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Abstract
In this paper, we analyze the physical basis for elasticity imaging of the breast by measuring breast
skin stress patterns that result from a force sensor array pressed against the breast tissue. Temporal
and spatial changes in the stress pattern allow detection of internal structures with different elastic
properties and assessment of geometrical and mechanical parameters of these structures. The
method entitled mechanical imaging is implemented in the breast mechanical imager (BMI), a
compact device consisting of a hand held probe equipped with a pressure sensor array, a compact
electronic unit, and a touchscreen laptop computer. Data acquired by the BMI allows calculation
of size, shape, consistency/hardness, and mobility of detected lesions. The BMI prototype has
been validated in laboratory experiments on tissue models and in an ongoing clinical study. The
obtained results prove that the BMI has potential to become a screening and diagnostic tool that
could largely supplant clinical breast examination through its higher sensitivity, quantitative
record storage, ease-of-use, and inherent low cost.
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I. Introduction
Breast cancer is one of the most common causes of death from cancer in the United States.
The American Cancer Society estimates that in 2007, approximately 180 510 new cases of
invasive breast cancer will be diagnosed in the U.S. alone, and 40 910 deaths (40 460
women and 450 men) from this disease are predicted [1]. The lifetime probability of
developing breast cancer in the next 10 years is evaluated as 13.2% [2]. A critical key to a
continued reduction in mortality is easy detection and accurate diagnosis [3] made in a cost-
effective manner [4].

Current methods of breast pathology assessment include clinical breast examination (CBE),
mammography, ultrasound, magnetic resonance imaging (MRI), and biopsy. Recent large-
scale clinical study of diagnostic performance of mammography for breast-cancer screening
showed that diagnostic accuracy of digital and film mammography is only 78% and 74%,
respectively [5]. According to data from the behavioral risk factor surveillance system, only
54.9% of U.S. women in 2003 have had a mammogram within that year [2]. Ultrasound is
increasingly being used as a complementary method for the assessment of
mammographically or clinically detected masses and can add information for dense tissue
[6], but there are limited data supporting the use of ultrasound for breast cancer screening as
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an adjunct to mammography in women at increased risk of breast cancer or dense breast
tissue [4]. Many indications for clinical breast MRI are recognized, including resolving
findings on mammography and staging of breast cancer [7].

The premise underlying CBE is visually inspecting and palpating the breast tissue to detect
abnormalities or evaluate patient reports of symptoms to find palpable breast cancers at an
earlier stage of progression [8]. American Cancer Society guidelines suggest an annual CBE
for age 40 and older for early detection of breast cancer in asymptomatic women [2]. The
CBE identifies some cancers missed by mammography [9], [10] and provides an important
screening tool among women for whom mammography is not recommended or women who
do not receive high-quality screening mammography according to recommended guidelines.
But CBE performance and reporting approaches are inconsistent. Health care providers
report a lack of confidence in their CBE skills and would welcome training and practical
recommendations for optimizing performance and reporting [11]. Data for the six studies
examined by Barton et al. resulted in an overall estimate of 54.1% for CBE sensitivity and
94.0% for CBE specificity [12]. These findings are comparable to the published values for
CBE sensitivity (58.8%) and specificity (93.4%) observed in U.S. national screening
program for 752 081 CBE reports [13]. Early-stage breast cancer typically produces no
symptoms when the tumor is small and most treatable. When breast cancer has grown to a
size when it can be felt, the most important physical sign of breast cancer is a painless mass
[14]. From this point, CBE may be a suitable option for countries in economic transition,
where incidence rates are on the increase but limited resources do not permit screening by
mammography.

Therefore, a method that mimics CBE but with enhanced sensitivity and specificity might
consequently lead to a greater screening yield. Such a method for detection and visualizing
breast abnormalities and assessing their mechanical properties with sensitivity exceeding
that of manual palpation is described in this paper. The method, termed mechanical imaging
(MI), translates the tissue’s elastic properties into a digital 3-D map of the detected mass
[15]. MI is based on reconstructing the internal structure of soft tissues using the data
obtained by a force sensor array pressed against the examined site. The changes in the
surface stress patterns as a function of displacement, applied load and time provide
information about elastic composition and geometry of the underlying tissue structures.

The MI might be considered as a branch of elasticity imaging or elastography—an emerging
medical imaging technology. Various versions of ultrasound elastography (USE) and
magnetic resonance elastography (MRE) have been developed during last decade [16]–[27]
and tested in a broad range of clinical applications including breast cancer detection [28]–
[32].

Evaluation of tissue “hardness” (Young’s or shear elasticity modulus) by various elasticity
imaging techniques provides a means for characterizing the tissue, differentiating normal
and diseased conditions and detecting tumors [33]. Measurements on excised breast
specimens showed that normal tissue has a modulus that is noticeably lower than the
modulus of the breast cancers. Tumor inclusions or tissue blocked from its blood nutrients
are stiffer than normal tissue; benign and cancerous tumors also have distinguishing elastic
properties [34], [35].

MI, which is being developed at Artann Laboratories since early 1990s, yields a tissue
elasticity map, similarly to other elastographic techniques. At the same time, MI, which is
also called “stress imaging” or “tactile imaging,” most closely mimicks manual palpation,
since the MI probe with a pressure sensor array mounted on its tip acts similarly to human
fingers during clinical examination, slightly compressing soft tissue by the probe.
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Laboratory studies on breast phantoms and excised prostates have shown that computerized
palpation is more sensitive than a human finger [36]–[38].

Significant progress in development of tactile imaging technology has been made by
researchers at Harvard University in the applications related to detection of breast masses
and cancer [39]–[45].

The main purpose of the present study is the development and validation of the breast
mechanical imager (BMI), a device for real time imaging of breast pathologies and
assessment of the detected lesion features such as size, shape, consistency/hardness, strain
hardening, heterogeneity, and mobility.

II. Breast Mechanical Imaging System
A. System Overview

The BMI includes a probe with a pressure sensor array, an electronic unit, and a laptop
computer as shown in Fig. 1. The device shown in Fig. 1 is currently produced by Medical
Tactile, Inc., Los Angeles, CA, under the trade name SureTouch, as a visual mapping
system for documentation of the CBE findings. The pressure sensor array (Pressure Profile
Systems, Inc., Los Angeles, CA) is installed on the probe head surface contacting with
breast skin through a disposable elastic protective cover during the examination procedure.
The probe head measures 50 mm in length and 40 mm in width, having a curvature radius of
38 mm. The sensor array comprises 192 (16 × 12) pressure sensors covering 40 mm × 30
mm. Each pressure sensor has a rectangular pressure sensing area of 2.5 mm × 2.5 mm,
sensitivity of about 0.05 kPa, and a hysteresis of 2%–4% of the operational range [46]. The
electronic unit communicates with the computer through a USB port, and provides about 20
pressure distribution frames per second.

BMI software provides three operational statuses of the device: examination procedure, data
management, and device management status. During examination, the software allows real
time visualization of a current 2-D pressure pattern, total applied force to the breast surface,
as well as detected breast nodule cross-sectional views (see Fig. 2). Displaying real time
images helps a breast examinator to evaluate findings in real time, and to avoid excessive
data collection. The data management tab allows data saving and retrieval, as well as a
printout of the examination report for the patient’s chart. The device management tab is
utilized for software configuration, probe identification, tuning, and calibration. The user
interface in the examination mode is shown in Fig. 2.

B. Examination Procedure
The examination is performed on a patient in the lying position. The examination procedure
includes two modes: mode 1—total breast examination to detect suspicious site and mode 2
—local scan to characterize detected nodules (see Fig. 3). The breast examination in mode 1
is performed with the use of a lubricating gel. The BMI indicates detected abnormalities by
generating visual and sound alert signals. After a suspicious site is detected, the device is
switched to mode 2. The local scan in mode 2 is accomplished by two procedure variations:
probe pressings against the breast over the detected abnormality, and circular motion of the
probe with a lubricant (ultrasound gel). The examiner observes in real time accumulated
cross-sectional images of a mass/lesion in orthogonal projections as shown in Fig. 2. The
breast examination in mode 1 takes 1–2 min; a single local scan in mode 2 takes 20–40 s.
Collected data with a geometrical localization of findings on a breast map are instantly
saved in digital format. Three-dimensional image composition and features calculations are
accomplished in real time.
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Fig. 4 shows the device interface as the operator sees it after the completion of an
examination. The operator may look through selected orthogonal slices of the underlying
breast lesions by moving a slicebar under either the frontal (coronal) or transversal cross-
sections images (two upper black windows). The examiner may select the levels for 3 iso-
surfaces to visualize the abnormality’s internal features in 3-D representation. Two
visualization modes are provided, so that the examiner may choose the absolute or
normalized image representations as described in Section III-E. The main diagnostically
relevant calculated parameters of the detected lesion: dimensions, the Young’s modulus,
mobility relative to the surrounding tissue, surrounding tissue heterogeneity and hardness
are represented in the upper left panel. All findings are translated automatically in a
generated report ready for wireless printing.

This enables physicians to see the differences in tissue elasticity in the color images in
contrast to CBE that is “blind” and relies exclusively on the clinician’s subjective sense of
touch. The BMI creates a hard copy of the examination results which can be placed into the
patient’s file. This is advantageous for the physician on multiple fronts, as it gives the
physician the ability to compare the patient’s examination results from year to year, and to
get second opinions on the patient’s status in regards to the diagnosis.

III. Breast Data Processing and Imaging Algorithms
Table I provides a list and a brief description of basic algorithms of BMI data processing
and analysis incorporated into the described imaging system. An expanded explanation of
the algorithms is given below.

A. Image Preprocessing
Image enhancement techniques are used to improve an image, where “improving” is defined
either objectively (e.g., increased signal-to-noise ratio), or subjectively (e.g., making certain
features easier to see by modifying the colors or intensities). Fig. 5 illustrates an image
enhancement route using a recorded raw pressure pattern over the breast of a patient in the
clinical study. The data from the pressure sensor arrays is preprocessed through the
following procedures.

1. Lowpass noise-cutting filtration, which is based on the calculation of the
exponential moving average for each pressure sensor signal according to

(1)

where st is the sensor signal at time t, St is the calculated exponential moving
average value at time t, and α is the smoothing factor corresponding to the time
constant of 0.3 s.

2. Two-dimensional noise-removal filtration, which includes three steps. The first step
is thresholding negative sensor signals. The second step is edge smoothing by
linear filtration (weighed averaging of 3 × 2 pixels/sensors along the pressure
sensor array boundary). The third step is linear filtering of 3 × 3 pixels/sensors
inside the frame. Application of all these procedures after the lowpass filtering is
illustrated in Fig. 5, where panels (1) and (2) show single raw and filtered 2-D
pressure patterns respectively.

3. Background/skewing subtraction algorithm, which includes calculation of the
background image (Fig. 5, panel 3) and its subtraction. Result of this subtraction is
shown in panel 4 of Fig. 5. The background is calculated as the second order
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surface using only the boundary sensors. This procedure provides image correction
for the possible probe skewing relative to the surface of examined tissue.

4. Signal thresholding and 2-D interpolation, which are widely used techniques in
image processing [47]. A parameter è called the “brightness threshold” is chosen
and if the brightness/intensity for a pixel in the image is less than è, this pixel value
is changed to zero. We used a fixed threshold of 0.25 kPa that was verified in
phantom experiments.

5. Pixel neighborhood rating (Nr) based filtering, which calculates for each pixel its
rating relative to the surrounding pixel intensities, has maximum weight of center
and sided pixels of 1 with angle pixels of 0.6. If the neighborhood pixel rating is
less than empirically predetermined value (Nr < 3.2), this pixel value is changed to
zero.

6. For boundary pixels/sensors, additional downgrading coefficients are established
because the boundary sensors are more subjected to artifacts and distortions.

7. Two-dimensional interpolation serves the purpose to prepare the image for
following processing and analysis; segmentation and matching procedure are more
effective if in the input we have an image of 32 × 24 pixels rather than 16 × 12. We
used simple linear interpolation. The result of these procedures is shown in frame 5,
Fig. 5. Further linear interpolation, shown in the panel 6 of Fig. 5, is used for better
image perception.

B. Moving Object Detection
Mobility of lesions is an important diagnostically relevant feature. Assessing motion of
lesions relative to a probe pressure sensing surface during probe manipulations is performed
with the help of subtraction of background signal for each pressure sensor in the sequence of
2-D filtered images. In a sequence of images, a new reading Sj (ti) for sensor j in time ti is

(2)

where Sj (ti) is the current sensor signal; k = 15 defines the time tail of 0.75 s. After this
procedure, the pixel neighborhood rating based filtering, convolution filtering and 2-D
interpolation described above are applied to receive image sequence shown in line 4 of Fig.
6. This algorithm dramatically improves BMI sensitivity during the entire breast
examination to detect suspicious breast sites during mode 1 examination (see Fig. 3).

C. Two-Dimensional Image Matching
An important aspect of the scanning mode of the examination and imaging is creation of a
compound image using the sequence of successive images obtained along the scanning
trajectory over the detected lesion. Specifically, after pressing the RECORD button on the
examination tab (see Fig. 2), the first n-frames of pressure response data are captured to
construct a starting image of a lesion. This capture of data is performed when the total force
applied to the sensor array is within the operational range from 7 to 18 N, and acquired
maximum signal from a detected lesion exceeds a predetermined detection threshold (2 kPa)
above the background. This starting image is used as the first reference image. Each
subsequent pressure response data frame is recorded and analyzed in order to add new
pressure response information into the 2-D reference image. At the same time, a separate
operational module runs a matching algorithm, which tries to find the best fit for the every
imprint of the lesion within the 2-D reference image inside the spatial limits imposed by the
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probe head sensors possible displacement for 1/20 s. The best fit is calculated by
maximizing a functional F

(3)

where k and l are quantities of horizontal and vertical pixels inside the analyzed pressure
frame (32 × 24), n and m are image shift in pixels relative to a previous fitted pattern (within
[−2, +2]), Si,j is pressure response signal of i, j pixels, and Pn+i+m+j is a pressure signal of n
+i + m + j pixel inside 2-D reference image. Such a simple matching calculation procedure
has been chosen because it requires relatively low computer resources in real time
examination mode.

D. Three-Dimensional Image Reconstruction
There is a theoretical possibility of rigorous 3-D reconstruction of a complex soft tissue
structure by solving the inverse problem for 2-D input patterns. Such an approach would
require numerous assumptions and huge computational power which is far from being
practical. We have developed an alternative semi-empirical way of 3-D image formation,
which is described below.

The input data for 3-D reconstruction comprises a continuous sequence of 2-D filtered
images. The initial hypotheses enabling 3-D reconstruction are: 1) the higher the
compression force, the greater the representation of deeper structures in the imprint image;
2) the total pressure is proportional to the tissue deformation in the Z-direction (normal to
the probe surface); 3) probe angle deviations provide additional structure information which
can be incorporated into the composed image. The 3-D image reconstruction technique is
used only in mode 2 examination when at least 200 original images are recorded for a local
breast scan (see Fig. 3). The sequence of raw images is subjected to the image enhancement
procedures described in Section III-A. The 3-D reconstruction starts with the formation of
an initial (seed) 3-D structure by stacking the series of 2-D structure images along Z-
coordinate during first tissue compression. Every 2-D imprint is further integrated by a
parallel translation inside the 3-D structure image where X, Y-coordinates are determined by
matching algorithm described in Section III-C, and Z-coordinate (layer number) is
calculated according to

(4)

where A = 1.04 * 10−5 and B = −5 are empirical constants, k and l are quantities of
horizontal and vertical pixels inside the pressure response frame with the analyzed lesion
pattern, and Si,j is the current pressure signal of i,j-pixels expressed in Pa. After the best fit is
found, each image pixel is placed into the 3-D composite image with a weight factor we =
0.1 if its current value exceeds respective pixel value inside the 3-D composite image, and
with factor wd = 0.005 if its current value is below that respective pixel value. Next, the
reference image is taken from the composed 3-D image according to the value of Z-
coordinate calculated from (4). This procedure has good convergence and allows finding a
position for each subsequent 2-D imprint image if an operator does not lose the structure
image during the local examination in mode 2, or does not skew the probe by more than
what is prescribed by examination technique.
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After the local breast examination is complete, a final smoothing and 3-D interpolation is
applied to the constructed structures. The final 3-D structure visualization is deployed by the
computation of iso-surfaces and 2-D image slices for the 3-D pressure field, which is related
to the hardness distribution of the underlying structure. The ability of this approach to
reproduce the underlying tissue structures was demonstrated on a variety of phantom
models.

E. Lesion Feature Calculation
Geometrical characteristics of the detected lesions are calculated with the use of all 2-D
images carrying information about underlying lesion. Lesion shape and edges are evaluated
directly from the final 3-D composed image. A lesion strain hardening is evaluated from a
loading curve recorded during probe pressings against the tissue. Lesion mobility is
estimated as an ability to change lesion shape and position under applied stress by the BMI
probe.

Dimension and hardness of the detected mass/lesion are calculated in terms of both the
lesion linear measures Lx, Ly in orthogonal X, Y-coordinates, a cross-section area Axy, and
Young’s modulus E. For this purpose 2-D image P (x,y,Zm) which is just the layer Zm inside
3-D image including the detected lesion is analyzed to calculate closed surface area
according to

(5)

(6)

where Ph is a binary lesion image, m is the layer number, Th is a threshold. We found [48]
that two thresholds are of practical importance: 1) fixed Th1 = 4 kPa, and 2) relative Th2 =
0.5 * max{P (x,y,Zm)} for medium Z-layer. For Th1 and for Th2 we have accordingly Axy1
and Axy2. Further, as a value related to the lesion hardness we calculate a slope SA for

(7)

where M(Zi) is maximum value inside the layer Zi of 3-D image.

In such a manner, we have two pairs of functions (SA, Axy1) and (SA, Axy2), which are
associated with the lesion hardness E and cross-sectional area A. In other words, each pair of
(E, A) defines (SA, Axy1) and (SA, Axy2); and vice verse. It seemed possible to construct
directly defined functions f1, f2, f3 such as

(8)

(9)

herein a projected to E, A-plane an intersection of two lines produced by conditions
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(10)

allows for unambiguously localization of the intersection which specifies E and A values. In
some zones, these lines are passing close to each other, being almost parallel. When it
happens, analysis of intersection line for the second pair

(11)

provides calculation of E, A values with better accuracy. That way, we can analyze the
intersection angle for both pairs and calculate average E, A values with weight factors being
proportional to the angle in the range from 0° to 90°. Calculated in this manner, lesion cross-
sectional area A can be translated into the linear measures Lx, Ly in orthogonal X, Y-
coordinates.

Lesion strain hardening, expressed in relative units, is calculated as the second-order
coefficient H in the expression

(12)

where i is a layer number in the 3-D image, M (Zi) is calculated according to (7), SA is the
linear coefficient, and c is a constant. This simple procedure provides more robust H-values
than a conventional approach to calculating the strain hardening factor as a ratio of loading
curve slopes for different layers.

The evaluation of surrounding tissue hardness is based on the fact that the pressure profile
along the curved pressure sensing surface of the BMI probe depends on Young’s modulus of
surrounding tissue. While presence of a lesion/mass affects the fine structure of the 2-D
pressure profile (as a rule in the center zone of the 2-D image), its peripheral region is
defined mainly by two other factors: the thickness of the compressed surrounding tissue and
its average elasticity. It appeared that the sensitivity of pressure profile to average tissue
firmness exceeds that with respect to the thickness of the breast tissue [50]. Due to that fact,
the following linear expression for the breast tissue hardness evaluation is an acceptable
approximation for practical purposes:

(13)

where E0 is Young’s modulus of surrounding tissue; Pc and Ps are pressure values at
characteristic locations at the edges of the sensor array; and a, b are constants. The value of
E0 is calculated as an averaged value from all examination data frames with minimal
skewing and total force between 8 N and 15 N, excluding signals from detected lesions.

The shape of the lesion is evaluated directly from the P(x,y,Zm), calculating its absolute
maximum Pmax and the number of additional local maxima satisfying the following criteria
of spatial separation: 1) the distance from the closest maxima is more than 4 mm; 2) a
straight line connecting two neighboring maxima has a minimum which is below 0.95 of the
smaller maximum; 3) a local maximum that exceeds 0.25 * Pmax. For practical purposes, we
have chosen the following classification for the lesion shape: single peak, peak with a
satellite, and multiple peaks, if at least three local maxima are detected.
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Heterogeneity of breast tissue Hg outside the lesion is evaluated as an averaged value of
Hg(t) through the examination time t for all pressure patterns

(14)

where S (x,y,t) is momentary pressure response of sensor with x, y-coordinates, Bckg is a
background pressure pattern calculated as a second-order surface.

Mobility of the lesion Mbaver is evaluated as an averaged value of Mb(t) through the
examination time for t all pressure patterns containing the lesion image

(15)

(16)

where Ph is the accumulated 3-D binary lesion image, Th is the threshold of binarization,
Sh(x,y,t) is a binary image of a momentary lesion image to be placed/compared with Z-
layer, S(x,y,t) is momentary pressure response of sensor with x, y-coordinates at time t.
Before the use of (15) and (16), image Sh(x,y,t) is matched with the accumulated image
Pz(x,y) according to (3). The sense of the Mbaver value, expressed in percentage, is the
characterization of capability of the lesion to change its form and position under applied
mechanical indentation by the probe with curved surface.

Lesion edge evaluation, expressed in percents, is based on the comparison of the calculated
lesion boundary length with the boundary length of an ideal spherical lesion.

F. Neural Network for Automated Lesion Detection
We have designed a three-layer feed forward neural network for automated lesion detection
using the MATLAB Neural Network Toolbox v.4.0.2. The neural network was composed of
10 input neurons in the first layer, three neurons in the second layer, and one in the 3rd
output layer, and log-sigmoid transfer functions. The MATLAB toolbox includes a graphical
user interface for creating, managing, training and implementing neural network
architecture. For the purpose of this research, data of 90 local BMI scans performed by 5
different people in mode 2 (circular motions) were collected. The BMI scans were
performed on a specially designed tissue model [49] containing an array of spherical
inclusions [see Fig. 8(a)]. Sixty-five of the scans were performed over inclusion of various
diameter (6–14.5 mm) and depth (7.5–35 mm), and 25 scans were performed over a
homogeneous phantom with no inclusion. Ten selected image features related to tissue
heterogeneity and the presence of moving substructure in the sequence of images have been
used as network inputs in a supervised training procedure using a steepest descent algorithm
[50]. The input features were: 1) average pressure, 2) average pressure standard deviation
(STD), 3) trajectory step, 4) trajectory step STD, 5) maximum pressure, 6) maximum
pressure STD, 7) size of a signal surface (above predetermined threshold), 8) signal surface
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STD, 9) average signal from lesion, and 10) average signal STD. We used MATLAB’s
default threshold value for the single output node of the neural network.

IV. Results of Laboratory and Clinical Studies
A. Tissue Phantom Experiments: Detection Capability

Since the MI technology is based on quantitative assessment of the stress pattern on the
surface of examined object, it is important to explore the possible role of the boundary
conditions at the interface between the sensor array and the object. Fig. 7 shows the results
of BMI measurements on a tissue phantom with and without a lubricating gel as is used in
ultrasonography. The curves show relative amplitude of the pressure peak resulting from the
presence of a hard inclusion in the phantom as a function of the inclusion diameter at two
levels of loading. The tissue model has been fabricated from two component silicone [49],
with the inclusion and base material Young’s modulus of 110 and 5 kPa, respectively,
inclusion depth of 6 mm, and phantom thickness of 30 mm. The vertical bar at the
experimental points in Fig. 7 denotes the standard deviation calculated for five repeated
scans. Each scan consists of three up/down pressings with about 150 pressure frames in the
range from 8 to 18 N. Pressure frames with the force from 11.5 to 12.5 N were averaged to
calculate a parameter, “Max/Base ratio,” which equals to the maximum pressure signal from
inclusion divided by a base signal level from surrounding tissue. The same way, we
calculated Max/Base ratio for pressure frames with the force from 15.5 to 16.5 N. This Max/
Base ratio characterizes the relative amplitude of the pressure signal from the inclusion and
may serve as a measure of the sensitivity of the technique in lesion detection. It is clearly
seen that the presence of gel significantly improves the sensitivity of the method.

The threshold for inclusions detection of the BMI has been explored in experiments with a
specially designed model shown in the upper panel of Fig. 8. This model was made of a
silicone composite having Young’s modulus, E, of 8 kPa with an array of hard spherical
inclusions (E = 175 kPa) embedded at different depth in the model. The thickness of the
model was 50 mm. The table in Fig. 8 shows the inclusion parameters (depth and diameter)
and represents the results of averaged manual detection limit by three persons and the results
of BMI detection study which are subdivided into two categories: 1) detection based on
evaluating the Max/Base ratio (detection threshold = 0.04) and 2) using the neural network
detection described in Section II-F. The experiments were conducted with the use of the
lubricating gel.

B. Tissue Phantom Experiments: 3-D Image Composition
Fig. 9 shows one of the phantoms with complex inclusion (A), a subsequence of recorded 2-
D images of the inclusion (B), and corresponding results of the 3-D image formation (C).
The input data for 3-D reconstruction were collected as a continuous sequence of 2-D
pressure response images during BMI probe circular motions above the embedded complex
inclusion shown in Fig. 9(a). This test phantom had three inclusions (E = 125 kPa) at various
depth in a matrix with Young’s modulus E = 8 kPa. The sequence of images obtained at
different positions was first subjected to the image enhancement procedures described above
in Section II-A. The applied 3-D image reconstruction algorithm is described in SectionII-D.

C. Tissue Phantom Experiments: Mode 1 Examination
Realistic breast tissue phantoms shown in Fig. 10 with embedded hard nodules have been
fabricated from two component silicone gels SEMICOSIL (Wacker Silicon Corporation,
Adrian, MI), according to the technique described earlier [49], [51]. The illustrations in Fig.
10 represent the result of application of Mode 1 breast examination (see upper panel in Fig.
3) to one of the breast phantoms with base material Young’s modulus E = 6 kPa and
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inclusion hardness E = 75 kPa. The BMI probe trajectory has been reconstructed after a
single probe passing over the phantom with the gel to facilitate this procedure as shown in
Fig. 10. Calculation of the frame-to-frame displacement was evaluated on the base 2-D
correlation function between two sequential pressure patterns according to (3). Inclusion
detector analyzes tissue heterogeneity, local Max/Base distribution and moving object
characteristics to reveal suspicious sites for detailed examination in Mode 2.

D. Tissue Phantom Experiments: Mode 2 Examination
Laboratory testing on the breast phantoms demonstrated that just three successive pressings
of the probe against the phantom are sufficient to provide a clear integrated image of the
underlying structure/inclusion and sufficient to allow reproducible features calculation in the
accordance with algorithms described in Section II. Table II presents a comparison of
geometrical and elasticity parameters of phantoms evaluated by BMI with the actual values
obtained by direct measurements. The phantom thickness measured 30 mm, inclusions were
placed 11 mm below the upper surface of the phantoms. The Young’s modulus, E, of the
base material of the phantom was 5 kPa; and skin has been modeled by 1 mm surface layer
with E = 10 kPa.

E. Tissue Phantom Experiments: Measurement Accuracy as a Function of the Inclusion
Depth

Fig. 11 represents inclusion depth influence on the Young’s modulus and cross-section area
calculations. The phantoms had an inclusion with diameter of 10 mm, Young’s modulus of
80 kPa, total phantom thickness of 35 mm, and the base material Young’s modulus of 5 kPa.
The inclusions were placed 6, 11, and 16 mm below the upper surface of the phantoms.
Calculated features are the result of five repeated scans above the same inclusion.

F. Clinical Results
Clinical studies of the BMI are currently conducted in several hospitals and detailed results
of these studies will be published elsewhere [52], [53]. Here, in Table III, we present just a
few examples of typical results obtained by BMI in the ongoing clinical studies conducted at
the Cancer Institute of New Jersey and The Breast Care Centers of New York and
Pennsylvania. Eligible participants were informed about the nature of the investigation and
signed an informed consent form. Upon patient’s consent, relevant clinical and
demographical data were recorded. All patients presented with a lesion that was initially
detected by another modality (mammography, ultrasound, or manual palpation). When
performing the scans, the operator already knew where the lesions were located. Table III
shows several calculated tissue features and compounded 2-D cross-sectional images of the
examined breast lesions.

V. Discussion
As illustrated in Fig. 7, the ability of the BMI to detect inclusions is greatly facilitated by
using a lubricating gel such as the one used in ultrasonic examination. Presence of a gel
layer eliminates lateral stress on the surface of the model during probe motion. In the
absence of the gel, the slippage of the probe is hindered and the examined object is subjected
to lateral stresses. The data in Fig. 7 shows the use of the lubricant results in a three-fold
increase in sensitivity for the detection of small inclusions with the diameter of less than 10–
11 mm. The improvement in sensitivity due to gel usage is less for larger inclusions: about
1.5 times for the inclusion diameter of 20 mm. These results are consistent with a known
fact that a lubricant increases sensitivity of manual breast self-palpation [55]. All further
laboratory experiments as well as clinical studies with the use of the BMI were conducted
with the use of a lubricating gel (7G2401, Medical Tactile, Inc., Los Angeles, CA).
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Comparison of the thresholds for detection of hard inclusions by manual palpation and by
BMI examination is presented in Fig. 8. The detection sensitivity by the BMI with use of the
neural network detector is greatly superior to that of palpation. For example, at inclusion
depth of 17.5 mm from the surface, the human finger feels only 14.5 mm and larger
inclusions, while the BMI detects an inclusion of 6 mm in diameter. The 6 mm inclusion
which is detected by the BMI at a 17.5 mm depth is detected manually only at a 10 mm
depth. The nodules that are nearly half the size at a given depth or nearly twice deeper for a
given size are detected with the use of the neural network classifier for the BMI, in
comparison with manual palpation. Even by a simple assessment of the Max/Base ratio of
the stress pattern, without any sophisticated analysis and the use of artificial intelligence, the
BMI provides a better detection capability than a human finger for the inclusions of 11 mm
diameter or greater.

The 3-D image reconstruction algorithm of inclusions, described in Sections III-C and III-D,
is based on the use of a sequence of 2-D stress patterns obtained at different levels of tissue
compression and Z-coordinate (normal to the breast surface) calculated according to (4). The
highest inaccuracy in the evaluation of the inclusion geometry is in Z-coordinate, since
relating the integral pressure to the compression of the tissue is based on numerous
assumptions that have not been well justified.

Table II presents a comparison of the phantom parameters evaluated by the BMI with the
actual values. The accuracy of the geometrical and elasticity parameter assessment is on the
order of 20% and better. Since the main motivation for creating the BMI and other elasticity
imaging devices was to use elasticity data to differentiate normal and diseased tissues, it is
important to define what a sufficient accuracy range of Young’s modulus measurements
would be. A rough estimate of the required accuracy can be made by using data on the range
of elasticity modulus of tissues in normal and pathological conditions. Most normal soft
tissues have Young’s modulus on the order of 10 kPa, while the Young’s modulus of some
“rock-hard” cancerous tumors can reach 1 MPa [33]. Thus, tissue elasticity can vary in a
range up to 10,000% of the normal value. Let us then assume that the efficient use of the
elasticity modulus as a parameter for tissue characterization and discrimination requires a
resolution taken as 1% of the entire variation range of said parameter. This means that even
with a Young’s modulus measurement error of 100%, we will be able to satisfy this
resolution requirement. Another criterion for evaluating the required accuracy of Young’s
modulus measurements is related to the range of mechanical heterogeneity of normal tissue.
Our experimental data showed that the elasticity modulus measured along a strip of tissue
may vary up to 40% [55]. Obviously, the measurement of a parameter with much higher
accuracy than the range of normal variability of this parameter will hardly provide additional
useful information. It can thus be concluded that the accuracy of the BMI in evaluating the
Young’s modulus of soft tissues within 20%–30% may be sufficient for tissue
differentiation.

As can be seen in Fig. 11, the cross-section area of the inclusion does not practically
depends on its depth (see black points and right vertical coordinate), and we have up to 19%
overestimated Young’s modulus by lifting the inclusion closer to the surface from 11 to 6
mm. In the light of the above stated reasons we do not expect any clinical implications from
this effect.

Results of preliminary clinical studies illustrated in Section IV-F demonstrate both the
advantages and limitations of the technology. The lesion linear sizes evaluated by BMI as
shown in Table III are smaller by 10%–50% than the lesion sizes evaluated by conventional
ultrasound. Patient 2 has a BMI evaluated lesion size of 18 mm that includes the lesion with
a satellite mass having increased hardness as it might be seen on the 2-D image; ultrasound
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evaluated lesion size of 15 mm characterizes only one left lesion. This indicates that the
patient 2 lesion size data follow the tendency seen also with the other five patients: BMI
provides decreased lesion sizes relative to the ultrasound measured ones. This question
about lesion size discrepancy evaluated by both methods requires further analysis with the
use wider clinical data from the ongoing clinical study.

Malignant breast lesions of the patients 4, 5, and 6 (histologically confirmed) had:

• increased Young’s modulus (68, 75, and 123 kPa), compared to benign lesions (25
kPa and 50 kPa, patient 1 and 2);

• increased heterogeneity of the surrounding tissue (0.44, 0.41, and 0.56 kPa),
compared to the tissue of the patients with benign lesions (0.30 and 0.05 kPa);

• decreased mobility compared to benign lesions of patients 1 and 2.

The breast lesion of the patient 3 (histologically confirmed fibroadenoma) had:

• increased Young’s modulus (108 kPa), compared to benign lesions (25 and 50 kPa,
patient 1 and 2);

• increased heterogeneity of the surrounding tissue (0.71 kPa) compared to the tissue
of the patients with benign (0.30 and 0.05 kPa) and malignant lesions (0.41, 0.44,
and 0.56 kPa);

• decreased mobility compared to benign lesions of patients 1 and 2.

Full statistical analysis of the ongoing clinical study results is beyond the scope of this
paper. Here, we may say that preliminary results are promising from the point of benign/
malignant lesion discrimination [53]. The possibility of fibroadenoma and malignant lesion
discrimination is now under investigation; more clinical data are needed for a statistically
meaningful conclusion.

Among the limitations of the method we can list an inability to reliably palpate deep lesion
in a big breast and difficulty in a lesion scan when the lesion is highly mobile in a very soft
breast tissue. Both of these cases are relatively rare [52].

In general, the results of the ongoing clinical studies indicate that the BMI has the ability to
reconstruct the mechanical/elasticity image of the lesion and quantitatively evaluate its
diagnostically relevant features.

Until recently, most of the information gleaned from various elasticity imaging modalities
was qualitative. Published findings characterized pathologies by their being some magnitude
stiffer than the normal surrounding tissues. But during the last few years, a number of
laboratories around the world clearly demonstrated that elasticity imaging has a significant
potential for not only detecting but also differentiating malignant and benign lesions with the
sensitivity and specificity of up to 100% [56], [57]. Obviously, complex and expensive MR
and Ultrasonic Imaging devices have numerous advantages over MI, such as higher spatial
resolution and the possibility to examine deep laying tissues in a great variety of organs. On
the other hand, the advantages of Mechanical Imaging devices include inherent low cost,
ease-of-use, portability, and minimal training required [58]. The BMI has potential to
become a home-use self-palpation device, which can be made compact, wireless, and
capable of translating examination data via Internet to a central database for subsequent
clinical investigation of detected abnormalities.
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VI. Conclusion
MI technology provides documented 3-D images of the breast lesions with a quantitative
evaluation of diagnostically relevant features of the lesion, such as size, shape, hardness,
heterogeneity, and mobility. The BMI is superior to the CBE, one of the current means for
breast cancer screening according to the guidelines of American Cancer Society. The BMI
has a potential to be positioned as an adjunct to mammography and a pre-screening device
for breast cancer detection.
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Fig. 1.
General view of the Breast Mechanical Imager. The device comprises: (1) a probe with 2-D
pressure sensor array, (2) an electronic unit, and (3) a laptop computer with touch screen
capability.
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Fig. 2.
Breast examination interface for mode 1: (1) momentary pressure pattern of a lesion; (2a)
real-time composed frontal and (2b) transversal cross-sections of the lesion; (3) indicator of
total applied force to the probe and data collection.
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Fig. 3.
Procedure model for breast examination by the BMI. Mode 1 shows the total breast
examination to detect suspicious sites by means of linear sliding motions. Mode 2 shows a
local scan of a suspicious site by means of vertical up/down probe pressings and by means
of circular motions with a lubricant.
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Fig. 4.
Representation of the breast examination results.
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Fig. 5.
Illustration of the image processing sequence for a pressure pattern recorded during
compression of the probe against the breast in vivo. (1) Raw pressure pattern. (2) After
temporal and spatial filters. (3) Calculated background. (4) After background subtraction.
(5) After thresholding, pixel-wise filter and interpolation. (6) After further interpolation.
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Fig. 6.
Illustration of a moving object detection algorithm for a pressure pattern recorded during the
sliding of the probe over the breast in vivo. (1) Raw image sequence. (2) The same image
sequence after noise-removal filter and background/skewing subtraction. (3) Image
sequence processed by an algorithm accounting for the detection of a moving object. (4)
Image sequence after filtration and interpolation.
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Fig. 7.
Dependence of the relative strength of the inclusion signal versus the inclusion diameter.
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Fig. 8.
Parametric study results of the detection capability for manual palpation versus mechanical
imaging with the use of the BMI probe (see text).
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Fig. 9.
Three-dimensional image reconstruction (C) from a 2-D image sequence (B) recorded in the
process of circular oscillation of the BMI probe over the embedded structure (A) tissue
phantom.
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Fig. 10.
Algorithm for image compounding along the BMI probe trajectory.
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Fig. 11.
Inclusion depth influence on the Young’s modulus and cross-sectional area calculations.
Inclusion diameter of 10 mm, Young’s modulus of 80 kPa, phantom thickness of 35 mm,
and base material Young’s modulus of 5 kPa.
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TABLE I

Data Processing Algorithms

Algorithm Input Procedure Output Purpose

Image filtration Pressure sensor signal vs.
time, raw pressure pattern

Temporal and 2-D
spatial noise-
removal filtering,
signal threshold

Filtered image To improve the
signal/noise
ratio.
To be used in
image analysis.

Background/ skewing subtraction Filtered image The background is
calculated as the
second order
surface based on
perimeter sensors,
2-D interpolation

Image without background To be used in 2-
D/3-D image
composition

Moving structure detection and
evaluation

Images without background Image sequence
analysis to extract
moving object

Moving object characterization To be used in
tissue
abnormality
detection, feature
calculations

Extracting reference image Sequence of filtered images Calculation of
reference lesion
image

Lesion reference image To be used in 2-
D matching
algorithm

2-D matching and image
integration

Image without background Matching
calculation, image
superposition and
integration

2-D integrated image To be used in 3-
D image
formation,
feature
calculations

3-D image composition 2-D integrated image 3-D image
superposition, 3-D
image correction
and smoothing

3-D structure image To be used in
real time cross-
section
visualization, 3-
D pictorial
visualization,
feature
calculations

Feature extraction Sequence of filtered
images, reference image, 3-
D image

Feature calculations Calculated features To be used in
examination
report, finding
evaluation

Examination data quality
evaluation

Row pressure pattern
sequence

Data are tested by
criteria set

Data quality classification Data
characterization.
To be used in
training.
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