealing/extension temperature was reduced to

56uC. Analysis was performed using the Pfaffl method [81] with

each primer pair’s efficiency taken into account. Each experiment

was performed in triplicate and the 24 h time-point was analyzed

in three independent cultures. A representative run is shown and

plotted error bars are the SEM of that run.

Supporting Information

Figure S1 Structures of antifolates used to study changes in

transcript levels in malaria parasites. (A) WR99210 used by the

Seattle lab against sensitive clone Dd2 and resistant clone B1G9
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carrying human DHFR. (B) Pyrimethamine used by the Bangkok

lab against the sensitive clone TM4/8.2.

Found at: doi:10.1371/journal.ppat.1000214.s001 (0.24 MB TIF)

Figure S2 (A) Representative M-A plot of raw microarray data

from SD24_rep1. In the analysis, data was derived from

microarrays in which RNA from WR99210-treated (Cy5) parasite

and RNA from reference pool (Cy3) control were compared. Raw

data in the form of relative fluorescence intensity were log

transformed and used to calculate M (difference in log intensities)

and A (average log intensity) for each spot on the microarray. Most

spots cluster around the zero line. Red and green spots indicate an

M value of higher and lower than 1, respectively. (B) M-A plot of

scaled print-tip and across slide normalized data. (C) Box-plot

before normalization. (D) Box-plot of scaled print-tip and across

slide normalized data.

Found at: doi:10.1371/journal.ppat.1000214.s002 (0.93 MB TIF)

Figure S3 Log2 (WR99210-treated/reference pool) comparison

between replicates of representative experiment (SD24). (A) Log2

expression ratio comparison between SD24_rep1 and SD24_rep3

(technical replicate). SD24_rep3 is a dye swap experiment of

SD24_rep1. (B) Log2 expression ratio comparison between

SD24_rep1 and SD24_rep2 (biological replicate). (C) Log2

expression ratio comparison between SD24_rep1 and SD24_rep4

(biological replicate). SD24_rep4 is a dye swap experiment of

SD24_rep2. Correlation between replicates demonstrates the high

degree of reproducibility of the data, but biological replicates show

greater variability in part due to stochastic changes in surface gene

expression.

Found at: doi:10.1371/journal.ppat.1000214.s003 (0.46 MB TIF)

Figure S4 Genes whose expression changed permanently in

resistant clone B1G9 comparing to sensitive clone Dd2 (with or

without drug pressure). Each probe was tested for changes in

expression in 4 comparisons (SS vs RS, SD vs RS, SS vs RD, and

SD vs RD) at each time point. Probes were selected against these

comparisons jointly, with multiple testing adjusted p,0.01.

Found at: doi:10.1371/journal.ppat.1000214.s004 (0.47 MB TIF)

Table S1

Found at: doi:10.1371/journal.ppat.1000214.s005 (0.01 MB PDF)

Table S2

Found at: doi:10.1371/journal.ppat.1000214.s006 (0.08 MB PDF)

Table S3

Found at: doi:10.1371/journal.ppat.1000214.s007 (0.03 MB XLS)

Table S4

Found at: doi:10.1371/journal.ppat.1000214.s008 (0.07 MB XLS)

Table S5

Found at: doi:10.1371/journal.ppat.1000214.s009 (0.05 MB XLS)

Table S6

Found at: doi:10.1371/journal.ppat.1000214.s010 (0.05 MB XLS)

Table S7

Found at: doi:10.1371/journal.ppat.1000214.s011 (0.05 MB XLS)
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